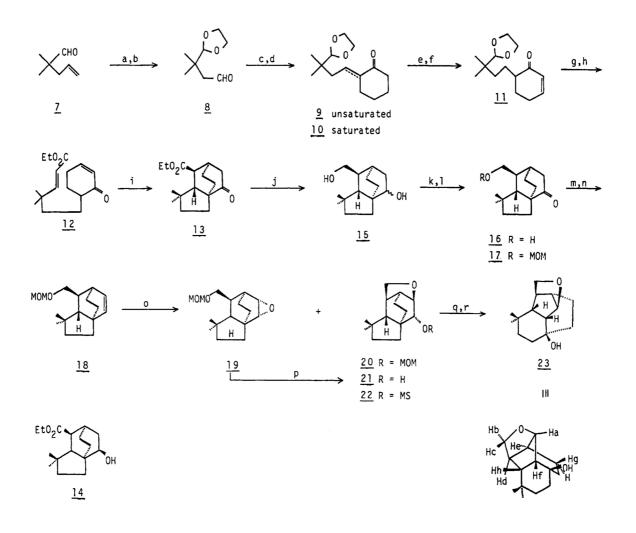

STEREOCONTROLLED SYNTHESIS OF TRICYCLO[6.2.1.0^{4,9}]UNDECANE RING SYSTEM OF ACONITIUM ALKALOIDS

Masataka IHARA, Yohhei ISHIDA, Mariko ABE, Masahiro TOYOTA, Keiichiro FUKUMOTO,^{*} and Tetsuji KAMETANI[†] Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980 †Institute of Medicinal Chemistry, Hoshi University, Ebara 2-4-41, Shinagawa-ku, Tokyo 142

Intramolecular double Michael reaction of the α,β -unsaturated enone ester gave the tricyclo[5.2.2.0^{1,5}]undecane derivative, which was stereoselectively converted into the tricyclo[6.2.1.0^{4,9}]undecane derivative.

Recently we have developed a novel method, intramolecular double Michael (IDM) reaction²⁾ and demonstrated its utility for the synthesis of natural products.^{1,3)} In further continuation of this study, we planned a synthesis of aconitium alkaloids as shown in Scheme 1. Namely rearrangement of the tricyclo[5.2.2.0^{1,5}]undecane ($\underline{5}$), obtained <u>via</u> the IDM reaction of $\underline{6}$, would give the tricyclo[6.2.1.0^{4,9}]-undecane ($\underline{4}$), which could be transformed into the enone ($\underline{3}$). The second IDM reaction of $\underline{3}$ would afford the aconane derivative ($\underline{2}$), convertible into the lycoctonine skeleton ($\underline{1}$). Here we wish to report a synthesis of <u>23</u> as a model experiment for the construction of the tricyclic compound ($\underline{4}$), in which the rearrangement was performed in highly stereo- and site-selective manner.⁴



Scheme 1.

Protection(95% yield) of 2,2-dimethyl-4-pentenal (7),⁵⁾ followed by oxidation of the double bond with osmium tetroxide and sodium metaperiodate⁶⁾ afforded the aldehyde (8), which was condensed with cyclohexanone in a hot aqueous potassium hydroxide solution to give the α , β -unsaturated ketone (9)⁷) in 67% yield from 8. After catalytic hydrogenation(81% yield) of 9, the ketone (10),⁷⁾ was silylated under the kinetically controlled conditions and then oxidized with palladium(II) acetate and 1,4-benzoquinone⁸⁾ to the enone $(\underline{11})^{7}$ in 90% yield. Deprotection of 11 with dilute perchloric acid in tetrahydrofuran followed by Emmons reaction formed the α , β -unsaturated enone ester $(\underline{12})^{7}$ in 76% yield from $\underline{11}$. The IDM reaction of 12 was conducted with lithium hexamethyldisilazide in hexane-ether (5 : 1 v/v) at -78 °C for 2 h and at room temperature for 0.5 h to produce the tricyclic compound $(13)^{7}$ in 64% yield as a single product. The stereochemistry of 13 was determined on the basis of the consideration of the reaction mechanism² and the spectral evidences; particularly due to the chemical shifts of two geminal methyl groups of <u>13</u> and the corresponding alcohol $(\underline{14})^{7}$ which was gained by reduction of 13 with L-selectride.

