		PRODU	icts from p-S	UBSTITUTED BENZ	OPHENONES		
Substituent	Crude amides, g.	Mixed acids, g.	R Wt.	— СООН М. р., °С.	Mixed acetanilides, g.	R-	-NH-COCH1 M. p., °C.
C1-	2.17	0.98	0.48	225-230	1.35	0.90	166 - 170
NO_2-	2.26	1.07	.45*	117 - 119°	0.55^{b}	.57°	$140 - 143^{\circ}$
CH3-	1.87	0.96	. 50 [°]	300ª	1.18	e	
C ₆ H ₆ -	2.67	1.01	. 59	222-224	1.58	.88	166-168
CH3O-	2.06	1.10	.40'	204 - 207	0.42		

TABLE IV

^a Benzoic acid isolated. ^b Acetanilide isolated. ^c p-Nitroaniline. ^d Terephthalic acid. ^e No satisfactory separation of aniline and p-toluidine could be found. ^f p-Hydroxybenzoic acid. There was also isolated 0.59 g. benzoic acid, m. p. 111-115°.

neutralized with animonium hydroxide, and filtered. The crude amides were washed on the filter with water and petroleum ether, and then hydrolyzed by refluxing for 24 to 48 hours with a mixture of glacial acetic and coned. hydrochloric acids.

The acidic products of hydrolysis were isolated and weighed, after separation from any neutral material by solution in sodium bicarbonate and reprecipitation with hydrochloric acid. Several of the substituted benzoic acids are insoluble in water; mixtures containing them were therefore separated by extraction with warm water, the insoluble acid being identified and weighed. The exceptions were: p-nitrobenzoic acid, which was hydrogenated to p-aminobenzoic acid for separations; p-toluic acid, which was first oxidized¹⁹ to water-insoluble terephthalic acid; and the products from p-methoxybenzophenone, which are given separate treatment in the following paragraph. The basic products of the hydrolysis were isolated as their acetyl derivatives obtained by treatment with acetic anhydride. The acetanilide was extracted from each mixture by warm water, and the residual substituted acetanilide identified and weighed. p-Nitroaniline was isolated without acetylation, however, since its feeble basicity makes it insoluble in dilute acid.

The amides from p-methoxybenzophenone were hydrolyzed and simultaneously demethylated by heating with a 30% solution of hydrogen bromide in glacial acetic acid in

(19) Footnote b in Table I.

a sealed tube at 100° for twenty-four hours. The mixture of benzoic and p-hydroxybenzoic acids obtained from this was separated by extraction with benzene or carbon disulfide, in which only benzoic acid is soluble. This procedure was tested by subjecting a mixture of equal parts of p-anisic acid and benzoic acid first to the hydrolysis procedure, and then to the separation. A 91% recovery of p-hydroxybenzoic acid and 96% of benzoic acid was obtained. From the basic products of hydrolysis the aniline was recovered by extraction with benzene from the alkalized aqueous solution, and was converted to acetanilide for identification and weighing.

The detailed results of these procedures are given in Table IV.

Summary

A study has been made of the Schmidt reaction on a series of *para*-substituted benzophenones, a series of phenyl alkyl ketones, and two unsaturated aralkyl ketones. The ratios of the two isomeric amides formed in each case are nearly independent of para-substituents, but are greatly affected by changes in the steric environment of the carbonyl group. These observations are correlated with existing theory.

ANN ARBOR, MICHIGAN RECEIVED OCTOBER 21, 1949

[CONTRIBUTION FROM THE CHEMICAL LABORATORY OF NORTHWESTERN UNIVERSITY]

The Reaction of Ketones with Iodine and Thiourea¹

By L. CARROLL KING AND ROBERT J. HLAVACEK

Recent papers from this Laboratory² have described the formation of aminothiazoles by means of the reaction.

$$\begin{array}{cccc} R_1 - CO - CH_2 - R_2 + I_2 + 2NH_2 - CS - NH_2 \longrightarrow \\ R_1 - C - N &+ NH_2 - CSH = NH_2^+ I^- \\ R_2 - C & C - NH_2 \cdot HI \\ \end{array}$$

This reaction has now been examined as a preparative method for aminothiazoles. The 2aminothiazoles and the corresponding 2-acetaminothiazoles prepared from a variety of ketones

(1) This investigation was partially supported by a grant from the Abbott Fund of Northwestern University.

