

Available online at www.sciencedirect.com

Carbohydrate RESEARCH

Carbohydrate Research 341 (2006) 1708-1716

Note

2'-Carboxybenzyl glycosides: glycosyl donors for C-glycosylation and conversion into other glycosyl donors

Yong Joo Lee, Ju Yuel Baek, Bo-Young Lee, Sung Soo Kang, Hye-Seo Park, Heung Bae Jeon^{*} and Kwan Soo Kim^{*}

Center for Bioactive Molecular Hybrids and Department of Chemistry, Yonsei University, Seoul 120-749, Republic of Korea

Received 1 February 2006; received in revised form 8 March 2006; accepted 13 March 2006 Available online 17 April 2006

Abstract—Glycosylation of various glycosyl acceptors with 2'-carboxybenzyl (CB) 2,3,4,6-tetra-O-benzyl- β -D-glucopyranoside and CB 2,3,4,6-tetra-O-benzyl- α -D-mannopyranoside as glycosyl donors afforded α -C-glycosides exclusively or predominantly in good yields. CB glycosides were also converted to other well-known glycosyl donors, the corresponding phenyl thioglycoside and the glycosyl fluoride derivatives.

© 2006 Elsevier Ltd. All rights reserved.

Keywords: C-glycosylation; C-glycosides; CB glycosides; Glycosyl donors

The development of efficient and stereospecific C-glycosylation methodologies has become an increasingly attractive area in synthetic organic chemistry due to the discovery of novel classes of antitumor compounds, such as aquayamycin¹ and pluramycin,² and of antibiotic compounds, such as chrysomycin,³ ravidomycin,⁴ and vineomycin,⁵ possessing *C*-aryl glycosides as well as a wide variety of medicinally important C-nucleosides.⁶ The absence of an oxygen atom between the carbohydrate and the aglycon moiety results in greater stability of these compounds as they are resistant to chemical and enzymatic hydrolysis compared to O-glycosides. C-glycosides are thus hydrolytically stable carbohydrate mimetics with many possible biological applications.⁷

To date several different approaches for the synthesis of C-glycosides have been explored.⁸ The most common method for the carbon–carbon bond formation at the anomeric carbon involves the attack of a carbon nucleophile on the electrophilic anomeric center of glycosyl

donors. For example, several C-glycosylation methodologies based on efficient glycosyl donors, such as glycosyl fluorides,⁹ glycosyl trichloroacetimidates,¹⁰ glycals,¹¹ lactones,¹² thioglycosides,¹³ and glycosyl phosphates,¹⁴ have been employed. Nevertheless, there still remains a need for more study on C-glycosylation methods with respect to stereoselectivity, yields and reaction time.

In our previous endeavors, we reported a novel type of glycosyl donors, 2'-carboxybenzyl (CB) glycosides B (Fig. 1) that are useful for stereoselective β -mannopyranosylation,¹⁵ 2-deoxyglucopyranosylation,¹⁶ β -arabino-furanosylation,¹⁷ and are also very effective for the synthesis of complex oligosaccharides by the latentactive glycosylation strategy.^{17,18} The CB glycoside **B** was prepared from 2'-(benzyloxycarbonyl)benzyl (BCB) glycoside A by the selective removal of its benzyl ester functionality. Treatment of **B** with DTBMP and triflic anhydride followed by the spontaneous lactonization of the resulting glycosyl triflate **D** would afford the oxocarbenium ion E by extrusion of stable phthalide. Reaction of **E** with the glycosyl acceptor (nucleophile) would give the desired glycoside F. Herein we report a new method for the C-glycosylation using CB glycosides as glycosyl donors. To explore further the scope of this CB glycoside method, we also converted them to other

^{*} Corresponding authors. Tel.: +82 2 2123 2640/7615; fax: +82 2 365 7608 (K.S.K.); e-mail addresses: hbj@yonsei.ac.kr; kwan@yonsei. ac.kr

^{0008-6215/\$ -} see front matter © 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.carres.2006.03.014

Figure 1.

well-known glycosyl donors: thioglycosides and glycosyl fluorides.

CB tetrabenzylglucoside **3** was prepared by the selective hydrogenolysis of BCB tetrabenzylglucoside **2**, which was obtained from BCB glucoside **1** by the known procedure (Scheme 1).^{18b} The CB tetrabenzylmannoside **4** was prepared in a similar manner.

For our initial studies, C-glycosylations of various glycosyl acceptors (5-9) with the CB tetrabenzylglucoside **3** were carried out by the following standard reaction protocol (Scheme 2, method A): (i) stirring the solution of **3** (100 mg, 1.0 equiv) and 2,6-di-*tert*-butyl-4-methylpyridine (DTBMP, 2.4 equiv) in the presence

of 4 Å molecular sieves for 20 min at room temperature in CH₂Cl₂ (10 mL), (ii) addition of Tf₂O (1.2 equiv) to this solution at -78 °C and stirring the reaction mixture for 10 min, (iii) addition of the glycosyl acceptor (2.0 equiv) and stirring the reaction mixture for another 1 h at -78 °C and allowing the solution to warm over 1 h to 0 °C, and (iv) quenching the reaction by the addition of aqueous NaHCO₃. Glycosylations of acceptors, 1,3,5-trimethoxybenzene (5) and 1,3-dimethoxybenzene (6) with the donor 3 afforded exclusively α -C-glycosides 10 and 11 in 66% and 68% yields, respectively, along with the self-condensed ester 15 (Fig. 2) in 26% yields in both cases (Table 1, entries 1 and 2), whereas the

Scheme 1. Reagents and conditions: (a) NaH, BnBr, DMF, rt, 2 h, 80%; (b) H₂, Pd/C, NH₄OAc, CH₃OH, rt, 1 h, 94%.

Figure 2.

Table 1. C-glycosylations with the CB glucoside 3 as the glycosyl donor

Entry	Glycosyl acceptor	C-glycoside	Method ^a	Yield (%) ^b	Ratio $(\alpha/\beta)^{b}$	Self-condensed ester 15 (%) ^b
1	5	10	A B	66 76	α only α only	26 15
2	MeO 6	BnO BnO BnO BnO BnO BnO OMe 11	A B	68 79	α only α only	26 12
3	Me N Me 7	BnO BnO BnO BnO BnO BnO N-Me N-Me	A B	63 85	1.7:1 1.7:1	30 0
4		BnO BnO BnO BnO BnO BnO BnO BnO BnO BnO	A B	56 73	α only α only	39 20
5	y TMS	BnO BnO BnO BnO BnO BnO	A B	56 68	α only α only	36 20

^a Method A: The acceptor was added to a solution of the donor (CB glycoside), DTBMP, and Tf₂O. Method B: The donor (CB glycoside) was added to a solution of the acceptor, DTBMP, and Tf₂O. See the text or experimental for details.

