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ABSTRACT

Atropisomeric receptor 1 can change conformation and maintain the new conformation when heated and cooled in the presence of a guest
molecule. This molecular memory can be used as a rapid method of screening potential guests. Heating atropisomeric diacid 1 with various

hydrogen-bonding guests leads to a shift in the
absence of the guest molecules.

synlanti ratio that could be easily monitored as it is stable at room temperature even in the

Synthetic molecular receptors have found utility in a wide amines> The binding affinities were estimated from single-
range of applications including catalysis, separations, and point experiments in which the guest-induced conformational
sensing. The development of new synthetic receptors, how- synanti ratios were measured by HPLC (Scheme 1). Diacid

ever, is a time- and resource-intensive task that typically

requires the individual synthesis and screening of multiple ]

generations of receptors. Recently, combinatorial and high-

throughput strategies have emerged as an efficient method

to prepare large numbers of potential receptdreese high-
throughput synthetic strategies also require the concurrent
development of methods to rapidly screen the binding affinity
of these receptorsAlong these lines, we present a rapid
and efficient method for identifying complementary receptor
guest pairings by using a receptor with molecular memory
arising from restricted rotatiochThis was demonstrated by
screening diacid receptdragainst a library of guests that
contains protected nucleosides, monodiamines, and di-
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Scheme 1. Guest-Induced Isomerization Screening Strategy
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1 was individually heated with the respective guest mol-
ecules. On cooling to room temperature, the resulsyg
anti ratios were “saved” due to the reestablishement of



restricted rotation. This allowed the ratio to be easily and Finally, deprotection of diert-butyl ester3 in trifluoroacetic
accurately measured by HPLC even in the absence of theacid and methylene chloride at ambient temperature overnight
guest molecule. This screening method has two advantagesyielded the diacid. The atropisomers of diacitiwere stable
First, it avoids the necessity of a multipoint titration at room temperature as evidenced by the ability to isolate
experiment for each hosfuest pairing. Second, the guest- and separate the respective isomers by silica gel chroma-
inducedsyrianti ratios are stable even in the absence of guest tography (5% CHCO,H/CH,CI,). A rotational barrier of 26.1
and therefore, can be measured with greater accuracy usindcal/mol was measured by following the equilibration of an
a wider range of methods and conditidns. anti-enriched sample byH NMR at 65°C in TCE-d,. Thus,

Atropisomeric receptorl was designed about a rigid receptorl is conformationally stable at 23C with a half-
1,4,5,8-naphthalenediimide framewdrRestricted rotation life of 12 days and is conformationally flexible on gentle
about the two Gy—Nimige bonds yieldssyn and anti- heating with a half-life of 32 min at 70C.
atropisomers in which the carboxylic acid groups are onthe  The syn andanti-isomers were assigned on the basis of
same and opposite face of the naphthalenediimide surfacethe X-ray crystal structure of the more rapidly elutiagti-
respectively. Additional design features include pendezmt isomer (Figure 1). Crystals were obtained of the more quickly
amyl groups and flexible OCHspacers for the carboxylic
acid to enhance the solubility of the rigid platform in organic _
solvents?

The synthesis of diacitl was carried out in three steps as
shown in Scheme 2. Condensation of 2-aminei-

Scheme 2. Synthesis of Diacidl
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syn/anti- 3 (R = CH,CO,t-Bu) TFA, CH,Gl, 12 h Figure 1. Molecular structure oénti-1 with phenyl and naphtha-
syn/anti-1 (R = CH,CO,H) J ©2%). lenediimide surfaces twisted out of plane with a dihedral angle of
79.9.

amylphenol with 1,4,5,8-naphthalenetetracarboxylic dianhy-
dride gave diol2 as a slowly equilibrating mixture of
isomers'd Alkylation of diol 2 with tert-butyl bromoacetate
yieldedtert-butyl ester3 as a mixture of stable atropisomers.

eluting isomer from ChCl,/MeOH. The X-ray structure also
gave confirmation of the expected rigid structure. The phenyl
and naphthalenediimide surfaces are twisted out of plane with
a dihedral angle of 79?9 The carboxylic acid moieties of
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20
15 ment of the binding constants, and thus, the titrations had to

be carried out in the more polar acetonitrile. In addition, each
titration had different complications arising from overlapping
and disappearing peaks. In the end, binding constants for
each of the nucleosides was measured. Consistent with the
isomerization assay, adenosihbad very high affinity, and
the other nucleosides had very low affinity fayn-l. It

NG 4 5 6 7 8 9 10 11 12 13 14 15 should be noted that theynanti ratio is a screen for

template selectivity and not simply affinity. For example, if the both

Figure 2. HPLC measuredynfanti ratios of diacidl on heating  thesynandanti conformational isomers have a high but equal
with no guest (NG) or 1.0 equiv of guest£15) in TCE-d, for 3 affinity for the guest molecule then theyrianti ratio will

syn/anti
]

(&}

hat 70°C. still be 1.
The solutions were cooled to rt, and thyianti ratios were _
measured by HPLC (silica, 12.5% @EIO,H/CHCI). Table 1. H NMR Titration of Guests againsyn1 andanti-1

Of the protected nucleosides tested, adenoiskowed in CDsCN
the strongest ability to influence treynanti ratio with a guest K, syn-1 (M1 K, anti-1 (M-1)
final value of 15.7. In contrast, cytosire guanosines, )

. - L2 adenosine 4 3200 284
uridine 7, and thymidine8 all showed significantly lower cytosine 5 113 31
synfanti ratios (<3). To verify that the adenosine base was  ;,nosine 6 <10 <10
the key recognition element, an adenine derivadilecking uridine 7 <10 <10
the furanose moiety was tested in the isomerization assay. thymidine 8 <10 <10
A high syrfanti ratio of 19 was measured which was quinoline 10 <10 <10

comparable to adenosirg confirming the importance of
the adenine base in binding to receptbr Molecular
modeling of synl suggests an excellent structural and  The isomerization assay can also evaluate the relative
functional complementarity with adenine (Figure 3), with binding of guests that cannot be easily measured by NMR
the potential for each carboxylic acid to form bidentate titration. For example, diaminek2—15 are all sufficiently
hydrogen-bonding interactions with adenine. Other controls basic to deprotonate diacitl. Therefore, NMR titration
were carried out. Heating recepttrwithout guest (NG) experiments with these guests would be masked by the-acid
showed only a slight preference for tegnisomer as did base chemistry. The isomerization assays suggests that
monoamines quinolindé0 and triethylaminel 1. diaminesl2—15 all have moderate binding to diacldnost

To verify the effectiveness of thesynanti ratio in likely via electrostatic interactions. However, basicity is not
predicting the relative affinities of the guests for receftor  the sole predictor of binding affinity as the shorter tetramethyl
IH NMR titration studies were carried out on nucleosides diamine 13 yields a greatesyrfanti ratio than the longer
4—8 and quinolinel0 in TCE-d, (Table 1). In comparison  14. The best diamine was the cinchonidine, which induced
with the isomerization studies that were single-point mea- a 10.1synanti ratio.
surements, the NMR titrations were considerably more A new more organic soluble atropisomeric diacid receptor
difficult experiments. The guest and host needed to solublewas developed. Receptirwas found to have high affinity
over a much wider concentration range for accurate measure-and selectivity for adenine demonstrating the efficacy of the
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