(2) Dodson and King, THIS JOURNAL, 67, 2242 (1944); *ibid.*, 68, 871 (1946); King and Ryden, *ibid.*, 69, 1813 (1947).

where R_1 and R_2 are separate groups, are listed in Table I. Thiazoles and acetaminothiazoles prepared from ketones where $R_1CO-CH_2-R_2$ is a cyclic ketone are listed on Table II.

The method described was not found to be useful for preparation of thiazoles from aldehydes or from certain ketones such as o-nitroacetophenone, 2-methylcyclohexanone, cyclopentanone and acetomesitylene. In the case of acetomesitylene the reaction gives the isothiuronium salt II, but this compound will not cyclize to form the thiazole.³

In the case of 3-methylcyclohexanone a poor yield of a single product was obtained. It was

⁽³⁾ This is in line with other reactions of acetomesitylene wherein normal ketone reactions are absent; see Kadesch, THIS JOURNAL, 66, 1206 (1944).

• Yried/ • Analyses, N_c Found Formula M. P., °C.* Calculated N_c 0.1 0.8 C ₁₁ H _M OSB 254-255 N, 11.08 93 N, 11.0 10.8 C ₁₁ H _M OSB 255-255 N, 11.08 97 N, 9.27 9.18 C ₁₁ H _M OSB 255-253 N, 11.3 72 N, 12.6 12.3 C ₂₁ H _M NOS 258-253 N, 11.3 72 N, 12.6 12.3 C ₂₁ H _M NOS 258-253 N, 11.3 73 C, 53.07 H, 4.79 71.27 5.10 C ₇₁ H _M NOS 259-263 N, 11.3 99 C, 71.40 H, 4.79 71.27 5.10 C ₇₁ H _M NOS 259-263 N, 10.4 70 C, 63.07 H, 5.30 63.26 5.23 C ₂₁ H, 4.76 5.21 99 C, 71.40 H, 4.79 71.27 5.10 C ₇₁ H _M NOS 259-265 N, 10.4 70 C, 63.07 H, 5.30 64.40 5.30 249 9 3.44					0_Amin	S Attraction			2.Ace	2. Aceta minorthia zole	
	ž	°a	Formula	M. p., °C. ⁶ Found	Z-AUUIN Vield, b	runazone Calculat	%	Formula	M. p. °C.ª	Calculat	% Found
	- H-O-0-4		C.H.CIN.S	163-164	, 8	-	13 37	CH.N.OSCI	254-255	Z	11.0
	p-Br-CaHr-	н-	CaH-BrN.S	180-181	86 86		10.8	CuHoN,OSBr	277-278	٩	9.26
	₽-I-C ₆ H ₄ -	-H-	C.H.IN.S	176-177	97		9.18	C ₁₁ H ₉ N ₂ OSI	302-303		8.03
	P-CH ₃ -O-C ₆ H _C	Н-	C ₁₀ H ₁₀ N ₂ OS	204 - 205	72	~	13.6	C ₁₂ H ₁₂ N ₂ O ₂ S	287-288		11.65
	P-CH ₃ -S-C ₆ H ₄ -	-H-	C ₁₀ H ₁₀ N ₂ S ₂	180-182	67		12.3	C ₁₂ H ₁₂ N ₂ OS ₂	232-233		10.1
	p-NH2-CeH1-	-H-	C ₆ H ₆ N ₃ S	174-175	63	56.52 H,		C ₁₃ H ₁₃ N ₃ O ₂ S ⁶	284 - 286	56.71 H,	56.72 5.34
	p-C ₆ H ₆ -C ₆ H ₄ -	-H-	C ₁₆ H ₁₂ N ₂ S	207 - 208	66	71.40 H,		C ₁₇ H ₁₄ N ₂ OS	252 - 253		8.92
	p-CHr-CeHr-	H-	C ₁₀ H ₁₀ N ₂ S	124 - 125	84	63.07 H,		C ₁₂ H ₁₂ N ₂ OS	204 - 205	62.04 H,	
	m-CH3-CeH4-	H-	C10H10N2S	79-92	64	63.07 H,		C ₁₂ H ₁₂ N ₂ OS	211-212	62.12 H,	61.39 5.15
