PREPARATION OF BRIDGED BICYCLOALKANES VIA INTRAMOLECULAR [2+2] CYCLOADDITIONS OF KETENES A SHORT TOTAL SYNTHESIS OF (±)-CLOVENE.

Raymond L. Funk,^{*,1} Perry M. Novak, and Matthew M. Abelman

Department of Chemistry University of Nebraska Lincoln, NE 68588

Summary: The preparation of a bridged bicyloalkane via an intramolecular ketene-olefin cycloaddition reaction in the context of a total synthesis of clovene is described.

The synthetic potential of the intramolecular ketene-olefin cycloaddition reaction is now widely appreciated.² This method has been primarily directed toward the construction of fused polycarbocycles, eg. $1 \rightarrow 2$ (Scheme I). However, when the olefin and ketene are separated by a 3 or 4 carbon tether and the terminal carbon of the olefin is disubstituted, bridged bicyclic adducts are favored via a regioisomeric head to tail type of cycloaddition, cf. $3 \rightarrow 4$.^{2b,c,g,m,n} As a result of our experience with the intramolecular cycloaddition reactions of exocyclic nitrones 5 to afford bridged bicycloalkanes of the general structure 6,³ we became interested in the analogous ketene

olefin cycloaddition ($7 \rightarrow 8$) which would produce the head to head bridged tricarbocyclic adducts 8. Herein, we document the feasibility of the cyclization process in the context of a total synthesis of (±)-clovene (11),⁴ an acid-catalysed rearrangement product of caryophyllene.⁵

Our retrosynthetic analysis featuring the intramolecular cycloaddition reaction as the key step is shown in Scheme II. We anticipated that the cyclization of 9 would be stereocontrolled and produce only diastereomer 10 based on similar stereochemical preferences observed in $1 \rightarrow 2$ ketene-olefin cycloaddition reactions.² That is, stereoisomer 10 embodies a *cis*-fused bicyclo[4.2.0]octane substructure and is much less strained than the alternative diastereomer, the C(2) epimer,

which possesses a *trans*-fused subunit.⁶ The cycloadduct 10 is suitably functionalized for conversion to clovene, requiring only ring expansion of the cyclobutanone, geminal dimethylation and a carbonyl to olefin functional group transformation.

The synthesis of the cycloaddition substrate, carboxylic acid 15, was straightforward and is outlined in Scheme III. Conjugate addition of lithium dimethyl cuprate to the readily available enone 12 afforded disubstituted cyclohexanone 13 (90%). Carbonyl homologation of cyclohexanone 13 to carboxylic acid 15 was accomplished according to the ketene dithioacetal protocol.⁸ Thus, treatment of 13 with 2-lithio-2-trimethylsilyl-1,3-dithiane gave ketene dithioacetal 14 (70%). Hydrolysis of ketene acetal 14

Reagents (a) CH₂CHCH₂CH₂MgBr; H₃O⁺; (b) LiMe₂Cu, THF; (c) 2-lithio-2-trimethylsilyl-1,3-dithane; (d) HgCl₂, TFA, MeOH; NaOH, MeOH; (e) N-methyl-2-chloropyridinium iodide (4 equiv.), NEt₃ (8 equiv.), CH₃CN.

using the Chamberlin procedure (HgCl₂, TFA, MeOH; 88%)⁹ afforded a diastereometric mixture of methyl esters (55:45) which was then saponified to produce the desired carboxylic acids 15.

The mixture of cyclohexane carboxylic acids 15 was subjected to our recently developed procedure for the direct conversion of enoic acids to the corresponding [2+2] cycloadducts.¹⁰ Thus, syringe pump addition of 15 to NEt₃ (8 equiv.) and N-methyl-2-chloropyridinium iodide (4 equiv.) in refluxing acetonitrile (final concentration of 15 ≈ 0.15 M) gave a single cycloadduct 10 in yields ranging from 35-47% after column chromatography. In our hands, ketene generation and cyclization using the corresponding acid choride was inferior (7-10%).^{2c}

The stereochemical assignment was quickly confirmed upon conversion of the tricyclic ketone 10 to clovene (11, Scheme IV). The crucial ring expansion of the cyclobutanone substructure of 10 was effected by employing a procedure reported by Knapp.¹¹ The anion derived from tris(methylthio)methane smoothly added to cyclobutanone 10 to provide an intermediate cyclobutanol which did not require treatment with Cu(I) or Hg(II) salts to effect rearrangement as described in the Knapp procedure. Instead, we observed that an NMR sample of the cyclobutanol adduct in CDCl₃ rearranged slowly, which led to the discovery that brief treatment with aqueous HCl in CHCl₃ promoted facile rearrangement to the cyclopentanone 16 (66% overall). Next, the gem-dimethyl group was installed

Scheme IV

Reagents: (a) NaH, MeI, DME; (b) RaNi, acetone; (c) NH2NHTs, MeOH; (d) BuLi, TMEDA; H3O*.

by permethylation of 16 (NaH, MeI, DME; 75%)¹² and desulfurization (deactivated RaNi, acetone, 79%) to provide the cyclopentanone 17. Finally, transformation of the carbonyl functionality of ketone 17 to an olefin moiety (NH₂NHTs, MeOH; 4 equiv. BuLi, TMEDA; H₃O⁺; 55%)¹³ provided clovene which was identical in all respects with an authentic sample.^{Se}

In conclusion, this relatively short total synthesis of clovene (nine steps from cyclohexanone 12) further illustrates the utility of intramolecular [2+2] cycloaddition reactions of ketenes for the rapid assemblage of tricarbocyclic rings systems. Moreover, a variety of tricarbocyclic ring systems 8 can, in principle, be constructed by extension of this strategy and should also be of value in the synthesis of other natural products. These possibilities are currently being considered in our laboratories.

