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Abstract: A green and efficient procedure for the synthesis of quinoxalines is
reported starting from benzil and 1,2-diaminobenzene. The reactions were carried
out under catalyst-free, solvent-free, and microwave-irradiation conditions,
affording the corresponding quinoxalines. This method had many dramatic
advantages, such as the short reaction time (2–6min), high yields (71–98%),
and environmental friendliness, as well as convenient operation.

Keywords: Benzil, catalyst-free, 1,2-diaminobenzene, microwave irradiation,
quinoxaline, solvent-free

In today’s world, synthetic chemists in both academia and industry are
constantly challenged to consider more environmentally benign methods
for generation of the desired target molecules. It is known that micro-
wave irradiation has been utilized as one of the most convenient and
efficient ways to promote organic reactions.[1] In particular, the use of
microwave energy to directly heat chemical reactions has become an
increasingly popular technique in the scientific community. Therefore,
in recent years the combination of these several prominent green
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chemistry principles—microwaves, lack of solvent, and lack of catalyst–
has become very popular and received substantial interest because of the
work of chemists[2] who demonstrated that a great variety of synthetic
organic transformations can be carried out very efficiently and rapidly
under these environmentally benign conditions.

Quinoxaline derivatives are an important class of benzoheterocycles,
which have a wide range of pharmacologically active compounds that
have anticancer,[3] antimicrobial,[4] and antibacterial[5] activities. Some
quinoxaline derivatives serve as DNA photo-cleavers,[6] antagonists of
the 5-HT3 receptor,[7] inhibitors of HCV NS5B RNA-dependent RNA
polymerase,[8] and fluorescent dyes.[9] Furthermore, they also serve as
useful rigid subunits in macrocyclic receptors for molecular recogni-
tion[10] and chemically controllable switches,[11] and they constitute the
building blocks of some organic semiconductors.[12]

Numerous synthetic routes have been developed for the synthesis of
quinoxaline derivatives involve involving condensation of 1,2-diamines
with a-diketones,[13] 1,4-addition of 1,2-diamines to diazenylbutenes,[14]

and cyclization–oxidation of phenacyl bromides and o-phenylenediamines
through solid-phase synthesis.[15] 2,3-Disubstituted quinoxalines have also
been prepared via the Suzuki–Miyaura coupling reaction,[16] condensa-
tion of o-phenylenediamines with 1,2-dicarbonyl compounds under
microwave irradiation,[17] and iodine-catalyzed cyclocondensation of
1,2-dicarbonyl compounds with substituted o-phenylenediamines.[18]

Also, a-hydroxy ketones react with o-phenylenediamines in the presence
of transition metals such as Mn, Pd, Ru, Cu, Pb, and Bi to give quinox-
alines.[19,20] The most common method is the condensation of an aryl
1,2-diamine with a 1,2-dicarbonyl compound by heating it in a solvent
for 2–12h. The yields of products are 34–85%. Improved methods
have been reported for the synthesis of quinoxaline derivatives including
the use ofRuCl2(PPh3)3-2,2

0,6,60-tetramethylpiperidineN-oxyl (TEMPO),[19a]

MnO2,
[19b] POCl3,

[19c] cerium ammonium nitrate,[19d] SA=MeOH,[19e]

CuSO4 � 5H2O,[19f] Montmorillonite K-10,[19g] HClO4 � SiO2,
[19h] H6P2

W18O62 � 24H2O,[19i] KHSO4,
[19j] Ni-nanoparticles,[19k] Zn[(l)proline],[19l]

and p-toluenesulfonic acid[19m] as catalyst. However, most of the exist-
ing methodologies sufer from disadvantages such as use of volatile
organic solvents, critical product isolation procedures, expensive and
detrimental metal precursors, and harsh reaction conditions, which limit
their environmental friendliness.

Continuing our interest in the synthesis of organic compounds by
microwave irradiation,[21] we report herein a novel method to synthesize
differently substituted quinoxalines from benzils and 1,2-diamino-
benzenes under catalyst-free, solvent-free, and microwave-irradiation
conditions (Scheme 1).
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RESULTS AND DISCUSSION

When a mixture of benzil 1 (Ar¼C6H5) and 1,2-diaminobenzene 2 were
irradiated at 100�C in catalyst-free and solvent-free conditions, the
reaction was completed after 4min. The crude product was purified by
recrystallization from 95% ethanol to afford product 3a with excellent
yield (96%). Subsequently, to examine the efficiency and applicability
of this protocol, the reaction was extended to other substituted benzils
1 (Ar¼4-CH3C6H4, 4-ClC6H4, furyl) and substituted 1,2-diaminoben-
zenes 2 (R1¼H, CH3; R2¼H, CH3, OCH3, Br, NO2) under catalyst-free,
catalyst-free, and microwave-irradiation conditions. To our delight, these
actions proceeded smoothly to afford a series of quinoxaline derivatives 3
in excellent yields (entries 2–16 of Table 1). The results showed that the
scope of the reaction is quite broad in regard to the benzils 1 and 1,2-
diaminobenzenes 2. The structures of these compounds are established
by infrared (IR), 1H NMR, 13C NMR, and mass spectrometry (MS).

