2004 Vol. 6, No. 26 4829–4831

2-Aryl-*N*-tosylazetidines as Formal 1,4-Dipoles for [4+2] Cycloaddition Reactions with Nitriles: An Easy Access to the Tetrahydropyrimidine Derivatives

B. A. Bhanu Prasad. Alakesh Bisai, and Vinod K. Singh*

Department of Chemistry, Indian Institute of Technology, Kanpur, 208 016, India vinodks@iitk.ac.in

Received September 12, 2004

ABSTRACT

A new synthetic route to 2-aryl-N-tosyl azetidines has been developed starting from N-tosylarylaldimines in two steps in an overall yield of 63-70%. A formal [4 + 2] cycloaddition of these 2-aryl-N-tosylazetidines with nitriles in the presence of BF₃·OEt₂ has been described for the synthesis of substituted tetrahydropyrimidines. It is proposed that the reaction proceeds in Ritter fashion.

Since the discovery of the β -lactam ring as the essential feature of antibiotics, much has been learned about the chemical reactivity of this four-membered heterocycle. The chemistry of 2-azetidinone rings is well-known¹ and used synthetically. However, the chemistry of azetidine has not been much investigated. Many of the efforts involving the azetidine nucleus have been directed toward its synthesis,² as it is a component of many biologically active drugs and natural products.³ Very few examples of rearrangements or fragmentations of the azetidine ring are known. Recently, Mann and co-workers have reported that 2-phenyl-N-tosylazetidines, in the presence of a Lewis acid, generate a double

Although most of the nitriles are known to be poor dipolar ophiles for intermolecular [3 + 2] cycloaddition reactions,⁶ we recently reported that nitriles are good dipolar ophiles for formal [3 + 2] cycloaddition reactions of 2-aryl-

exo-stabilized 1,4-dipole or a zwitterion.⁴ They have presented evidence for the existence of the 1,4-dipole and utilized it in [4+2] cycloaddition reactions with alkenes.⁵ Later, the same group extended this formal [4+2] cycloaddition to *exo*-methylene cycloalkanes. The formation of spiro-piperidines was precisely anticipated via a formal [4+2] cycloaddition reaction.

⁽¹⁾ For reviews, see: (a) The Organic Chemistry of β -Lactams, Georg, G. I., Ed.; VCH: New York, 1993. (b) Manhas, M. S.; Wagle, D. R.; Chiang, J.; Bose, A. K. Heterocycles **1998**, 27, 1755. (c) Ojima, I. Adv. Asymm. Synth. **1995**, 1, 95.

⁽²⁾ For reviews on the synthesis and chemistry of azetidines, see: (a) De Kimpe, N. In *Comprehensive Heterocyclic Chemistry II*; Padwa, A., Ed.; Elsevier: Oxford, 1996; Vol. 1B, Chapter 1.18, pp 507–589. (b) Moore, J. A.; Ayers, R. S. In *Chemistry of Heterocyclic Compounds-Small Ring Heterocycles*; Hassner, A., Ed.; Wiley: New York, 1983; Part 3, pp 1–217. (c) Cromwell, N. H.; Philips, B. *Chem. Rev.* 1979, 79, 331.

^{(3) (}a) Kobayashi, J.; Ishibashi, M. *Heterocycles* **1996**, 42, 943. (b) Shuman, R. T.; Rothenberger, R. B.; Campbell, C. S.; Smith, G. F.; Gifford-Moore, D. S. *J. Med. Chem.* **1995**, 38, 4446. (c) Frigola, J.; R. *J. Med. Chem.* **1994**, 37, 4195. (d) Dureault, A.; Portal, M.; Carreaux, F.; Depezay, J. C. *Tetrahedron* **1993**, 49, 4201.

⁽⁴⁾ Ungureanu, I.; Koltz, P.; Schoenfelder, A.; Mann, A. Tetrahedron Lett. 2000, 42, 6087.

⁽⁵⁾ Ungureanu, I.; Koltz, P.; Schoenfelder, A.; Mann, A. Chem. Commun. 2001, 958.

⁽⁶⁾ For reaction of activated nitriles with azides, see: (a) Demko, Z. P.; Sharpless, K. B. *Angew. Chem., Int. Ed.* **2002**, *41*, 2113. (b) Demko, Z. P.; Sharpless, K. B. *Angew. Chem., Int. Ed.* **2002**, *41*, 2110.