	0-CH3-C6H4-	-H-	C ₁₀ H ₁₀ N ₂ S	81 - 82	02	63.07 H,		C ₁₂ H ₁₂ N ₂ OS	143-144	62.04 H,	
	p-NO2-CeHe-	-H-	C ₉ H ₇ N ₃ O ₂ S	285-286	66	48.86 H,		C ₁₁ H ₉ N ₃ O ₃ S	306-307	50.18 H,	50.04 3.34
	m-NO2-C6Hc-	H	C ₉ H ₇ N ₃ O ₂ S ⁴	188 - 190	84	48.86 H,		C ₁₁ H,N ₃ O ₃ S	312-314	50.18 H,	50.33 3.34
	β-Naphthyl-	н-	C13H10N2S	153 - 154	66		12.28	C ₁₅ H ₁₂ N ₂ OS	239-240		10.1
	2-Phenanthryl-	Н–	C ₁₇ H ₁₂ N ₂ S	243-244	87		10.1	C ₁₉ H ₁₄ N ₂ OS	304-305	8.80	
	2-Thienyl-	н-	C ₁ H ₆ N ₂ S ₂	127-130	91	46.13 H,		C ₉ H ₃ N ₂ OS ₂	199 - 207	48.19 H,	48.12 3.64
	t-Butyl	Н-	C ₇ H ₁₂ N ₂ S'	98 - 99	71	53.81 H,		C ₉ H ₁₄ N ₂ OS ²	173-174	54.51 H,	54.75 7.45
	C ₆ H ₆ -	Ethyl-	C _n H ₁₂ N ₂ S	68-69	65		14.3	C ₁₈ H ₁₄ N ₂ OS	175-176		11.36
	C ₆ H ₆ -	Propyl-	C ₁₂ H ₁₄ N ₂ S	103 - 104	54		12.6	C14H16N2OS	135-136		10.8
···· * 60 %	C ₆ H ₆ -	Butyl-	C ₁₃ H ₁₆ N ₂ S	60-61	43		11.8	C ₁₆ H ₁₈ N ₂ OS	187-188	-	10.0
···· · · · · · · · · · · · · · · · · ·	Benzyl	C ₆ H ₅ -	C ₁₆ H ₁₄ N ₂ S	139-140	8		10.68	C ₁₈ H ₁₆ N ₂ OS	164 - 165		9.17
···· * b0 **	C ₆ H ₅ -	C ₆ H ₅ -	C ₁₆ H ₁₂ N ₂ S ⁴	184-185	66		10.9	C ₁₇ H ₁₄ N ₂ OS	208 - 209		9.23
•••• • • • • • • • • • • • • • • • • •	C ₆ H ₆ -	Benzoyl-	C ₁₆ H ₁₂ N ₂ OS	215 - 216	18		10.1	C ₁₈ H ₁₄ N ₂ O ₂ S	237-238	8.69	8.27
<u> </u>	0-HO-C ₆ H ₄ -	H-	C ₆ H ₆ N ₂ OS	139-140	37	56.23	56.23 4.41	C ₁₃ H ₁₂ N ₂ O ₃ S ¹	200 - 203	56.51 H,	56.43 4.58
~ 50 22>	<i>m</i> -H0-C ₆ H ₄ -	Н-	C ₆ H ₈ N ₂ OS	136 - 138	59'	56.29	55.92 4.55	C ₁₃ H ₁₂ N ₂ O ₃ S ¹	186 - 187	56.56 H,	56.494.49
-b0 22>	p-H0-C,H,-	H–	C ₆ H ₈ N ₂ OS	198-200	62^{k}		56.65 4.29	C ₁₃ H ₁₂ N ₂ O ₃ S ^l	235-237		56.55 4.52
22 2	· All melting po	vints were obs	erved with a Fis	her-Johns me	- 20	oint block. ^b Based e	on the ketone.	^e Both amino g	roups are co	pinverted to the corres	ponding acet-
- 22 2	Hurd and Vhara	cob ibid 65	ed: N, 19.00. 1 2 656 (1046) n	round: N, K		reviously reported by Hurd and Kharasch	LOUSON AND	m n of this your	MAL, U, 22	46 (1840), ш. р. 100 [–] : 310–314° – 7 Caled	190, autu Dy
$\mathbf{v} \circ \mathbf{v} \circ \mathbf{v} \circ \mathbf{v} \circ \mathbf{v} \circ \mathbf{v} = $	Found: N. 17.2.	Calcd.: N	14.13. Found:	N. 14.0.		ner, Ann., 259, 228 (1	890), reported	this compound, 1	n. p. 185-18	36°. i Based on the c	uantity of 2-
Calcd. for CoHoN2USICH2U: 1, 37.33. Found: 1, 37.0.	amino-4-(2-hydrox	cyphenyl)-thi	azole hydriodide	isolated, m. 1	p. 220-j	223°. Anal. Caled.	for C ₉ H ₉ N ₂ OS	I.H.O: I, 37.53.	Found: I	G	e quantity of