In conclusion, we have developed a novel, efficient method for
synthesis of quinoxalines of potential synthetic and pharmacological
interest. Catalyst-free, solvent-free, and microwave-irradiation conditions,
the short reaction time, excellent yields of the products, environmental
friendliness, and convenient workup are the advantages of this method.

EXPERIMENTAL

The reactions under microwaves were performed in a CEM Discover
monomode microwave reactor. Melting points were determined with a
WRS-1B digital melting-point apparatus and are uncorrected. 1H
NMR and 13C NMR were measured on a Burke 400-MHz spectrometer
in CDCl3 using tetramethylsilane (TMS) as an internal standard. IR spec-
tra were recorded on a Nicolet Avatar 360 FT-IR instrument. MS spectra
were recorded on a LCQ Advantage instrument. Elemental analyses were
determined using a Perkin-Elmer 240C elemental analyzer. All the
reagents are commercially available.

Scheme 1. Ar¼C6H5, 4-CH3C6H4, 4-ClC6H4, funyl; R1¼H, CH3; R2¼H, CH3,
OCH3, NO2.
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Table 1. Synthesis of quinoxalines 3a–p under catalyst-free, solvent-free, and
microwave-irradiation conditions

Entry Ar R1, R2

Temp.
(�C)

Time
(min) Products

Yielda

(%)

1 C6H5 R1¼R2¼H 100 4 96

2 C6H5
R1¼H

R2¼CH3
100 4 93

3 C6H5 R1¼R2¼CH3 100 3 97

4 C6H5
R1¼H

R2¼NO2
120 3.5 98

5 C6H5
R1¼H

R2¼OCH3
110 4 71

6 4-CH3C6H4 R1¼R2¼H 120 3 97

7 4-CH3C6H4
R1¼H

R2¼CH3
120 4 95

8 4-CH3C6H4 R1¼R2¼CH3 120 3 95

9 4-ClC6H4 R1¼R2¼H 120 3 93

(Continued )
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General Procedure for Synthesize of Quinoxalines Under Catalyst-Free,

Solvent-Free, and Microwave-Irradiation Conditions

Benzils 1 (1mmol) and 1,2-diaminobenzenes 2 (1mmol) were mixed
and sealed with a cap containing a septum. The loaded vial was then
placed into the cavity of the microwave reactor and heated at
100–130�C for 2–6min (as indicated by thin-layer chromatography,
TLC). After completion of the reaction, the reaction mixture was then
allowed to cool to room temperature, resulting in the precipitation of

Table 1. Continued

Entry Ar R1, R2

Temp.
(�C)

Time
(min) Products

Yielda

(%)

10 4-ClC6H4
R1¼H

R2¼CH3
120 6 97

11 4-ClC6H4 R1¼R2¼CH3 120 5 97

12 4-ClC6H4 R1¼H
R2¼NO2 120 3

94

13 Furyl R1¼R2¼H 120 3 98

14 Furyl
R1¼H

R2¼CH3 120 3
96

15 Furyl R1¼R2¼CH3 120 2 90

16 Furyl
R1¼H

R2¼NO2
120 3 98

aYields of the isolated product.
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the solid product. The product was were filtered off and dried. The
crude products were recrystallized from 95% ethanol to afford the pure
product 3a–p.

Data

Compound 3a

Mp 126.2–126.8�C (126–127�C).[19h] 1H NMR (400MHz, CDCl3)
d¼ 8.21–8.23 (m, 2H), 7.82–7.80 (m, 2H), 7.56–7.54 (m, 4H), 7.40–7.35
(m, 6H). MS m=z (%): (MþH)þ¼ 283.6 (100).

Compound 3b

Mp 115.1�C (116–117�C).[19h] 1H NMR (400MHz, CDCl3) d¼ 8.09 (d,
1H, J¼ 8.8Hz), 7.98 (s, 1H), 7.64–7.62 (m, 1H), 7.54 (t, 4H, J¼ 7.6Hz),
7.40–7.35 (m, 6H), 2.65 (s, 3H). MS m=z (%): (MþH)þ¼ 297.6 (100).