Acknowledgment. We appreciate the financial support provided by the National Institutes of Health (Grant GM28663), Eli Lilly and Company, and Alfred P. Sloan Foundation. High-field (360 MHz) ¹H NMR and ¹³C NMR spectra were obtained on a spectrometer purchased with funds provided, in part, by the National Science Foundation (Grant CHE-80-24328). Mass spectra were obtained through the National Science Foundation Regional Mass Spectroscopy Center at the University of Nebraska (Grant CHE-82-11164).

REFERENCES

- 1. Fellow of the Alfred P. Sloan Foundation, 1985-1989. Address correspondence to Department of Chemistry, 152 Davey Lab, The Pennsylvania State University, University Park, PA 16802.
- For recent examples and related keteniminium ion cyclizations, see: (a) Ghosez, L.; Marko, I.; Ronsmans, B.; Frisque, A. M. H.; Dumas, S.; Ernst, B.; Greuter, H. J. Am. Chem. Soc. 1985, 107, 2192. (b) Snider, B. B.; Hui, R. A. H. F.; Kulkarni, Y. S. Ibid. 1985, 107, 2194. (c) Snider, B. B.; Hui, R. A. H. F. J. Org. Chem. 1985, 50, 5167 and references cited therein. (d) Brady, W. T.; Giang, Y. F. J. Org. Chem. 1985, 50, 5177. (e) Snider, B. B.; Kulkarni, Y. S. J. Org. Chem. 1985, 50, 2809. (f) Snider, B. B.; Kulkarni, Y. S.; Burbaum, B. W. Tetrahedron Lett. 1985, 5619. (g) Corey, E. J.; Desai, M. C. Tetrahedron Lett. 1985, 3535. (h) Corey, E. J.; Desai, M. C.; Engler, T. A. J. Am. Chem. Soc. 1985, 107, 4339. (i) Arya, F.; Bouquant, J.; Chuche, J. Tetrahedron Lett. 1986, 1913. (j) Ghosez, L.; Marko, I.; Frisque, A-M. H. Tetrahedron Lett. 1986, 27, 5211. (k) Chuche, J.; Arya, F.; Bouquant, J. Ibid. 1986, 1913. (l) Oppolzer, W.; Nakao, A. Ibid. 1986, 5471. (m) Snider, B. B.; Kulkarni, Y. S. J. Org. Chem. 1987, 52, 307. (n) Snider, B. B.; Kulkarni, Y. S.; Ron, E.; Niwa, M. Ibid. 1987, 52, 1568. (o) Brady, W. T.; Giang, Y.-S. F.; Weng, L.; Dad, M.M. Ibid. 1987, 52, 2216.
- (a) Funk, R. L.; Daggett, J. O.; Hansen, M. M.; Horcher, L. M. J. Org. Chem. 1983, 48, 2632. (b) Funk, R. L.; Bolton, G. L.; Daggett, J. O.; Hansen, M. M.; Horcher, L. M. Tetrahedron 1985, 3479.
- For previous syntheses of clovene, see: (a) Doyle, P.; Maclean, I. R.; Murray, R. D. H.; Parker, W.; Raphael, R. A. J. Chem. Soc. 1965, 1344. (b) Doyle, P.; Maclean, I. R.; Parker, W.; Raphael, R. A. Proc. Chem. Soc. 1963, 239. (d) Becker, D.; Loewenthal, J. E. J. Chem. Soc. 1965, 1388. (e) Dreiding, A. S.; Karpf, M.; Ackroyd, J. Helv. Chim., Acta. 1984, 67, 1963. (f) Lutz, A. W.; Reid, E. B. J. Chem. Soc. 1954, 2265. (g) Schultz, A. G.; Dittami, J. P. J. Org. Chem. 1983, 48, 2318.
- (a) Henderson, G. G.; McCrone, P. O. O.; Robertson, J. M. J. Chem. Soc. 1929, 1368. (b) Lutz, A. W.; Reid, E. B. Chem. Ind. 1953, 437. (c) Lutz, A. W.; Reid, E. W. J. Chem. Soc. 1954, 2265.
- 6. The chair, chair conformer of the C(2) epimer of 10 is calculated to be more strained than the desired cycloadduct 10 (boat, chair conformer) by 11.2 kcal/mol using Allinger's MM2 program.
- 7. Allinger, N. L. J. Am. Chem. Soc. 1977, 99, 8127.
- 8. Corey, E. J.; Markel, P. Tetrahedron Lett. 1967, 3201.
- 9. Chamberlin, A. R.; Chung, J. Y. L. J. Org. Chem. 1985, 50, 4425.
- (a) Funk, R. L.; Abelman, M. M.; Jellison, K. M. submitted for publication. (b) Phenoxyketenes have been generated using a very similar procedure and shown to participate in intramolecular [2+2] cycloadditions with carbonyl groups to generate substituted benzofurans, see: Brady, W. T.; Giang, Y.-S.; Marchand, A. P.; Wu, A.-H. J. Org. Chem. 1987, 52, 3457.
- 11. Knapp, S.; Trope, A. F.; Ornaf, R. M. Tetrahedron Lett. 1980, 21, .
- 12. Demuth, M.; Ritterskamp, P.; Weight, E.; Schaffner, K. J. Am. Chem. Soc. 1986, 108, 4149.
- 13. Bond, F. T.; Chamberlin, A. R.; Stemke, J. E. Tetrahedron Lett. 1976, 2947.

(Received in USA 21 December 1987)