^b Determined after isolation.

reaction of **3** with 1,2-dimethylindole (7) gave a mixture of α - and β -C-glycoside **12** ($\alpha/\beta = 1.7:1$) in 63% yield (entry 3). On the other hand, the same reaction of **3** with the acceptors furan (**8**) and allyltrimethylsilane (**9**) provided α -C-glycosides **13** and **14** exclusively in 56% yields in both cases, along with the ester **15** in 39% and 36% yields, respectively (entries 4 and 5).

Formation of the self-condensed ester 15 probably resulted from the coupling between the carboxylate anion C, which was generated by deprotonation of the CB glycoside B by DTBMP, and the oxocarbenium ion E as shown in Figure 1. To suppress the formation of the ester 15, we ran the glycosylation reaction with the reversal of the order of the addition of reactants. Thus, C-glycosylations of acceptors 5–9 with the CB tetrabenzylglucoside 3 were carried out under the modified reaction conditions: (Scheme 2, method B): (i) stirring the solution of the glycosyl acceptor (2.0 equiv) and DTBMP (2.4 equiv) in the presence of 4 Å molecular sieves for 20 min at room temperature in CH₂Cl₂ (5 mL), (ii) addition of Tf₂O (1.2 equiv) to this solution at -78 °C, (iii) dropwise addition of 3 (100 mg, 1.0 equiv) in CH₂Cl₂ (5 mL) to the solution over a period of 10 min and stirring the reaction mixture for further

1 h at -78 °C, and (iv) quenching the reaction by the addition of aqueous NaHCO₃. Under the modified reaction condition (method B), glycosylations of the acceptors 5, 6, 8, and 9 with the donor 3 afforded only α -Cglycosides 10, 11, 13, and 14, respectively, in 68-79%vields, along with the ester 15 in 12-20% yields (Table 1, entries 1, 2, 4, and 5). In particular, although the same reaction of 3 with 7 gave a mixture of α - and β -C-glycoside 12 ($\alpha/\beta = 1.7:1$), the yield was increased to 85%, without generation of the ester 15 (entry 3). Clearly, the modified reaction condition, method B, reduced the formation of the self-condensed ester 15 and increased the yield of C-glycosylation reaction. It is worthy of note that reactions of the CB tetrabenzylglucoside 3 with acceptors 5, 6, 8, and 9 afforded the corresponding α -C-glycosides exclusively using both reaction conditions.

Because the modified reaction condition (method B) resulted in the improved yields for the C-glycoside in case of the CB tetrabenzylglucoside **3** as a glycosyl

donor, we also performed C-glycosylation of the glycosyl acceptors 5–9 with CB tetrabenzylmannoside 4 under method B conditions (Table 2). Glycosylation of 5–8 with 4 under method B afforded α -C-glycosides 16–19 exclusively in 52–74% yields, along with the self-condensed ester 21 (Fig. 2) in 18–28% yields (entries 1–4). On the other hand, the same reaction of 4 with acceptor 9 provided a mixture of α - and β -C-glycoside 20 ($\alpha/\beta =$ 3:1) in 55% yield (entry 5).

It is interesting to note that the values of proton coupling constants, ${}^{3}J_{\rm H1-H2}$ and ${}^{3}J_{\rm H3-H4}$ of compound **16** are 8.8 and 4.7 Hz, respectively. These coupling constant values suggest that the pyranose ring of the compound **16**, which has a trimethoxyphenyl group at C-1, favors the ${}^{1}C_{4}$ conformation rather than the ${}^{4}C_{1}$ conformation.¹⁹ A 2D-NOESY spectrum ($\tau_{\rm m} = 550 \text{ ms}$) also supported the ${}^{1}C_{4}$ conformation of **16** (entry 1). Thus, strong NOEs were observed between H1 and H6, and between H1 and protons of the C6-*O*-benzyl group.

Table 2. C-glycosylations with the CB mannoside 4 as the glycosyl donor under modified condition (Method B)^a

Entry	Acceptor	C-glycoside	Yield (%) ^b	Ratio $(\alpha/\beta)^{b}$	Self-condensed ester 21 (%) ^b
1	5	BnO OBn OBn MeO 16	69	α only	21
2	6	Bno Bno Bno OMe 17	71	α only	24
3	7	BnO BnO Me Ne Ne 18	52	α only	28
4	8	BnO OBn BnO O BnO O 19	74	α only	18
5	9	BnO OBn BnO O BnO 20 20	55	3:1	20

^a Method B: The donor (CB glycoside) was added to a solution of acceptor, DTBMP, and Tf₂O. See the text or experimental for details. ^b Determined after isolation.

Scheme 3. Reagents and conditions: (a) 4 or 22, DTBMP, Tf_2O , 4 Å molecular sieves, CH_2Cl_2 , -78 °C, 10 min, then PhSH, -78 °C to 0 °C, 2 h; (b) 4 or 22, DTBMP, Tf_2O , 4 Å molecular sieves, CH_2Cl_2 , -78 °C, 10 min, then DAST, -78 °C to 0 °C, 2 h.

Besides the C-glycosylation, we attempted to convert the CB mannopyranosides 4 and 22^{15} to other wellknown glycosyl donors, for example, thioglycosides and glycosyl fluorides (Scheme 3). Frequently, the conversion between glycosyl donors is very useful in the synthesis of complex oligosaccharides because a specific glycosyl donor gives higher stereoselectivity and better yield for a certain glycosylation reaction. The conversion of CB glycosides into thioglycosides and glycosyl fluorides was carried out under the standard reaction conditions (method A). The reaction of 4 with PhSH afforded a mixture of α - and β -phenyl thioglycosides, 23 in 82% yield ($\alpha/\beta = 1:4$), and the same reaction with (diethylamino)sulfur trifluoride (DAST) as a fluoride source also provided a mixture of α - and β -glycosyl fluoride **24** in 91% yield ($\alpha/\beta = 1:2$). On the other hand, the reaction of CB 4,6-benzylidenemannopyranoside 22 with PhSH and with DAST gave the previously unknown B-phenvl thioglycoside 25 and B-glycosyl fluoride 26 exclusively in 85% or 92% yield, respectively. It is probable that the exclusive β -stereoselectivity in these reactions is due to the formation of a highly reactive 4,6-O-benzylidenemannopyranosyl α -triflate²⁰ intermediate at low temperature as in the case of our previous β-O-mannopyranosylation.¹⁵

In conclusion, we have developed a highly stereoselective method for the synthesis of C-glycosides by employing CB glycosides **3** and **4** as glycosyl donors. C-glycosylations of various glycosyl acceptors with donors, **3** and **4** afforded exclusively or predominantly α -C-glycosides in good yields. In addition, CB glycosides **4** and **22** were successfully converted to wellknown glycosyl donors, thioglycosides and glycosyl fluorides in excellent yields.