Now our attention was focused on the stereocontrolled rearrangement accompanied with an introduction of two oxygen functional groups. Therefore transformation of the ethoxycarbonyl group to a more hindered group as the methoxymethyloxymethyl group and a rearrangement via an epoxide intermediate were examined. Thus 13 was reduced with diisobutylaluminum hydride to provide in 99% yield the corresponding epimeric alcohols (<u>15</u>),⁷⁾ whose secondary hydroxyl group was selectively oxidized with sodium bromate in the presence of ceric ammonium nitrate⁹⁾ to the keton(<u>16</u>) in 80% yield. The primary alcohol $(\underline{16})^{7}$ was blocked using methoxymethyl chloride and diisopropylethylamine to give the ether $(17)^{7}$ in 83% yield. Conversion of 17 into the olefin $(18)^{7}$ was carried out in 53% yield according to the Shapiro's procedure.¹⁰⁾ Reaction of <u>18</u> with <u>m</u>-chloroperbenzoic acid afforded two products. The major product obtained in 65% yield was shown to be the desired epoxide (19),⁷⁾ but the more polar compound, gained in 4% yield, appeared to have the structure 20^{7,11)} on the basis of ¹H-NMR spectrum. Interestingly, treatment of the epoxide (19) with 10% perchloric acid in tetrahydrofuran produced the tetracyclic alcohol (21),⁷⁾ mp 93 -94 °C, in 71% yield. Acidic treatment of the above 20 also yielded 21. Furthermore reaction of 19 with boron trifluoride etherate in anhydrous dichloromethane formed 20^{11} and 21 in 33% and 36% yields. It was considered that the tetracyclic alcohol (21) possessed ideal characteristics for the rearrangement; the correct stereochemistry of the hydroxyl group and the limitation of rearranged products due to the existence of the tetrahydrofuran ring. Mesylation of 21 (66% yield), followed by solvolysis, which was conducted by heating the mesylate $(22)^{7}$ for 15 h in a mixture of acetone and water (2 : 1 v/v), furnished the required product $(23)^{7}$ in 65% yield. The structure of 23 was determined by spectroscopic methods including INEPT ¹³C-NMR and 400 MHz two-dimentional (2D) correlated NMR (H,H-COSY) techniques.

Highly stereocontrolled construction of the partial structure of aconitium alkaloids was thus achieved and an application of this methodology for the synthesis of the natural products is in progress.

a) $H0^{-OH}$, <u>p</u>-TsOH b) OsO_4 , $NaIO_4$ c) cyclohexanone, KOH d) H_2 , Pd-C e) LDA; TMSC1, Et₃N f) Pd(OAc)₂, quinone g) dil. $HClO_4$ h) $(EtO)_2POCH_2CO_2Et$, NaH i) LiN(TMS)₂ j) DIBAL k) NaBrO₃, CAN l) MOMC1, ⁱPr₂NEt m) TsNHNH₂, BF₃ · Et₂O n) ⁿBuLi, TMEDA o) mCPBA p) dil. $HClO_4$ p) MsC1, Et₃N r) \triangle , H_2O

Scheme 2.

We thank Dr. T. Iwashita and Dr. Y. Ohfune of Suntory Institute for Bioorganic Research for measuring INEPT 13 C-NMR and 400 MHz 2D 1 H-NMR spectra. A part of this work financially supported by Grant in-Aids No. 59570884 and Special Project No. 59104005 from the Ministry of Education, Science and Culture, Japan, which are gratefully acknowledged.

References

 Part III; M. Ihara, M. Toyota, K. Fukumoto, and T. Kametani, Tetrahedron Lett., <u>26</u>, 1537 (1985).