TABLE I

		d Found	14.25	, 6.71 57.79 6.34	, 6.71 57.12 6.64	, 6.71 57.07 6.81	, 4.38 62.65 4.34	11.49	, 3.79 67.23 3.87	nino-5-methyl-4,5,6,7- n the two substances. herova and Kochesch teyer and Schoenauer, to the hydrobromide,
	- Acetaminothiazole-	Calculated	N, 14.28	C, 57.07 H, 6.71	C, 57.07 H, 6.71	C, 57.07 H, 6.71	C, 62.59 H, 4.38	N, 11.47	C, 67.65 H, 3.79	ance either 2-an tuishing betweer 1, 12.75. • Kucl orted by Erlenm e was converted
	Ace	M. p., °C.	140-141	162 - 163	150-151	124-125	284-285	233-234	309-311	From this subst thod for disting 3.32. Found: N cole was also repu- a high trait
		Formula	C ₉ H ₁₂ N ₂ OS	C ₁₀ H ₁₄ N ₂ OS ⁴	C ₁₀ H ₁₄ N ₂ OS	C ₁₀ H ₁₄ N ₂ OS	C ₁₂ H ₁₀ N ₂ OS'	C ₁₃ H ₁₂ N ₂ OS	C ₁₆ H ₁₀ N ₂ OS	yclohexanone. s provide no me d Calcd.: N, 15 ints. The thiaz ound: N, 12.17.
TABLE II [*]		Found	18.03	15.74	57.25 7.31	56.27 7.14	63.75 4.28	13.7	69.76 3.63	Cur experiment Our experiment I on the ketone. ntical melting po d.: N, 12.17. F
TAF		Calculated	N, 18.16	N, 16.55	C, 57.10 H, 7.19	C, 57.10 H, 7.19	C, 63.75 H, 4.28	N, 13.85	C, 69.62 H, 3.60	the starting ketone, except in the case of 3-methylcyclohexanone. From this substance either 2-amino-5-methyl-4,5,6,7- nethyl derivative could result. Our experiments provide no method for distinguishing between the two substances. In melting point block. ^e Based on the ketone. ^d Calcd.: N, 13,32. Found: N, 12,75. [•] Kucherova and Kochesch- eported these compounds with identical melting points. The thiazole was also reported by Erlenneyer and Schoenauer, 4,88. Found: N, 13,50. [•] Calcd.: N, 12,17. Found: N, 12,17. [†] This thiazole was enverted to the hydrobromide, the orbit of the set compound of the hydrobromide.
	Amin		65	99	24	09	53	52	66	thyl der melting rted the 8. Fou
	~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~	M. p., °C. ^b	87- 88	66 -86	110-111	75-76	213 - 214	133 - 134	205 - 207	rrent from the bonding 7-met Fisher–Johus II (1946), repo Icd.: N, 14.8
		Formula	C ₇ H ₁₀ N ₂ S	C ₈ H ₁₂ N ₂ S	C ₈ H ₁₂ N ₂ S	C ₈ H ₁₂ N ₂ S	C ₁₀ H ₈ N ₂ S'	C ₁₁ H ₁₀ N ₂ S	C ₁₃ H ₈ N ₂ S ^{hi}	hiazole is appa or the correst observed on a S. R.), 16, 170 (1941). ⁷ Ca.
		Starting ketone	Cyclohexanone	4-Methylcyclohexanone	3-Methylcyclohexanone	Cycloheptanone	Hydrindone	α -Tetralone	Acenaphthenone ⁴	 The structure of the thiazole is apparent from the starting ketone, except in the case of 3-methylcyclohexanone. From this substance either 2-amino-5-methyl-4,5,6,7- tetrahydrobenzothiazole or the corresponding 7-methyl derivative could result. Our experiments provide no method for distinguishing between the two substances. All melting points were observed on a Fisher-Johns melting point block. ^e Based on the ketone. ^d Calcd.: N, 13.32. Found: N, 12,75. ^e Kucherova and Kochesch-kov, <i>J. Gen. Chem. (U. S. S. R.)</i>, 16, 1701 (1946), reported these compounds with identical melting points. The thiazole was also reported by Brienmeyer and Schoenauer, <i>Heb. Chem. Chem. As</i>, 24, 512 (1941). ^d Calcd.: N, 14350. ^d Calcd.: N, 12,17. Found: N, 12,17. ^d This thiazole was converted to the hydrobromide, <i>Heb. Chem. Chem. Astro-24</i>, 512 (1941). ^d Calcd.: N, 14350. ^d Calcd.: N, 12,17. Found: N, 12,17. ^d This thiazole was converted to the hydrobromide.

