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Abstract 

Investigating the role of lysosome dysfunction in cancer requires 

the development of efficient probes for lysosomes. We report 

herein a cyclometalated iridium(III) complex (Ir-Ly) as a 

luminescent probe for visualizing lysosomes in cancer cells. The 

morpholine and hydroxy moieties within Ir-Ly provide suitable 

hydrophilicity and responsiveness to pH. Importantly, Ir-Ly 

exhibits large Stokes shift, long lifetime and high photostability, 

which are important advantages for lysosome tracking in living 

cells.  

Introduction 

Lysosomes are essential organelles that are responsible for 

cellular digestion. They break down extracellular materials 

taken up by the cell as well as intracellular components under 

specific circumstances in order to regulate the cellular dynamic 

physiological balance.1, 2 There are over 50 hydrolases in 

lysosomes which are responsible for carrying out the 

degradation activities of lysosomes. As lysosomes and 

lysosomal enzymes play important functions in programmed 

cell death, considerable attention has been drawn towards the 

role of lysosomes in cancer.3, 4 These studies demand the 

development of new kinds of molecular probes for examining 

lysosomal function and dysfunction within the cell.5 

Fluorescence microscopy is a widely used technology used for 

non-invasive imaging of organelles in living cells. The ability to 

track and image lysosomes accurately could be useful for the 

monitoring of lysosome behavior in cancer cells.6 However, 

most commercially accessible probes for lysosomes are based 

on fluorescent organic dyes, which suffer from poor 

photostability,7, 8 limiting the time period for observing 

dynamic changes of lysosome behavior. Furthermore, other 

long-term fluorescent probes for lysosomes reported in the 

literature, including dextran-linked fluorophores,9 

inorganic/hybrid nanoparticles,10 and organic dyes,11, 12 

required excitation with short wavelengths leading to 

unwanted autofluorescence, photobleaching, photodamage, 

and shallow depth of penetration. Inorganic luminescent 

materials have emerged as promising alternatives to 

fluorescent dyes for cellular imaging due to their low 

phototoxicity, good photostability, deeper penetration, large 

Stokes shifts and long luminescent lifetimes.13-15 

Based on our continuing interest in the development of 

luminescent iridium(III) complex probes,16-18 we report in this 

work our efforts to develop a iridium(III) complex for lysosome 

tracking. We designed and synthesized an iridium(III) complex 

Ir-Ly, which incorporates morpholine and hydroxy groups in 

the phenanthroline N^N ligand, and also bears two 

phenylpyridine C^N co-ligands. The morpholine moiety is 

crucial for lysosomal localization,19 as the protonation of Ir-Ly 

within the acidic interior of the lysosome converts the complex 

into a more hydrophilic species that is retained within the 

lysosome. Therefore, the protonated morpholine moiety acts 

as a “lock” that allows Ir-Ly to accumulate in lysosomes, 

allowing the probe to be used for observing lysosomes in 

cancer cells (Fig. 1a). Meanwhile, the hydroxy groups in the 

complex can act as a sensing unit in basic solution, and also 

confer increased water solubility (Fig. 1b). 
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Fig. 1 Ir-Ly for lysosome tracking. (a) Ir-Ly enters and is retained in 

lysosomes. (b) Schematic of H+ and OH- sensing by Ir-Ly. 

Results and discussion 

Synthesis of Ir-Ly 

Complex Ir-Ly was prepared through four steps as depicted in 

Fig. 2. 1,10-Phenanthroline-5,6-dione 1 was reacted with 4-

methoxybenzaldehyde 2 in a simple cyclo-condensation 

reaction to produce compound 3. Then, alkylation of 3 

produced the morpholine derivative 4, followed by 

demethylation to reveal the hydroxy groups in the 

phenanthroline N^N ligand 5. Finally, the reaction of N^N 

ligand 5 with the organometallated dimer [Ir(ppy)2Cl]2 and 

subsequent anion exchange with NH4PF6 generated the 

iridium(III) complex Ir-Ly in 65% yield. The intermediates 3-5 

and complex Ir-Ly were characterized by 1H NMR, 13C NMR, 

and HRMS spectrometry (see SI). 

Fig. 2. Synthesis of complex Ir-Ly. Reagents and conditions: a) 
NH4OAc/AcOH, reflux, overnight, 85%; b) 4-(2-
chloroethyl)morpholine, NaH/DMF, r.t. to reflux, 25 h, 60%; c) 
2-aminobenzenethiol, Cs2CO3, NMP, 185 °C, 3 h, 60%; d) 
[Ir(ppy)2Cl]2, DCM/MeOH (1:1), r.t., overnight, 65%. 

Photophysical properties of Ir-Ly 

With the complex in hand, the optical characteristics of Ir-Ly were 

next investigated. Ir-Ly showed excitation and emission maxima of 

290 and 590 nm, respectively (Fig. S3†). Its large Stokes shift of 300 

nm is larger than the Stokes shift of typical organic dyes, which 

reduces the likelihood of self-quenching. Additionally, Ir-Ly’s 

luminescence lifetime was relatively long-lived (ca. 4.2 μs) (Table 

S1), which is substantially longer than lifetimes of organic dyes 

(typically ns). Therefore, the emission of complex Ir-Ly could easily 

be distinguished from background autofluorescence through the 

use of time-resolved emission spectroscopy (TRES). To verify this 

hypothesis, the luminescent properties of Ir-Ly were monitored in 

the presence of coumarin-460 (CM460), as a typical fluorescent dye. 