1. Experimental

1.1. General methods

All reactions were conducted under a positive pressure of dry argon with dry, freshly distilled solvents unless otherwise noted. All reagents were purchased from commercial suppliers and used without further purification unless otherwise noted. Flash column chromatography was performed employing 230–400 mesh silica gel. Thin-layer chromatography was performed using Silica Gel 60 F254 precoated plates (0.25 mm thickness) with a fluorescent indicator. NMR spectra were recorded on a Bruker 250, 400, or 500 MHz NMR spectrometer. Chemical shifts are reported in parts per million (ppm) downfield from tetramethylsilane (TMS) unless otherwise noted. Optical rotations were measured with a Rudolph Autopol III automatic polarimeter.

1.2. Typical experimental protocol for the glycosylation reaction

1.2.1. Method A. A solution of glycosyl donor 3 (100 mg, 0.15 mmol) and DTBMP (74 mg, 0.36 mmol) in CH₂Cl₂ (10 mL) in the presence of 4 Å molecular sieves (500 mg) was stirred for 20 min at rt and cooled to -78 °C, then Tf₂O (30 µL, 0.18 mmol) was added. After the resulting solution was stirred at -78 °C for 10 min, glycosyl acceptor (0.30 mmol) was added and stirred at -78 °C for 1 h and allowed to warm over 1 h to 0 °C. The reaction mixture was quenched by the addition of satd aq NaHCO₃ and then extracted with CH₂Cl₂. The combined organic layer was washed with satd aq NaHCO₃ and brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by flash column chromatography (3:1, hexane/EtOAc) to afford the desired C-glycoside.

1.2.2. Method B. A solution of glycosyl acceptor (0.30 mmol) and DTBMP (74 mg, 0.36 mmol) in CH₂Cl₂ (5 mL) in the presence of 4 Å molecular sieves (500 mg) was stirred for 20 min at rt and cooled to $-78 \text{ }^{\circ}\text{C}$, then Tf₂O (30 µL, 0.18 mmol) was added. To the resulting solution was added dropwise a solution of glycosyl donor **3** or **4** (100 mg, 0.15 mmol) in CH₂Cl₂ (5 mL) over 10 min. After stirring at $-78 \text{ }^{\circ}\text{C}$ for 1 h, the reaction mixture was quenched by the addition of satd

aq NaHCO₃, and then extracted with CH_2Cl_2 . The combined organic layer was washed with satd aq NaHCO₃ and brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by flash column chromatography (3:1, hexane/EtOAc) to afford the desired C-glycoside.

All known compounds, 10,^{13b} 11,^{13b} 12β,^{10c} 13,^{10c} 14,^{14b} 15,^{18b} gave acceptable ¹H NMR and ¹³C NMR spectra that matched data reported previously.

1.3. 1,2-Dimethyl-3-(2',3',4',6'-tetra-O-benzyl- α -D-glucopyranosyl)-indole (12 α)

Colorless oil, $R_f = 0.20$ (10:1:2, hexane/EtOAc/ CH_2Cl_2 ; $[\alpha]_D$ +8.7 (c 0.9, CHCl_3); ¹H NMR (400 MHz, CDCl₃): δ 2.42 (s, 3H, CH₃), 3.62 (s, 3H, NCH₃), 3.62-3.68 (m, 2H, H-6a, H-6b), 3.75-3.80 (m, 1H, H-5), 3.89-3.93 (m, 2H, H-2, H-4), 4.19 (t, 1H, J = 7.0 Hz, H-3), 4.37 and 4.46 (ABq, 2H, J =11.6 Hz, PhCH₂), 4.42 and 4.57 (ABq, 2H, J = 12.2 Hz, PhCH₂), 4.54 and 4.79 (ABq, 2H, J =11.2 Hz, PhCH₂), 4.75 and 4.87 (ABq, 2H, J = 11.2 Hz, PhCH₂), 5.55 (d, 1H, J 4.4 Hz, H-1), 7.03–7.35 (m, 23H, Ar-H), 7.90 (d, 1H, J = 8.0 Hz, Ar-H); ¹³C NMR (100 MHz, CDCl₃): δ 11.9 (CH₃), 29.5 (NCH₃), 69.9, 70.9, 72.8, 73.2, 73.5, 74.0, 74.3, 77.8, 81.5, 83.0, 108.0 (C'-8), 108.5 (C'-3), [119.2, 120.5, 120.8 (C'-5, C'-6, C'-7)], [127.3, 127.5, 127.6, 127.7, 127.8, 127.9 (2C), 127.97 (2C), 128.0 (2C), 128.2 (2C), 128.22 (2C), 128.4 (2C), 128.44 (2C), 128.6 (2C)(Ar-C)], [136.3, 136.8 (C'-4, C'-9)], [138.4, 138.5, 138.7, 138.74 (Ar-C ipso)].