Compound 3c

Mp 150.7–150.9�C. IR (KBr): 3058, 2919, 1636, 1341, 1094, 967, 696 cm�1.
1H NMR (400MHz, CDCl3) d¼ 7.96 (d, 1H, J¼ 8.4Hz), 7.62 (t, 3H,
J¼ 8.8Hz), 7.55 (t, 2H, J¼ 7.6Hz), 7.40–7.35 (m, 6H), 2.83 (s, 3H),
2.58 (s, 3H). 13C NMR (100MHz, CDCl3) d¼ 151.6, 140.2 139.6,
137.7, 134.6, 132.9, 130.1, 129.8, 128.5, 128.1, 125.9, 20.5, 12.9. MS
m=z (%): (MþH)þ¼ 311.7 (100). Anal. calcd. for C22H18N2: C, 85.13;
H, 5.85; N, 9.03; found: C, 84.81; H, 5.87; N, 8.97.

Compound 3d

Mp 188.9�C (187�C).[22] 1H NMR (400MHz, CDCl3) d¼ 9.11 (s, 1H),
8.58–8.55 (m, 1H), 8.33 (d, 1H, J¼ 9.2Hz), 7.60–7.58 (m, 4H),
7.47–7.38 (m, 6H). MS m=z (%): (MþH)þ¼ 328.6 (100).

Compound 3e

Mp 156.4–156.5�C (155–156�C).[23] 1H NMR (400MHz, CDCl3) d¼ 8.09
(d, 1H, J¼ 9.2Hz), 7.51–7.54 (m, 5H), 7.44–7.49 (m, 1H), 7.34–7.40 (m,
6H), 4.02 (s, 3H). MS: m=e (MþH)þ¼ 313.7 (100).
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Compound 3f

Mp 149.4–149.7�C. 1H NMR (400MHz, CDCl3) d¼ 8.19–8.17 (m, 2H),
7.80–7.75 (m, 2H), 7.46 (d, 4H, J¼ 7.6Hz), 7.18 (d, 4H, J¼ 7.6Hz). MS
m=z (%): (MþH)þ¼ 311.5 (100). Anal. calcd. for C22H18N2: C, 85.13; H,
5.85; N, 9.03; found: C, 84.80; H, 5.87; N, 8.96.

Compound 3g

Mp 130.2–130.6�C (137�C).[19d] 1H NMR (400MHz, CDCl3) d¼ 8.07 (d,
1H, J¼ 8.4Hz), 7.97 (s, 1H), 7.60 (d, 1H, J¼ 8.0Hz), 7.43 (t, 4H,
J¼ 7.6Hz), 7.16 (d, 4H, J¼ 7.6Hz), 2.63 (s, 3H), 2.39 (s, 6H). MS m=z
(%): (MþH)þ¼ 325.4 (100).

Compound 3h

Mp 173.4–73.6�C. IR (KBr): 3022, 2920, 1609, 1512, 1340, 1089, 823,
797 cm�1. 1H NMR (400MHz, CDCl3) d¼ 8.00 (d, 1H, J¼ 8.4 Hz),
7.59 (d, 1H, J¼ 8.8 Hz), 7.52–7.46 (m, 4H), 7.19–7.16 (m, 4H), 2.81 (s,
3H), 2.57 (s, 3H), 2.39 (s, 6H). 13C NMR (100MHz, CDCl3) d¼ 151.6,
140.1, 139.4, 138.5, 137.5, 136.8, 134.5, 132.6, 130.0, 129.7, 128.9, 125.7,
21.3, 20.5, 12.9. MS m=z (%): (MþH)þ¼ 339.4 (100). Anal. calcd. for
C24H22N2: C, 85.17; H, 6.55; N, 8.28; found: C, 84.85; H, 6.57; N, 8.22.

Compound 3i

Mp 174.9�C (187–188�C).[24] 1H NMR (400MHz, CDCl3) d¼ 8.21–8.18 (m,
2H), 7.94 (d, 1H, J¼ 8.4Hz), 7.84–7.81 (m, 2H), 7.54 (s, 1H), 7.50 (d, 3H,
J¼ 8.4Hz), 7.37 (d, 3H, J¼ 8.0Hz). MS m=z (%): (M)þ¼ 351.6 (100).

Compound 3j

Mp 170.6–172.5�C (180�C).[19l] 1HNMR (400MHz, CDCl3) d¼ 8.08 (d, 1H,
J¼ 8.4Hz), 7.97–7.93 (m, 2H), 7.65 (d, 1H, J¼ 8.4Hz), 7.54–7.47 (m, 4H),
7.36 (d, 3H, J¼ 8.4Hz), 2.65 (s, 3H). MS m=z (%): (M)þ¼ 365.6 (100).