In steady-state mode, the luminescence of Ir-Ly was disturbed by 

the robust emission of CM460 at about 460 nm, reducing the 

precision of determination (Fig. 3a). However, when the delay was 

set to 333 ns, which is long after the completion of the fluorescence 

decay of CM460 (3.4 ns),20 the emission from CM460 was almost 

entirely absent and only the emission of complex Ir-Ly could be 

detected (Fig. 3b). These results establish the possible application of 

Ir-Ly in naturally fluorescent milieus, via the use of TRES, thanks to 

its long-lived luminescence. 

 
Fig. 3. TRES of complex Ir-Ly (20 μM) in the presence of CM460 
(2 μM) in PBS buffer (0.1 mM, pH 4.5) under an excitation 
wavelength at 355 nm; time gate (a) Delay < 333 ns or (b) 
Delay > 333 ns. 

pH effect and specificity study 

The luminescent intensity of Ir-Ly was responsiveness to pH. 
As pH increased, the emission intensity of Ir-Ly was reduced 
(Fig. 4). This is due to the ability of morpholine, as an electron 
donor, to quenching the luminescence of the iridium(III) center 
through photoinduced electron transfer (PET). However, since 
morpholine has a pKa of 5−6,21 it will become protonated in 
acidic conditions. This prevents PET, leading to an 
enhancement of luminescence emission at low pH.  
As specificity is an important characteristic of a probe, we 
investigated the selectivity of Ir-Ly by introducing different 
concentrations of sodium ions, various cations, anions or 
amino acids into a solution of Ir-Ly (Fig. S1). Encouragingly, the 
results revealed that Ir-Ly had no obvious response towards 
any of the tested interferents. Such emission response of pH 
change and specificity are important for indicating the location 
and morphology of lysosomes. 
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Fig. 4. Emission intensity of Ir-Ly at 590 nm at different pH 
values in PBS buffer. 

Visualization of lysosomes in living cells 

Lysosomes are more acidic organelles (pH 5.0-5.5) compared 

with cytoplasmic or other subcellular compartments (pH ca. 

7.4).22 In consideration of responsiveness of Ir-Ly to pH, as well 

as the promising luminescent behavior of the complex in 

aqueous media, we hypothesized that Ir-Ly could function as 

an ideal probe for lysosomes. To study this, the ability of the 

probe to track lysosomes in living cells was investigated. First, 

the cytotoxicity of complex Ir-Ly towards human cervical 

cancer (HeLa) cells was first investigated using an MTT (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. 

Complex Ir-Ly showed negligible cytotoxicity (IC50 value > 200 

μM) after 6 h (Fig. S2), indicating that it could be used for 

tracking lysosomes in living cells without adverse effects on 

their normal function under the typical time and concentration 

parameters employed.  

We next explored the ability of Ir-Ly for lysosome tracking in 

living HeLa cells. Cells were stained with the indicated 

concentrations of Ir-Ly for 1 h in a CO2 incubator at 37 °C, 

followed by a subsequent incubation with the lysosome-

staining Lyso-Tracker dye for 30 min and the nuclear-staining 

dye Hoechst 33342 for another 10 min. Cells were washed 

three times with phosphate buffer, then luminescence images 

were recorded using a confocal laser scanning microscope with 

excitation at 405 nm. Ir-Ly exhibited a yellow punctuated 

luminescence that was enhanced with increasing complex 

concentration (Fig. 5). The co-localization of Ir-Ly with Lyso-

Tracker suggested that Ir-Ly could selectively monitor 

lysosomes in living HeLa cells.  

The ability of Ir-Ly to monitor lysosomes in different kinds of 

living cells was further validated using a human non-small-cell 

lung cancer cell line (A549) and a normal human umbilical vein 

endothelial cell line (HUVEC) (Fig. 6). Notably, Ir-Ly appeared 

to show even higher specificity for lysosomes in both cell lines, 

as evidenced by the accumulation of the yellow punctuated 

luminescence in the cytoplasm, compared to Lyso-Tracker, 

which exhibited slight fluorescence in the nuclear region 

where lysosomes are not expected to be found. Taken 

together, these results indicate that the luminescent probe Ir-

Ly could selectively monitor lysosomes in both carcinoma and 

normal living human cell lines. 

  

Fig. 5. Luminescence images of HeLa cells incubated with 
different concentrations of Ir-Ly (0, 2.5, 5, and 10 μM). After 
incubation with Ir-Ly for 1 h at 37 °C, cells were washed three 
times with phosphate buffer and stained with Lyso-Tracker 
Red (1:15,000) for 30 min and Hoechst 33342 (1:2,000) for 10 
min. Luminescence images were captured under an excitation 
wavelength of 405 nm. 

 
Fig. 6. Intracellular co-localization of Ir-Ly (10 μM) and Lyso-

Tracker (1:15,000) in cancer (A549) and normal (HUVEC) living 

cells. Luminescence images of cells were captured under an 

excitation wavelength of 405 nm. 

Conclusions 

In conclusion, we have designed and synthesized a 

cyclometalated iridium complex Ir-Ly as an effective 

luminescence lysosomal tracker. As a consequence to its large 

Stokes shift, weak cytotoxicity, and specific localization in 

lysosomes, Ir-Ly can be used to track lysosomes in both 

carcinoma and normal living cell lines. Further studies for 

imaging of other organelles and biomedical applications with 

the long-lived luminescent iridium(III) complexes are ongoing 

in our laboratories.  
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