1.4. 1-(2',3',4',6'-tetra-*O*-benzyl-α-D-mannopyranosyl)-2,4,6-trimethoxybenzene (16)

Colorless oil, $R_f = 0.2$ (3:1, hexane/EtOAc); $[\alpha]_D + 1.3$ (c 1.4, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 3.69 (s, 6H, 2OCH₃), 3.78–3.80 (m, 1H, H-4), 3.80 (s, 3H, OCH₃), 3.85 (dd, 1H, J = 10.0, 6.0 Hz, H-6a), 3.94 (dd, 1H, J = 10.0, 6.8 Hz, H-6b), 4.02-4.04 (dd, 1H, J = 3.5,4.7 Hz, H-3), 4.02–4.23 (m, 1H, H-5), 4.34 (s, 2H, PhC H_2), 4.49 (d, 1H, J = 12.0 Hz, PhCHH), 4.50 (d, 1H, J = 12.0 Hz, PhCHH), 4.55–4.60 (m, 3H, 3PhCHH), 4.65 (dd, 1H, J = 9.0, 3.3 Hz, H-2), 4.72 (d, 1H, J = 12.5 Hz, PhCHH), 5.56 (d, 1H, J = 8.8 Hz, H-1), 6.10 (s, 2H, H-3', H-5'), 7.06–7.32 (m, 20H, Ar-H); ¹³C NMR (125 MHz, CDCl₃): δ 55.4 (OCH₃), 56.0 (2C, OCH₃), 65.0, 69.0, 71.7, 71.8, 72.7, 73.4, 74.5, 75.4, 75.8, 76.0, 91.3 (2C, C-3', C-5'), 108.7 (C-1'), [127.3, 127.4, 127.5 (2C), 127.7 (4C), 127.88 (2C), 127.9 (2C), 128.1 (2C), 128.3 (6C)(Ar-C)], [138.8, 138.87, 138.9, 139.0 (Ar-C ipso)], [160.6(2), 161.2 (C-2', C-4', C-6')]. Anal. Calcd for C₄₃H₄₆O₈: C, 74.76; H, 6.71. Found: C, 74.73; H, 6.72.

1.5. 1-(2',3',4',6'-tetra-*O*-benzyl-α-D-mannopyranosyl)-2,4-dimethoxybenzene (17)

Colorless oil, $R_f = 0.5$ (2:1, hexane/EtOAc); $[\alpha]_D + 12.7$ (*c* 1.3, CHCl₃); ¹H NMR (250 MHz, CDCl₃): δ 3.68 (s, 3H, OCH₃), 3.79 (s, 3H, OCH₃), 3.81–3.93 (m, 4H, H-3, H-4, H-6a, H-6b), 4.14 (d, 1H, J = 10.5, 5.4 Hz, H-5), 4.23 (dd, 1H, J = 6.2, 2.7 Hz, H-2), 4.46 (s, 2H, PhCH₂), 4.50–4.64 (m, 6H, 3PhCH₂), 5.32 (d, 1H, J = 6.2 Hz, H-1), 6.40–6.47 (m, 2H, H-3', H-5'), 7.06– 7.32 (m, 21H, Ar-H, H-6'); ¹³C NMR (63 MHz, CDCl₃): δ 55.5 (2C, OCH₃), 69.3 (2C), 71.8, 72.5, 73.0, 73.3, 75.35, 75.38, 76.4, 77.3, 98.8 (C-3'), 104.4 (C-5'), 120.0 (C-1'), [127.4, 127.5, 127.6, 127.7, 127.8 (2C), 127.9 (4C), 128.0 (2C), 128.2 (2C), 128.4 (4C), 128.5 (2C), 129.1 (Ar-C, C-6')], [138.5, 138.69, 138.7, 138.8 (Ar-C *ipso*)], [158.5, 160.5 (C-2', C-4')]. Anal. Calcd for C₄₂H₄₄O₇: C, 76.34; H, 6.71. Found: C, 76.37; H, 6.71.

1.6. 1,2-Dimethyl-3-(2',3',4',6'-tetra-*O*-benzyl-α-Dmannopyranosyl)-indole (18)

Colorless oil, $R_f = 0.30$ (10:1:2, hexane/EtOAc/CH₂-Cl₂); $[\alpha]_{D}$ +2.2 (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 2.33 (s, 3H, CH₃), 3.59 (s, 3H, NCH₃), 3.58-3.62 (m, 1H, H-5), 3.80-3.88 (m, 4H, H-2, H-3, H-6a, H-6b), 4.16 (t, 1H, J = 9.6 Hz, H-4), 4.14 and 4.48 (ABq, 2H, J = 11.2 Hz, PhCH₂), 4.59 and 4.71 $(ABq, 2H, J = 12.4 \text{ Hz}, PhCH_2), 4.68 \text{ and } 4.96 (ABq,$ 2H, J = 10.8 Hz, PhCH₂), 4.70 (s, 2H, PhCH₂), 4.83 (br s, 1H, H-1), 6.89-7.34 (m, 23H, Ar-H), 7.63 (d, 1H. J = 8.0 Hz, Ar-H); ¹³C NMR (100 MHz, CDCl₃): δ 11.6 (CH₃), 29.4 (NCH₃), 69.9, 72.2, 73.5, 74.9, 75.3, 75.4, 76.2, 78.2, 80.3, 84.8, 108.4 (C'-8), 108.5 (C'-3), [119.0, 119.3, 120.5 (C'-5, C'-6, C'-7)], [126.8, 127.1 (2C), 127.4 (2C), 127.66 (2C), 127.7 (2C), 127.8 (2C), 128.2 (2C), 128.22 (2C), 128.4 (2C), 128.47 (2C), 128.5 (2C)(Ar-C)], [134.6, 136.6 (C'-4, C'-9)], [138.76, 138.85, 138.9, 139.0 (Ar-C ipso)]. Anal. Calcd for C₄₄H₄₅NO₅: C, 79.13; H, 6.79; N, 2.10. Found: C, 78.88; H, 7.04; N. 1.93.

1.7. 2-(2',3',4',6'-tetra-*O*-benzyl- α -D-mannopyranosyl)-furan (19)

Colorless oil, $R_f = 0.43$ (4:1, hexane/EtOAc); $[\alpha]_D + 3.4$ (*c* 3.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 3.72– 3.82 (m, 3H, H-5, H-6a, H-6b), 3.84 (dd, 1H, J = 8.0, 3.2 Hz, H-3), 4.00 (t, 1H, J = .0 Hz, H-4), 4.16 (t, 1H, J = 3.2 Hz, H-2), 4.51 (d, 1H, J = 10.8 Hz, PhC*H*H), 4.54 (d, 1H, J = 12.0 Hz, PhC*H*H), 4.61–4.80 (m, 6H, 3PhC*H*₂), 5.12 (d, 1H, J = 3.2 Hz, H-1), 6.12 (d, 1H, J = 3.6 Hz, H'-3), 6.28 (dd, 1H, J = 3.6, 2.0 Hz, H'-4), 7.18–7.36 (m, 21H, Ar-H, H'-5); ¹³C NMR (100 MHz, CDCl₃): δ 69.3, 70.5, 72.2, 72.4, 73.4, 74.6, 74.76, 74.8, 75.0, 79.1 (C-1), [108.9, 110.5 (C'-3, C'-4)], [127.55, 127.6, 127.72, 127.74, 127.8, 127.9, 128.0 (2C), 128.06 (2C), 128.13 (2C), 128.2 (2C), 128.38 (2C), 128.44 (2C), 128.5 (2C)(Ar-C)], [138.3, 138.4(2), 138.5 (Ar-C *ipso*)], 142.3 (C'-5), 151.2 (C'-2). Anal. Calcd for $C_{38}H_{38}O_6$: C, 77.26; H, 6.48. Found: C, 77.39; H, 6.45.