 CH_{3} CH_{3} C

not determined whether this substance was 2amino-5-methyl-4,5,6,7-tetrahydrobenzothiazole, or the corresponding 7-methyl derivative. In all other cases reported, the structure of the thiazole is apparent from the method of preparation.

Experimental

Preparation of Starting Materials.—The thiourea was White Label Grade obtained from Eastman Kodak Company. The iodine was U.S.P. resublimed crystals. Many of the ketones were obtained from commercial sources. The others were prepared by known methods. The homogeneity of each ketone was established by conventional methods (b.p., m.p., etc.), before using it in the reaction. In all cases the physical constants of the ketones were in good agreement with values given in the literature.

Preparation of the Substituted 2-Aminothiazoles.— General Procedure: A mixture consisting of 0.1 mole of ketone, 0.2 mole of thiourea and 0.1 mole of iodine was heated overnight on the steam-bath. This crude reaction mixture was cooled and extracted with ether to remove unreacted ketone and iodine. The residue was then dissolved in boiling water^{4,5} and filtered to remove sulfur. The solution was then cooled somewhat and made basic with concentrated ammonium hydroxide. The aminothiazole which separated was recrystallized from wateralcohol.

If the free aminothiazole separated from the aqueous solution as an uncrystallizable oil, a characteristic of those compounds finally melting below 100° , the oil was separated and taken up in hot Skellysolve C. Most of the low melting thiazoles crystallized from the Skellysolve C solution as it cooled.

The 2-acetamido derivative of each of the thiazoles was obtained by heating the thiazole with acetic anhydride and crystallizing the product from alcohol-water. Preparation of 2-Aminothiazoles from Hydroxyaceto-

Preparation of 2-Aminothiazoles from Hydroxyacetophenones.—The reactions were carried out as described above. The crude reaction mixture after extraction with ether was taken up in hot water, filtered to remove sulfur, and cooled. The 2-amino-(hydroxyphenyl)-thiazole hydriodide crystallized as slender needles. The yield data given in Table I are based on the amount of this hydriodide isolated. Analytical samples of these materials were prepared by crystallization from acetone-water (1-2)(see notes *i*, *j*, and *k*, Table II).

The free aminothizoles were prepared from the pure hydriodides by adding concentrated ammonia to a concentrated solution of the hydriodide salt until the solution was neutral. The aminothizole separated on cooling, and was recrystallized from water.

The diacetyl derivatives were prepared by heating the hydriodide salt with acetic anhydride. The reaction mixture was poured into ice water and the product crystallized from 95% alcohol.

2,4,6-Trimethylphenacylisothiuronium Bromide.—A mixture consisting of 1.4 g. of thiourea and 4.6 g. of bromoacetomesitylene⁶ in ethanol was refluxed for several hours. On concentrating and cooling, the salt crystallized; yield 3.8 g. m. p. 260–280°. After recrystallization three times the melting point was 280–282°.

(4) If this solution were appreciably colored it was treated with norite A and filtered again.

 $\langle 5\rangle$ Some salts proved virtually water insoluble. In such cases, the residue was treated directly with ammonium hydroxide.

(6) Jacobs and Heidelberger, J. Biol. Chem., 21, 459 (1915).

		Br, 27.09.	Found:	iodine and thiourea on ketones has been examined
Br, 26.4.	Summary			as a preparative method.