Compound 3k

Mp 184.8–184.9�C. IR (KBr): 3052, 1661, 1586, 1091, 836, 732 cm�1. 1H
NMR (400MHz, CDCl3) d¼ 8.01 (d, 1H, J¼ 8.4Hz), 7.94 (d, 2H,
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J¼ 8.4Hz), 7.65 (d, 1H, J¼ 8.8Hz), 7.55–7.31 (m, 6H), 2.81 (s, 3H), 2.65
(s, 3H). 13C NMR (100MHz, CDCl3) d¼ 150.1, 141.8, 140.3, 139.6, 138.3,
137.6, 135.1, 134.6, 133.4, 131.4, 131.2, 129.5, 128.6, 125.8, 20.5, 12.9. MS
m=z (%): (M)þ¼ 379.7 (100). Anal. calcd. for C22H16Cl2N2: C, 69.67; H,
4.25; N, 7.39; found: C, 69.41; H, 4.27; N, 7.34.

Compound 3l

Mp 163.7–164.4�C (176�C).[19l] 1H NMR (400MHz, CDCl3) d¼ 9.07 (s,
1H), 8.58–8.55 (m, 1H), 8.30 (d, 1H, J¼ 9.2Hz), 7.56–7.52 (m, 4H), 7.41
(d, 4H, J¼ 8.0Hz). MS m=z (%): (M)þ¼ 396.5 (100).

Compound 3m

Mp 133.9–134.1�C (131–132�C).[25] 1H NMR (400MHz, CDCl3)
d¼ 8.18–8.16 (m, 2H), 7.79–7.76 (m, 2H), 7.65 (s, 2H), 6.69 (d, 2H,
J¼ 3.2Hz), 6.60–6.58 (m, 2H). MS m=z (%): (MþH)þ¼ 263.7 (100).

Compound 3n

Mp 116–116.2�C (119–120�C).[26] 1H NMR (400MHz, CDCl3) d¼ 8.06
(d, 2H, J¼ 8.4Hz), 7.96 (s, 1H), 7.64–7.60 (m, 3H), 7.67 (d, 2H, J¼ 3.2Hz),
), 6.58 (s, 2H), 2.62 (s, 3H). MS m=z (%): (MþH)þ¼ 277.5 (100).

Compound 3o

Mp 125–125.1�C. IR (KBr): 3111, 2920, 1591, 1560, 1492, 1328, 1147,
1008, 879, 759 cm�1. 1H NMR (400MHz, CDCl3) d¼ 7.91 (d, 1H,
J¼ 8.8Hz), 7.63 (s, 1H), 7.59 (d, 2H, J¼ 9.2Hz), 6.82 (s, 1H, J¼ 3.2Hz),
6.60 (d, 2H, J¼ 3.2Hz), 6.56 (t, 1H, J¼ 4.8Hz), 2.78 (s, 3H), 2.55 (s, 3H).
13C NMR (400MHz, CDCl3) d¼ 151.9, 151.2, 143.9, 143.6, 141.1, 139.7,
139.3, 138.3, 134.5, 133.3, 125.9, 112.3, 111.8, 20.5, 12.9. MS m=z (%):
(MþH)þ¼ 291.6 (100). Anal. calcd. for C18H14N2O2: C, 74.47; H,
4.86; N, 9.65; found: C, 74.19; H, 4.88; N, 9.58.

Compound 3p

Mp 169.2–169.4�C. IR (KBr): 3094, 1566, 1522, 1241, 1059, 826, 741 cm�1.
1H NMR (400MHz, CDCl3) d¼ 9.03 (d, 1H, J¼ 2.4Hz), 8.52–8.50 (m,

3750 J.-F. Zhou et al.
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1H), 8.25 (d, 2H, J¼ 9.2Hz), 7.69 (d, 1H, J¼ 6.0Hz), 6.91 (d, 1H,
J¼ 3.2Hz), 8.86 (d, 1H, J¼ 3.2Hz), 6.65–6.63 (m, 2H). 13C NMR
(400MHz, CDCl3) d¼ 150.2, 148.0, 145.4, 144. 8, 144.2, 143.0, 139.2,
130.4, 125.3, 123.6, 115.3, 114.4, 112.3. MS m=z (%): (MþH)þ¼ 308.3
(100). C16H9N3O4: C, 62.54; H, 2.95; N, 13.68; found: C, 65.31; H, 2.97;
N, 13.58.
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