N-tosylaziridines for the synthesis of substituted imidazolines in the presence of BF₃•Et₂O.⁷ It is surprising to note that nitriles have not been used as dipolarophiles for synthesis of tetrahydropyrimidines. In this paper, we report the first formal [4 + 2] cycloaddition of 2-aryl-*N*-tosylazetidines with nitriles for synthesis of tetrahydropyrimidines, which are known to exhibit a wide range of pharmacological activities.⁸ Further, these tetrahydropyrimidine derivatives are useful synthetic intermediates for synthesis of bacterial siderophores.⁹

Only a few reports are known for synthesis of 2-aryl-*N*-tosylazetidines. ¹⁰ However, these methods are not reliable and suffer from poor yields. Hence, there was a need to develop a simple and flexible method for the synthesis of 2-aryl-*N*-tosylazetidines. *N*-tosylarylaldimines **1** were chosen as starting precursors (Scheme 1). ¹¹ The synthesis com-

Scheme 1. Synthesis of a Variety of 2-Aryl-*N*-tosylazetidines from *N*-tosylarylaldimines

mences with vinylation of 1 with vinylmagnesium chloride. The resulting addition products (2a-d) were subjected to hydroboration with BH₃·DMS followed by alkaline peroxide treatment. This gave the 1,3-N-tosylamino alcohols, which led to the formation of 2-aryl-N-tosylazetidines 3 via Mitsunobu reaction in 63–70% overall yield starting from 1 (Table 1).¹²

After successfully demonstrating the synthesis of a variety of azetidines, we studied the reaction of azetidines with nitriles in the presence of various Lewis acids. Among the several Lewis acids examined, BF₃·Et₂O was found to be the best for catalyzing the [4 + 2] cycloaddition of 2-phenyl-*N*-tosylazetidine with nitriles. When 20 mol % BF₃·Et₂O was used at room temperature, the reaction was completed in 3 h and gave good yields of products. The reaction could be completed in 5 min using 1 equiv of BF₃·Et₂O, but the yields were very poor. Hence, it was decided to carry out all the reactions with 20 mol % BF₃·Et₂O, conditions that afforded the products in good yield (Table 2, entries a—e). The other substituted phenyl azetidines gave pyrimidines in moderate

Table 1. Synthesis of $(2\mathbf{a}-\mathbf{d})$ and 2-Aryl-*N*-tosylazetidines $(3\mathbf{a}-\mathbf{d})$ from *N*-tosylarylaldimines 1

ba-a) from <i>N</i> -tosylarylaldimines 1								
entry	Ar (2a-2d)	yield (%)ª	Ar (3a-3d)	yield (%) ^b				
a	(2a)	92	(3a)	75				
b	Br (2b)	90	(3b)	70				
c	(2c)	91	(3c)	71				
d	(2d)	94	(3d)	73				

 $^{^{\}it a}$ Isolated yield for vinyl Grignard addition. $^{\it b}$ Isolated yield after the Mitsunobu reaction.

Table 2. Formal [4 + 2] Cycloaddition of 2-Phenyl-*N*-tosylazetidines with a Variety of Nitriles^a

$$\begin{array}{c} Ph \\ \hline TsN \end{array} + R-CN + BF_3.Et_2O \xrightarrow{CH_2Cl_2, \ rt} \begin{array}{c} Ph \\ \hline NTs \\ \hline \end{array}$$

$$(4a-4e)$$

entry	R	product	time	yield $(\%)^b$
a	Me	4a	2 h	60
b	$i ext{-}\mathrm{Pr}$	4b	3 h	61
c	Ph	4c	2 h	72
d	Bn	4d	2 h	65
e	$\mathrm{CH_{2}Cl}$	4e	3 h	42

 $[^]a\,\mathrm{All}$ reactions were performed at room temperature under an argon atmosphere. $^b\mathrm{Isolated}$ yield after column chromatography.

yields (Table 3, entries a−f). In the case of 2-(*p*-OMe)-phenyl-*N*-tosylazetidine, the reaction was complete within 15 min at −30 °C even with 20 mol % BF₃·Et₂O (Table 3; entries c and d). This could be due to increased stabilization of the benzylic cation by the *p*-OMe group. In most of the cases, the cyclized tetrahydropyrimidines were obtained in moderate to good yield.

The mechanism of this [4 + 2] cycloaddition reaction is similar to the [3 + 2] cycloaddition of aziridines with nitriles.⁷ BF₃·Et₂O can attach to the sulfonyl oxygen, and the nitrile group attacks the benzylic center in a typical Ritter fashion, which can lead to the formation of nitrilium salt.

4830 Org. Lett., Vol. 6, No. 26, 2004

⁽⁷⁾ Prasad, B. A. B.; Pandey, G.; Singh, V. K. Tetrahedron Lett. 2004, 45, 1137.