1.8. 3-(2',3',4',6'-tetra-*O*-benzyl-**D**-mannopyranyl)-propene (20)

Compound 20 α : colorless oil, $R_{\rm f} = 0.4$ (8:1:10, hexane/ EtOAc/CH₂Cl₂); $[\alpha]_{D}$ +16.7 (*c* 2.7, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 2.30–2.36 (m, 2H, H'-1a, H'-1b), 3.61-3.62 (m, 1H, H-3), 3.70 (dd, 1H, J = 10.1, 3.0 Hz, H-6a), 3.75-3.88 (m, 4H, H-1, H-2, H-4, H-6b), 4.05 (dd, 1H, J = 11.4, 6.5 Hz, H-5), 4.50–4.73 (m, 8H, 4PhCH₂), 4.99–5.03 (m, 2H, H'-3a, H'-3b), 5.70–5.78 (m, 1H, H'-2), 7.18–7.36 (m, 20H, Ar-H); ¹³C NMR (125 MHz, CDCl₃): δ 34.7 (C'-1), 69.1, 71.5, 72.0, 72.4, 73.3, 73.6, 74.0, 74.8, 74.9, 76.9, 117.4 (C'-3), [127.6, 127.8 (4C), 128.0 (3C), 128.1 (4C), 128.4 (4C), 128.5 (4C)(Ar-C)], 134.3 (C'-2), [138.2 (3C), 138.4 (Ar-C ipso)]. Anal. Calcd for C₃₇H₄₀O₅: C, 78.69; H, 7.14. Found: C, 78.70; H, 7.13. Compound 20B: colorless oil, $R_{\rm f} = 0.5$ (8:1:10, hexane/EtOAc/CH₂Cl₂); $[\alpha]_{\rm D}$ -18.8 (c 0.8, CHCl₃); ¹Η NMR (500 MHz, CDCl₃): δ 2.29-2.35 (m, 1H, H'-1a), 2.48-2.53 (m, 1H, H'-1b), 3.33 (t, 1H, J = 6.8 Hz, H-3), 3.46 (dd, 1H, J = 8.6, 5.9 Hz, H-5), 3.62 (dd, 1H, J = 9.3, 2.1 Hz, H-2), 3.68 (dd, 1H, J = 10.7, 5.9 Hz, H-6a), 3.75-3.80 (m, 2H, H-6a)1, H-6b), 3.90 (t, 1H, J = 9.5 Hz, H-4), 4.53 (d, 1H, J = 10.7 Hz, PhCHH), 4.58 and 4.61 (ABq, 2H, J = 12.2 Hz, PhCH₂), 4.69 (d, 1H, J = 11.6 Hz, PhCHH), 4.72 and 4.79 (ABq, 2H, J = 11.7 Hz, PhC H_2), 4.87 (d, 1H, J = 10.6 Hz, PhCHH), 5.00–5.05 (m, 3H, H'-3a, H'-3b, PhCHH), 5.63-5.71 (m, 1H, H'-2), 7.15–7.38 (m, 20H, Ar-H); ¹³C NMR (125 MHz, CDCl₃): δ 35.7 (C'-1), 69.7, 72.5, 73.5, 74.4, 74.5, 75.38, 75.44, 78.3, 79.8, 85.5, 117.5 (C'-3), [127.6 (3C), 127.8 (2C), 128.1 (2C), 128.2 (4C), 128.4 (7C), 128.6 (2C)(Ar-C)], 134.7 (C'-2), [138.3, 138.4 (2C), 138.8 (Ar-C ipso)]. Anal. Calcd for C37H40O5: C, 78.69; H, 7.14. Found: C, 78.67; H, 7.12.

1.9. Self-condensed ester of CB mannopyranoside (21)

Colorless oil, $R_{\rm f} = 0.30$ (4:1, hexane/EtOAc); $[\alpha]_{\rm D}$ +4.8 (*c* 1.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 3.70–3.83 (m, 6H), 3.87–3.88 (m, 1H), 3.90–3.97 (m, 2H), 4.00 (dd, 1H, J = 9.6, 3.2 Hz, H-6a), 4.05–4.12 (m, 1H), 4.18 (t, 1H, J = 9.8 Hz, H-4), 4.50–5.09 (m, 18H, 9PhC H_2), 5.05 (br s, 1H, H-1), 6.43 (d, 1H, J = 1.6 Hz, H'-1), 7.18–7.49 (m, 43H, Ar-H), 7.75 (d, 1H, J = 8.0 Hz, Ar-H); ¹³C NMR (100 MHz, CDCl₃): δ 67.4, 69.0, 69.3, 72.2, 72.3, 72.5, 72.65, 72.7, 73.6, 73.7, 74.0, 74.4, 74.8, 75.0, 75.1, 75.4, 75.6, 79.2,

80.2, 92.3 (C'-1), 98.0 (C-1), [127.6 (2C), 127.7 (4C), 127.8 (5C), 127.87 (3C), 127.89 (3C), 127.91, 127.92, 127.97, 128.0, 128.07, 128.1 (2C), 128.2 (2C), 128.3 (2C), 128.39 (2C), 128.43, 128.45 (2C), 128.46 (2C), 128.48 (3C), 128.52 (3C), 128.54 (3C)(Ar-C)], [130.8, 133.2, 138.0, 138.1, 138.35, 138.4, 138.5, 138.6 (2C), 141.4 (Ar-C *ipso*)], 164.1 (C=O). Anal. Calcd for $C_{76}H_{76}O_{13}$: C, 76.23; H, 6.40. Found: C, 76.32; H, 6.23.