The formation of 2-aminothiazoles by action of EVANSTON, ILLINOIS

ANSTON, ILLINOIS RECEIVED FE

Received February 2, 1950

[CONTRIBUTION FROM ROHM AND HAAS COMPANY]

Reaction of β -Alkoxyacrylic Esters with Secondary Amines

By Peter L. de Benneville and Jane H. Macartney

Replacement of an ether group with an amino group requires a particularly favorable structural condition in the molecule. Cook and Dixon¹ have succeeded in so replacing the ether group by heating β -alkoxypropionitriles with amines in an autoclave to temperatures generally in the neighborhood of 200°. This reaction can be attributed to the presence of the cyanide group in a neighboring position to the alkoxy group, with consequent weakening of the carbon–oxygen bond. A very labile system which has been known for some years is represented by the group of compounds of the structure ROCH=C \bigvee_{Y}^{X}

where both X and Y are the customary labilizing groups —COR, —COOR and —CN.^{2,3} Replacement of the alkoxy group with amino- and anilino- groups is readily carried out in these cases at temperatures ranging from room to 100° .

reaction. This would indicate that highly hindered bases or weak bases,⁴ as in the aromatic series, would not react under such favorable conditions. Since the β -alkoxyacrylic esters are available from the reaction of acetylene and dialkyl carbonates,⁵ this represents a superior method of obtaining the β -aminoacrylic esters.

The amination is readily carried out by heating molecular equivalents of the β -alkoxyacrylic ester and the amine at reflux or steam-bath temperature, depending on boiling point of the amine. A potassium carbonate catalyst was used in most of the reactions, but since omission of the catalyst gave only slightly lower yields in the one case where it was tried, the necessity for this catalyst is questionable. The alcohol may be removed by distillation as the reaction progresses, but this is unnecessary. The results of typical aminations are given in the accompanying table.

		TRANSAMINATION	REACT	rions, ^a ROCH=	CHCO	$OR' \rightarrow$	>NCH	[=CH(COOR'		
R	R'	Amine	Vield, %	B. p., °C. uncor.	at mm.	Nitrog Found	en, % Calcd.	Neutra equiv Found		Sp. gr. 20/20	u ²⁰ D
CH_3	CH_3	Morpholine	50^{b}	M. p. 76–78°		8.20	8.18	174	171		· · • ·
C_2H_{δ}	C_2H_5	Morpholine	69	138 - 142	0.8	7.67	7.57	185	185	1.1077	1.5309
C_2H_5	C_2H_5	$Morpholine^{c}$	52	141 - 145	1.2			187	185		
C_2H_{δ}	C_2H_5	(CH ₃) ₂ NH	53	84-85	1.4	9.32	9.78	145	143	0.9947	1.5114
C_2H_5	C_2H_{δ}	C ₉ H ₁₉ NHCH ₃	64	164 - 165	4.0	5.28	5.48	ıl	255	0.9196	1.4897
C_2H_5	C_2H_5	Piperidine	79	123 - 124	1.1	7.62	7.64	187	183	1.0293	1.5334
C_2H_5	C_2H_5	$(HOCH_2CH_2)_2NH$	82	$\operatorname{Decomposed}^e$		7.30	7.40	ď	203	8	1.5021
C_4H_9	C₄H9	Morpholine	26	165 - 175	2	5.94	6.59	230	213	1.0357	1.5056

TABLE I

^a Anhydrous potassium carbonate used as catalyst except when indicated. ^b Product recrystallized from methanol.
^c No catalyst used. ^d Too weakly basic to titrate with indicator. ^e Product isolated by water wash to remove unreacted
materials and stripping on the steam-bath under good water vacuum to remove low-boiling products. It was a thick
almost glassy material at room temperature.

We have found that a single labilizing group, as found in the β -alkoxyacrylic esters, is sufficiently active to promote the replacement of the alkoxy group by a number of secondary amino groups, at temperatures generally no higher than 100°. At these temperatures no replacement of the ester alkoxy group was obtained; however, in reactions requiring higher temperatures, such a replacement might occur. The reaction did not take place with all secondary amines. A notable exception was the case of diisopropylamine, which gave no

The β -dialkylaminoacrylic esters so produced were stable but very weak bases. For example, titration with hydrochloric acid to a brom phenol blue end-point led to a disappearing end-point which drifted back to the basic side until the neutral point was reached, which in almost all cases corresponded to the theoretical neutral equivalent for the compound. This basicity distinguishes these compounds from the other possible products of the reaction, the alkoxyacrylamides. Cold dilute hydrochloric acid slowly hydrolyzed ethyl

⁽¹⁾ Cook and Dixon, U. S. Patent 2,425,693.

⁽²⁾ Claisen, Ann., 297, 1 (1897).

⁽³⁾ de Bollemont, Bull. soc. chim., [3] 25, 29 (1901).

⁽⁴⁾ Methylaniline also did not give the expected product in this reaction (Dr. J. O. Van Hook, private communication).

⁽⁵⁾ Croxall and Schneider, THIS JOURNAL, 71, 1257 (1949).