- 2) M. Ihara, M. Toyota, K. Fukumoto, and T. Kametani, Tetrahedron Lett., <u>25</u>, 2167 (1984).
- M. Ihara, M. Toyota, K. Fukumoto, and T. Kametani, Tetrahedron Lett., <u>25</u>, 3235 (1984).
- 4) Rearrangement of atisane to aconane, the biogenetic pathway, had been studied by several workers; J. P. Johnston and K. H. Overton, J. Chem. Soc., Perkin Trans. 1, <u>1972</u>, 1490; W. A. Ayer and P. D. Deshpande, Can. J. Chem., <u>51</u>, 77 (1973); K. Wiesner, O T. Y. R. Tsai, K. Huber, and S. Bolton, Tetrahedron Lett., <u>1973</u>, 1233. Talatisamine and chasmanine were ingeniously synthesized through the rearrangement; K. Wiesner, T. Y. R. Tsai, K. Huber, S. E. Bolton, and R. Vlahov, J. Am. Chem. Soc., <u>96</u>, 4990 (1974); T. Y. R. Tsai, C. S. J. Tsai, W. W. Sy, M. N. Shanbhag, W. C. Liu, S. F. Lee, and K. Wiesner, Heterocycles, <u>7</u>, 217 (1977); K. Wiesner, T. Y. R. Tsai, and K. P. Nambiar, Canad. J. Chem., <u>56</u>, 1451 (1978).
- 5) K. C. Brannock, J. Am. Chem. Soc., <u>81</u>, 3379 (1959).
- P. Pappo, D. S. Allen Jr., R. U. Lemieux, and W. S. Johnson, J. Org. Chem., <u>21</u>, 478 (1956).
- New compounds have been characterized by elemental analyses and/or high reso-7) lution mass spectra. Significant spectral data are recorded below: <u>13</u>:IR $v \max (CHCl_3) 1720 \text{ cm}^{-1} (C=0); ^{1}H-NMR (CDCl_3) 1.00 \text{ and } 1.11 (each 3H, each$ s, 2 Me); MS m/e 264 (M⁺). <u>14</u>: IR v max (CHCl₃) 3580 (OH), 1720 cm⁻¹ (C=O); ¹H-NMR (CDCl₃) 1.02 (6H, s, 2 Me), 3.65 (1H, m, CHOH); MS m/e 266 (M^+) . <u>20</u>; ¹H-NMR (CDCl₃) 1.03 and 1.08 (each 3H, each s, 2 × Me), 3.11 (1H, s, CHOMOM), 3.34 (1H, d, J = 6 Hz, CHO-), 3.35 (3H, s, OMe), 3.67 (1H, s, OME), 3.67 (dd, $\underline{J} = 6$ and 2 Hz, 1/2-CH₂O-), 3.77 (1H, d, $\underline{J} = 6$ Hz, 1/2-CH₂O-), 4.59 and 4.74 (each 1H, each d, each <u>J</u> = 6 Hz, OCH₂O); MS m/e 266 (M^+). <u>21</u> : IR \vee max $(CHCl_3)$ 3600 cm⁻¹ (OH); ¹H-NMR (CDCl_3) 1.03 and 1.09 (each 3H, each s, 2 × Me), 3.19 (1H, s, CHOH), 3.33 (1H, d, J = 6 Hz, CHO-), 3.63 (1H, d, J =2 Hz, 1/2-CH₂O-), 3.69 (1H, dd, <u>J</u> = 2 and 1 Hz, 1/2-CH₂O-); MS m/e 222 (M⁺). (23) IR $v \max$ (CHCl₃) 3600 cm⁻¹ (OH); ¹H-NMR (CDCl₃) 1.03 and 1.10 (each 3H, each s, 2 Me), 1.78 (1H, d, \underline{J} = 8.3 Hz, H_h), 1.90 - 2.00 (1H, m, H_g), 2.20 $(1H, d, J = 8.3 Hz, H_f)$, 2.21 - 2.25 $(1H, m, H_p)$, 2.28 $(1H, br s, H_d)$, 3.41 $(1H, d, J = 6.3 Hz, H_{c})$, 3.66 $(1H, dd, J = 6.3 and 1.4 Hz, H_{b})$, 4.44 $(1H, dd, J = 6.3 and 1.4 Hz, H_{b})$, 4.44 $(1H, dd, J = 6.3 and 1.4 Hz, H_{b})$, 4.44 $(1H, dd, J = 6.3 and 1.4 Hz, H_{b})$, 4.44 $(1H, dd, J = 6.3 and 1.4 Hz, H_{b})$, 4.44 $(1H, dd, J = 6.3 and 1.4 Hz, H_{b})$, 4.44 $(1H, dd, J = 6.3 and 1.4 Hz, H_{b})$, 4.44 $(1H, dd, J = 6.3 and 1.4 Hz, H_{b})$, 4.44 $(1H, dd, J = 6.3 and 1.4 Hz, H_{b})$, 4.44 $(1H, dd, J = 6.3 and 1.4 Hz, H_{b})$, 4.44 $(1H, dd, J = 6.3 and 1.4 Hz, H_{b})$, 4.44 $(1H, dd, J = 6.3 and 1.4 Hz, H_{b})$, 4.44 $(1H, dd, J = 6.3 and 1.4 Hz, H_{b})$, 4.44 (1H, dd, J = 6.3 and 1.4 Hz), (1H, dd, J = 6.3 and 1.4 Hz)br s, H_a); ¹³C-NMR (CDCl₃) 22.04 (t), 29.41 (s), 30.34 (q), 33.33 (q), 34.56 (t), 35.43 (t), 37.86 (t), 41.02 (d), 44.50 (d), 51.49 (d), 52.98 (d), 73.55 (s), 77.99 (t), 78.14 (d); MS m/e 222 (M⁺).
- 8) Y. Ito, H. Hirao, and T. Saegusa, J. Org. Chem., <u>43</u>, 1011 (1978).
- 9) H. Tomioka, K. Oshima, and H. Nozaki, Tetrahedron Lett., 23, 539 (1982).
- R. H. Shapiro, Org. Reactions, 1976, <u>23</u>, 405; A. R. Chamberlin, J. E. Stemke, and F. T. Bond, J. Org. Chem., <u>43</u>, 147 (1978).
- 11) It is considered that the migration of MOM group is due to the formation of MeO=CH₂ in anhydrous conditions.

(Received May 8, 1985)