1.10. Phenyl 2,3,4,6-tetra-O-benzyl-1-thio-D-mannopyranoside (23)

A solution of 4 (158 mg, 0.23 mmol) and DTBMP (115 mg, 0.56 mmol) in CH₂Cl₂ (15 mL) in the presence of 4 Å molecular sieves was stirred for 20 min at rt and cooled to -78 °C, then Tf₂O (47 μ L, 0.28 mmol) was added. After the resulting solution was stirred at -78 °C for 10 min, benzenethiol (36 µL, 0.35 mmol) was added and stirred at -78 °C for 1 h and allowed to warm over 1 h to 0 °C. The reaction mixture was quenched with satd aq NaHCO₃, and then extracted with CH₂Cl₂. The combined organic layer was washed with satd aq NaHCO₃ and brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by flash column chromatography (7:1, hexane/EtOAc) to afford α -thioglycoside 23 α (24 mg, 16%) and then β -thioglycoside **23** β (98 mg, 66%). Compound **23** α : colorless oil, $R_f = 0.3$ (7:1, hexane/EtOAc); $[\alpha]_D$ +8.1 (c 1.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 3.75 (d, 1H, J = 11.2, 1.8 Hz, H-6a), 3.82–3.88 (m, 2H, H-3, H-6b), 3.99–4.00 (m, 1H, H-2), 4.07 (t, 1H, J = 9.4 Hz, H-4), 4.26–4.31 (m, 1H, H-5), 4.48 (d, 1H, J = 12.0 Hz, PhCHH), 4.54 (d, 1H, J = 10.8 Hz, PhCHH), 4.60-4.66 (m, 4H, 2PhCH₂), 4.73 (d, 1H, J = 12.4 Hz, PhCHH), 4.90 (d, 1 H, J = 10.8 Hz, PhCHH), 5.61 (d, 1H, J = 1.6 Hz, H-1), 7.19–7.45 (m, 25H, Ar-H); ¹³C NMR (100 MHz, CDCl₃); δ 69.3, 72.0, 72.2, 72.9, 73.4, 75.1, 75.3, 76.4, 80.3, 85.9 (C-1), [127.5, 127.6, 127.75, 127.82 (2C), 127.86 (2C), 127.95 (2C), 128.0 (2C), 128.1 (2C), 128.4 (2C), 128.47 (2C), 128.5 (2C), 128.54 (2C), 129.1 (2C), 131.8 (2C)(Ar-C)], 134.5 (Ar-S ipso), [138.1, 138.3, 138.5, 138.6 (Ar-C ipso)]. Anal. Calcd for C₄₀H₄₀O₅S: C, 75.92; H, 6.37. Found: C, 75.98; H, 6.34. Compound 23B: colorless oil, $R_{\rm f} = 0.28$ (7:1, hexane/EtOAc); $[\alpha]_{\rm D}$ -4.1 (c 5.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 3.53–3.55 (m, 1H, H-5), 3.61 (dd, 1H, J = 9.2, 2.8 Hz, H-3), 3.74 (dd, 1H, J = 10.8, 6.4 Hz, H-6a), 3.83 (dd, 1H, 1H)J = 10.8, 1.6 Hz, H-6b), 3.94 (t, 1H, J = 9.6 Hz, H-4), 4.13 (d, 1H, J = 2.4 Hz, H-2), 4.53–4.61 (m, 3H, 3PhCHH), 4.67 and 4.71 (ABq, 2H, J = 11.8 Hz, PhC H_2), 4.76 (br s, 1H, H-1), 4.85 (d, 1H, J =11.2 Hz, PhCHH), 4.88 (d, 1 H, J = 10.8 Hz, PhCHH), 5.04 (d, 1H, J = 11.6 Hz, PhCHH), 7.17–7.52 (m, 25H, Ar-H); ¹³C NMR (100 MHz, CDCl₃): δ 69.9, 72.7,

73.5, 75.0, 75.2, 75.3, 77.6, 80.2, 84.4, 87.7 (C-1), [127.0, 127.5, 127.7 (2C), 127.8 (2C), 127.83 (2C), 127.9 (2C), 128.1 (2C), 128.26 (2C), 128.3 (3C), 128.4 (2C), 128.6 (2C), 129.0 (2C), 130.6 (2C)(Ar-C)], 135.8 (Ar-S *ipso*), [138.1, 138.3, 138.4, 138.6 (Ar-C *ipso*)]. Anal. Calcd for $C_{40}H_{40}O_5S$: C, 75.92; H, 6.37. Found: C, 76.11; H, 5.99.

1.11. 2,3,4,6-Tetra-*O*-benzyl-D-mannopyranosyl fluoride (24)