⁽⁸⁾ Messer, W. S., Jr.; Abuh, Y. F.; Ryan, K.; Shepherd, M. A.; Schroeder, M.; Abunada, S.; Sehgal, R.; El-Assadi, A. A. *Drug Dev. Res.* **1997**. *40*. 171.

^{(9) (}a) Linger, C.; Azadi, P.; MacLeod, J. K.; Dell, A.; Abdallah, M. A. *Tetrahedron Lett.* **1992**, *33*, 1737 and refs cited therein. (b) Jones, R. C. F.; Crockett, A. K. *Tetrahedron Lett.* **1993**, *34*, 7459.

^{(10) (}a) Gensler, W. J.; Koehler, W. R. J. Org. Chem. 1962, 27, 2754.
(b) Nadir, U.K.; Sharma, R. L.; Koul, V. K. Tetrahedron 1989, 45, 185.
(11) For preparation of aldimines, see: Love, B. E.; Raje, P. S.; Williams,

T. C., III. Synlett 1994, 493.

⁽¹²⁾ During the hydroboration/alkaline oxidation followed by Mitsunobu reaction, we observed the formation of N-tosylaziridines in 15–18% yield, which can be separated by column chromatography in the final step.

Table 3. Formal [4 + 2] Cycloaddition of 2-Aryl-*N*-tosylazetidines with Variety of Nitriles

$$Ar$$
 T_{SN} + R-CN + BF₃.Et₂O CH_2Cl_2 , rt Ar
 N
 NT_S
(5a-5f)

				(
entry	Ar	R	Ar (5a-5f)	time	yield (%) ^a
a	<u> </u>	Ph	5a	20 min ^b	47
b	~~~	Bn	5b	20 min ^b	44
c	o—⟨}	Me	5e	15 min ^b	47
d		Bn	5d	15 min ^b	48
e	⟨ _}-}	Ph	5e	3 h ^c	49
f	Br [/]	Bn	5 f	3 h ^c	48

 $[^]a$ Isolated yield after column chromatography, b Performed at -30 °C, c Performed at room temperature.

Subsequent attack of the sulfonamide nitrogen led to the formation of tetrahydropyrimidines (Scheme 2).¹³

In summary, we have developed a simple and flexible method for the synthesis of 2-aryl-N-tosylazetidines. We have demonstrated for the first time a formal [4+2] cycloaddition of 2-aryl-N-tosylazetidines with a variety of nitriles and applied this to the synthesis of many substituted tetrahydropyrimidines. We have also shown that most of the nitriles are good dipolarophiles for [4+2] cycloaddition reactions with azetidines. These tetrahydropyrimidines will find use

Scheme 2. Proposed Mechanism for Formal [4 + 2] Cycloaddition of 2-Aryl-*N*-tosylazetidines with Nitriles in the Presence of BF₃•OEt₂

$$\begin{bmatrix} Ph & & & & \\ Ph & & & & \\ Ph & & & & \\ Ph & & \\ Ph & & & \\ Ph & \\ Ph & & \\ Ph & & \\ Ph & \\ Ph & & \\ Ph & \\ Ph$$

in the synthesis of various *N*-substituted compounds after the cleavage of sulfonamide and alkylation. ^{14,15}

Acknowledgment. We thank Department of Science and Technology, New Delhi, for financial support. A.B. thanks Council of Scientific and Industrial Research, New Delhi, for JRF.

Supporting Information Available: Experimental procedures, compound characterization data for selected compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL048161L

(14) For cleavage of the *N*-tosyl group, see: (a) Baldwin, J. E.; Farthing, C. N.; Russell, A. T.; Schofield, C. J.; Spivey, A. C. *Tetrahedron Lett.* **1996**, *37*, 3761. (b) Cantrill, A. A.; Obsorn, H. M. I.; Sweeney, J. *Tetrahedron* **1998**, *54*, 2181. (c) Davis, F. A.; Zhou, P.; Liang, C.-H.; Reddy, R. E. *Tetrahedron: Asymmetry* **1995**, *6*, 1511. (d) Vedjes, E.; Sano, H. *Tetrahedron Lett.* **1992**, *33*, 3261.

(15) For cleavage of the *N*-tosyl group by using Mg in methanol, see: Alonso, D. A.; Andersson, P. G. *J. Org. Chem.* **1998**, *63*, 9455. For use of sodium naphthalenide, see: Bergmeier, S. C.; Seth, P. P. *Tetrahedron Lett.* **1999**, *40*, 6181.

Org. Lett., Vol. 6, No. 26, **2004**

^{(13) (}a) Ritter, J. J.; Minieri, P. P. *J. Am. Chem. Soc.* **1948**, *70*, 4045. (b) Ritter, J. J.; Kalish, J. *J. Am. Chem. Soc.* **1948**, *70*, 4048.