A solution of 4 (128 mg, 0.19 mmol) and DTBMP (94 mg, 0.46 mmol) in CH₂Cl₂ (12 mL) in the presence of 4 Å molecular sieves was stirred for 20 min at rt and cooled to -78 °C, then Tf₂O (38 μ L, 0.23 mmol) was added. After the resulting solution was stirred at -78 °C for 10 min, DAST (50 µL, 0.38 mmol) was added and stirred at -78 °C for 1 h and allowed to warm over 1 h to 0 °C. The reaction mixture was quenched with satd aq NaHCO₃, and then extracted with CH₂Cl₂. The combined organic layer was washed with satd aq NaHCO₃ and brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by flash column chromatography (4:1, hexane/EtOAc) to afford α -glycosyl fluoride 24 α (32 mg, 31%) and then β -glycosyl fluoride **24** β (62 mg, 60%). Compound **24** α : pale yellow oil, $R_{\rm f} = 0.53$ (4:1, hexane/EtOAc); $[\alpha]_{\rm D}$ +2.9 (c 1.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 3.71 (dd, 1H, J = 11.2, 1.8 Hz, H-6a), 3.77 (dd, 1H, J = 11.2, 4.4 Hz, H-6b), 3.86-3.93 (m, 3H, H-2, H-3, H-5), 4.07 (t, 1H, J = 9.4 Hz, H-4), 4.53 (d, 2H, $J = 11.2 \text{ Hz}, \text{ PhC}H_2$, 4.61–4.70 (m, 4H, 2PhC H_2), 4.80 (d, 1H, J = 12 Hz, PhCHH), 4.87 (d, 1H, J = 10.8 Hz, PhCHH), 5.59 (dd, 1H, $J_{1,F} = 50.6$, $J_{1,2} = 1.6$ Hz, H-1), 7.15–7.36 (m, 20H, Ar-H); ¹³C NMR (100 MHz, CDCl₃): δ 68.8 (C-6), 72.7 (PhCH₂), 73.4 (PhCH₂), 73.56 (PhCH₂), 73.6 (d, J 34 Hz, C-2), 74.2 (C-3/4/5), 74.3 (C-3/4/5), 75.2 (PhCH₂), 79.3 (C-3/4/5), 106.5 (d, J 221 Hz, C-1), [127.6, 127.7 (3C), 127.8 (3C), 127.9, 128.0 (2C), 128.1 (2C), 128.46 (2C), 128.5 (2C), 128.6 (4C)(Ar-C)], [138.0, 138.27, 138.3, 138.34 (Ar-C ipso)]. Anal. Calcd for C₃₄H₃₅FO₅: C, 75.26; H, 6.50. Found: C, 75.31; H, 6.46. Compound 24β: pale yellow oil, $R_f = 0.38$ (4:1, hexane/EtOAc); $[\alpha]_{D}$ -2.2 (c 2.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 3.61 (dd, 1H, J = 7.6, 3.2 Hz, H-3), 3.68–3.72 (m, 1H, H-5), 3.78 (dd, 1H, J = 10.4, 5.6 Hz, H-6a), 3.84 (dd, 1H, J = 10.4, 3.6 Hz, H-6b), 3.92–3.95 (m, 2H, H-2, H-4), 4.49-4.60 (m, 5H, 5PhCHH), 4.72 and 4.82 (ABq, 2H, J = 12.4 Hz, PhC H_2), 4.73 (d, 1H, J = 11.2 Hz, PhCHH), 5.33 (d, 1H, $J_{1,F} = 50.8$ Hz, H-1), 7.16–7.35 (m, 20H, Ar-H); ¹³C NMR (100 MHz, CDCl₃): δ 69.5 (C-6), 72.1 (PhCH₂), 73.0 (d, J 19 Hz, C-2), 73.4 (C-5), 73.56 (PhCH₂), 73.9 (PhCH₂), 74.3 $(PhCH_2)$, 75.3 (C-4), 78.6 (C-3), 107.1 (d, J = 218 Hz, C-1), [127.7, 127.8, 127.83, 127.85, 127.9 (2C), 128.0 (2C), 128.1 (2C), 128.2 (2C), 128.43 (2C), 128.44 (2C), 128.5 (2C), 128.51 (2C)(Ar-C)], [138.0, 138.06, 138.1, 138.3 (Ar-C *ipso*)]. Anal. Calcd for $C_{34}H_{35}FO_5$: C, 75.26; H, 6.50. Found: C, 75.25; H, 6.57.

1.12. Phenyl 4,6-*O*-benzylidene-2,3-di-*O*-benzyl-1-thio-β-D-mannopyranoside (25)

CB glycoside 22 (670 mg, 1.15 mmol) was subjected to the same reaction conditions as that for the preparation of 23 from 4. The reaction mixture was purified by flash column chromatography (7:1, hexane/EtOAc) to give the title compound **25** (529 mg, 85%, β only) as a colorless oil. $R_f = 0.38$ (9:1:1, hexane/EtOAc/CH₂Cl₂); $[\alpha]_D$ -0.78 (c 1.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 3.37-3.43 (m, 1H, H-5), 3.74 (dd, 1H, J = 9.6, 3.2 Hz, H-3), 3.95 (t, 1H, J = 10.2 Hz, H-4), 4.18 (d, 1H, J = 2.0 Hz, H-2), 4.29–4.34 (m, 2H, H-6a, H-6b), 4.74 and 4.89 (ABq, 2H, J = 12.4 Hz, PhCH₂), 4.85 (d, 1H, J = 0.8 Hz, H-1), 4.86 and 5.11 (ABq, 2H, J =11.2 Hz, PhCH₂), 5.64 (s, 1H, PhCHO₂), 7.25–7.51 (m, 20H, Ar-H); 13 C NMR (100 MHz, CDCl₃): δ 68.6, 71.8, 73.3, 76.0, 78.8, 79.1, 79.9, 89.2 (C-1), 101.6 (PhCHO₂), [126.2 (2C), 127.6, 127.8 (2C), 127.87, 127.9, 128.3 (4C), 128.6 (2C), 128.8 (2C), 129.0,129.1 (2C), 129.3, 131.2 (2C)(Ar-C)], 135.1 (Ar-S ipso), [137.6, 138.1, 138.4 (Ar-C ipso)]. Anal. Calcd for C₃₃H₃₂O₅S: C, 73.31; H, 5.97. Found: C, 73.36; H, 5.96.

1.13. 4,6-*O*-Benzylidene-2,3-di-*O*-benzyl-β-D-mannopyranosyl fluoride (26)

CB glycoside 22 (57 mg, 0.098 mmol) was subjected to the same reaction conditions as that for the preparation of 24 from 4. The reaction mixture was purified by flash column chromatography (4:1, hexane/EtOAc) to give the title compound **26** (40 mg, 91%, β only) as a pale yellow oil. $R_{\rm f} = 0.55$ (3:1, hexane/EtOAc); $[\alpha]_{\rm D} = -3.0$ (c 1.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 3.37–3.43 (m, 1H, H-5), 3.65 (dd, 1H, J = 9.6, 2.8 Hz, H-3), 3.94 (t, 1H, J = 10.4 Hz, H-4), 4.00–4.01 (m, 1H, H-2), 4.24 (t, 1H, J = 9.6 Hz, H-6a), 4.35 (dd, 1H, J = 10.4, 4.8 Hz, H6b), 4.64 and 4.76 (ABq, 2H, J = 12.4 Hz, PhCH₂), 4.83 and 4.89 (ABq, 2H, J = 12.0 Hz, PhCH₂), 5.28 (dd, 1H, $J_{1,F} = 49.2$ Hz, $J_{1,2} = 0.8$ Hz, H-1), 5.62 (s, 1H, PhCHO₂), 7.29–7.50 (m, 15H, Ar-H); ¹³C NMR (100 MHz, CDCl₃): δ 67.0 (C-3/4/5), 68.5 (C-6), 72.9 (PhCH₂), 74.9 (C-3/4/5), 75.1 (d, J 16 Hz, C-2), 76.8 (C-3/4/5), 78.3 (PhCH₂), 101.7 (PhCHO₂), 107.7 (d, J 216 Hz, C-1), [126.2 (2C), 127.8 (2C), 127.9, 128.0, 128.4 (2C), 128.45 (2C), 128.5 (4C), 129.1 (Ar-C)], [137.4, 137.9, 138.1 (Ar-C ipso)]. Anal. Calcd for C₂₇H₂₇FO₅: C, 71.98; H, 6.04. Found: C, 71.91; H, 6.09.

Acknowledgements

This work was supported by a grant from the Korea Science and Engineering Foundation through the Center for Bioactive Molecular Hybrids (CBMH).

References

- Sezaki, M.; Kondo, S.; Maeda, K.; Umezawa, H.; Ohno, M. *Tetrahedron* 1970, 26, 5171–5190.
- Nadig, H.; Sequin, U. Helv. Chim. Acta 1987, 70, 1217– 1228.
- (a) Strelitz, F.; Flon, H.; Asheshov, I. N. J. Bacteriol. 1955, 69, 280–283; (b) Weiss, U.; Yoshihira, K.; Highet, R. J.; White, R. J.; Wei, T. T. J. Antibiot. 1982, 35, 1194– 1201.
- 4. (a) Findlay, J. A.; Liu, J.-S.; Radics, L.; Rakhit, S. *Can. J. Chem.* 1981, *59*, 3018–3020; (b) Sehgal, S. N.; Czerkawski, H.; Kudelski, A.; Pandev, K.; Saucier, R.; Vezina, C. *J. Antibiot.* 1983, *36*, 355–361.
- (a) Omura, S.; Tanaka, H.; Oiwa, R.; Awaya, J.; Masuma, R.; Tanaka, K. J. Antibiot. 1977, 30, 908–916; (b) Imamura, N.; Kakinuma, K.; Ikekawa, N.; Tanaka, H.; Omura, S. J. Antibiot. 1981, 34, 1517–1518.
- (a) Hanessian, S.; Pernet, A. G. Adv. Carbohydr. Chem. Biochem. 1976, 33, 111–188; (b) Daves, G. D.; Cheng, C. C. Prog. Med. Chem. 1976, 13, 303–349; (c) Suhadolnik, R. J. Nucleoside Antibiotics; Wiley-Interscience: New York, 1970.
- Weatherman, R. V.; Mortell, K. H.; Chervenak, M.; Kiessling, L. L.; Toone, E. J. *Biochemistry* **1996**, *35*, 3619– 3624.
- (a) Postema, M. H. D. C-Glycoside Synthesis; CRC Press: London, UK, 1995; (b) Levy, D. E.; Tang, C. The Chemistry of C-Glycosides; Pergamon: Oxford, UK, 1995; (c) Du, Y.; Linhardt, R. J.; Vlahov, I. R. Tetrahedron 1998, 54, 9913–9959; (d) Postema, M. H. D.; Calimente, D. In Glycochemistry: Principles, Synthesis, and Applications; Wang, P. G., Bertozzi, C. R., Eds.; Marcel Dekker: New York, 2001; pp 77–131; (e) Levy, D. E. In The Organic Chemistry of Sugars;

Levy, D. E., Fügedi, P., Eds.; CRC Press: Boca Raton, 2006; pp 269-348.

- (a) Nicolaou, K. C.; Dolle, R. E.; Chucholowski, A.; Randall, J. L. J. Chem. Soc., Chem. Commun. 1984, 1153– 1154; (b) Matsumoto, T.; Katsuki, M.; Suzuki, K. Tetrahedron Lett. 1989, 30, 833–836.
- (a) Schmidt, R. R.; Hoffmann, M. Tetrahedron Lett. 1982, 23, 409–412; (b) Schmidt, R. R.; Hoffmann, M. Angew. Chem., Int. Ed. Engl. 1983, 22, 406–407; (c) Schmidt, R. R.; Effenberger, G. Liebigs Ann. Chem. 1987, 825– 831.
- (a) Dawe, R. D.; Fraser-Reid, B. J. Chem. Soc., Chem. Commun. 1981, 1180–1181; (b) Danishefsky, S. J.; Kerwin, J. F., Jr. J. Org. Chem. 1982, 47, 3803–3805; (c) Grynkiewicz, G.; BeMiller, J. N. Carbohydr. Res. 1982, 108, 229–235.
- (a) Lewis, M. D.; Cha, J. K.; Kishi, Y. J. Am. Chem. Soc. 1982, 104, 4976–4978; (b) Kraus, G. A.; Molina, M. T. J. Org. Chem. 1988, 53, 752–753.
- (a) Williams, R. M.; Stewart, A. O. *Tetrahedron Lett.* 1983, 24, 2715–2718; (b) Williams, R. M.; Stewart, A. O. *J. Am. Chem. Soc.* 1985, 107, 4289–4296; (c) Kozikowski, A. P.; Konoike, T.; Ritter, A. *Carbohydr. Res.* 1987, 171, 109–124.
- (a) Plante, O. J.; Palmacci, E. R.; Andrade, R. B.; Seeberger, P. H. *J. Am. Chem. Soc.* 2001, *123*, 9545– 9554; (b) Palmacci, E. R.; Seeberger, P. H. Org. Lett. 2001, *3*, 1547–1550.
- Kim, K. S.; Kim, J. H.; Lee, Y. J.; Lee, Y. J.; Park, J. J. Am. Chem. Soc. 2001, 123, 8477–8481.
- Kim, K. S.; Park, J.; Lee, Y. J.; Seo, Y. S. Angew. Chem., Int. Ed. 2003, 42, 459–462.
- 17. Lee, Y. J.; Lee, K.; Jung, E. H.; Jeon, H. B.; Kim, K. S. Org. Lett. 2005, 7, 3263–3266.
- (a) Kwon, Y. T.; Lee, Y. J.; Lee, K.; Kim, K. S. Org. Lett.
 2004, 6, 3901–3904; (b) Kim, K. S.; Kang, S. S.; Seo, Y. S.; Kim, H. J.; Lee, Y. J.; Jeong, K.-S. Synlett 2003, 1311– 1314.
- Rao, V. S. R.; Qasba, P. K.; Balaji, P. V.; Chandrasekaran, R. *Conformation of Carbohydrates*; Harwood Academic: Amsterdam, 1998.
- Crich, D.; Sun, S. J. Am. Chem. Soc. 1997, 119, 11217– 11223.