An X-ray crystallographic study of the reagent Ph₃PCl₂; not charge-transfer, R₃P–Cl–Cl, trigonal bipyramidal or [R₃PCI]Cl but an unusual dinuclear ionic species, [Ph₃PCl+...Cl-...+ClPPh₃]Cl containing long Cl–Cl contacts

Stephen M. Godfrey, Charles A. McAuliffe, Robin G. Pritchard and Joanne M. Sheffield

Department of Chemistry, University of Manchester Institute of Science and Technology, Manchester, UK M60 1QD

An X-ray crystallographic study of the reagent Ph_3PCl_2 reveals it to be $[Ph_3PCl^+...Cl^-...+ClPPh_3]Cl$ and not trigonal bipyramidal, molecular charge-transfer $Ph_3P-Cl-Cl$ or the simple ionic species $[Ph_3PCl]Cl$; this contrasts with the conclusions from all previous spectroscopic data recorded on compounds of stoichiometry R_3PCl_2 by earlier workers, and represents the first compound of this formula to be crystallographically characterised.

Despite the fact that compounds of stoichiometry R_3PCl_2 have been known for over 100 years,¹ their solid-state structural nature remains largely unexplored. This is despite the fact that Ph_3PCl_2 is a widely used chlorinating agent in organic reactions and is commercially available.

Previous studies on compounds of stoichiometry R_3PCl_2 have been predominantly focused on the nature of such species in solution. Extensive ³¹P{H} NMR studies^{2–10} have concluded that all such species are ionic, $[R_3PCl]Cl$, in CH₂Cl₂ solution, although the presence of a small quantity of molecular species in equilibrium with the ionic form was also considered. This is in agreement with conductivity studies on Ph₃PCl₂ in MeCN solution by Harris and coworkers,^{11,12} who also proposed an ionic formulation, $[Ph_3PCl]Cl$. By contrast, cryostatic and vibrational spectroscopic studies¹³ of Ph₃PCl₂ in haloform solvents led to the suggestion that 1:1 Ph₃PCl₂·YCX₃ (Y = H, D; X = Cl, Br) adducts were formed which are dimeric molecular species containing six-coordinate phosphorus atoms.

Solid-state studies of R_3PCl_2 are scarce. Dillon and Waddington¹⁴ used high-resolution solid-state ³¹P{H} NMR and NQR spectroscopy to study Ph₃PCl₂ and its 1:1 adducts with some Lewis acids. Both Ph₃PCl₂ and the adducts exhibited a single resonance at δ 62 ± 8, leading these workers to conclude that Ph₃PCl₂ possesses the ionic [Ph₃PCl]Cl structure in the solid state; similarly, NQR results gave a single P₃⁻³⁵Cl resonance compatible with a structure containing [Ph₃PCl]⁺ cations. The solid-state structure of Me₃PCl₂ has also been investigated by Raman¹⁵ and IR spectroscopy,¹⁶ and again an ionic formulation, [Me₃PCl]Cl, was proposed.

There is considerable new interest in the structural nature of compounds of stoichiometry R_3EX_2 (E = P, As, Sb). We have established the solid-state molecular charge-transfer 'spoke' structure for Ph_3EX_2 (E = P; $X_2 = Br_2$,¹⁷ I_2 ,^{18–20} IBr^{21}), Fig. 1; on the other hand, other workers have established that

Fig. 1 The molecular structure of the charge-transfer 'spoke' structure $Ph_3Pl_2{}^{18,19}$

 $Ph_3PF_2^{22,23}$ is trigonal bipyramidal in the solid state. Clearly, knowledge of the solid-state structure of Ph_3PCl_2 is of great importance, since it could adopt either of these structures or even the ionic structure [Ph_3PCl]Cl, proposed by Gates and coworkers²⁴ from solid-state Raman spectroscopic studies. It is also noteworthy that these same workers also claimed to have isolated a trigonal-bipyramidal form of $Ph_3PCl_2^{.24}$

Considering these involved, and occasionally contradictory, spectroscopic studies, it seems remarkable that no compound of formula R_3PCl_2 has ever been studied by single-crystal X-ray diffraction, especially since Ph_3PCl_2 is a commonly used reagent in chlorination reactions.

Triphenylphosphine dichloride was prepared by us by the direct 1:1 stoichiometric reaction of triphenylphosphine with dichlorine in dichloromethane [eqn. (1)].

$$PPh_3 + Cl_2 \xrightarrow{\text{room temp., CH}_2Cl_2} [Ph_3PCl\cdots Cl\cdots ClPPh_3]Cl (1)$$

Chlorination of the tertiary phosphine occurred almost immediately and the reaction was exothermic, a noticeable temperature rise (*ca.* 20 °C) of the dichloromethane was observed during addition of the dichlorine. Recrystallisation of the Ph₃PCl₂ from dichloromethane–diethyl ether (1:1) produced a large quantity of colourless crystals with a melting point of 160–161° on standing at room temperature for *ca.* 24 h. A crystal was chosen for analysis by single-crystal X-ray diffraction. Surprisingly, the structure of Ph₃PCl₂ is revealed to be not the charge-transfer species, Ph₃P–Cl–Cl, previously established for Ph₃E–X–X (E = P; X₂ = Br₂,¹⁷ I₂,¹⁸ IBr;²¹

Fig. 2 Selected bond lengths (Å) and angles (°) for $[Ph_3PCI\cdots CI\cdots CIPPh_3]CI\cdot 2CH_2Cl_2$: Cl(1)-P(1) 2.015(9), Cl(1)-Cl(2) 3.279(6); Cl(1)-P(1)-C(1) 107.2(5) C(1)-P(1)-C(1) 111.7(5), P(1)-C(1)-C(2) 121(1); P(1)-C(1)-C(6) 123(1); Cl(1)-Cl(2)-Cl(1) 180.00

E = As; $X_2 = I_2$,²⁵ IBr²⁶), or the trigonal-bipyramidal species, Ph₃PCl₂ established for Ph₃EX₂ (E = P; X = F;^{22,23} E = As; X = Br,²⁶ F²⁷), or the simple ionic species [Ph₃PCl]Cl which has not been crystallographically characterised but strongly suggested from a variety of spectroscopic studies; rather, an unusual dinuclear ionic species† which contains long Cl–Cl contacts, [Ph₃P–Cl···Cl···Cl–PPh₃] Cl 1, Fig. 2. The Cl–Cl contacts are 3.279(6) Å which can be compared to the dichlorine van der Waals radius of 3.6 Å. The distances therefore represent long but significant interactions in the solid state. The solution ³¹P{H} NMR spectrum of 1 in CDCl₃ and CD₃CN solutions revealed a single peak at δ 65.5 and 66.5, respectively, relative to 85% H₃PO₄, *i.e.* similar to shifts reported by earlier workers.

In conclusion, not only is 1 the first crystallographically characterised compound of stoichiometry R_3PCl_2 , it also exhibits a previously unconsidered structure for any compound of formula R_3EX_2 (E = P, As, Sb; $X_2 = F_2$, Cl₂, Br₂, I₂, IBr). It may be suggested that this structure represents an intermediate between the two bonding extremes, *viz*. the covalent Ph₃P-X-X and the ionic [Ph₃PX]X. The former structure is stable for X = Br, I, but for X = Cl a new structural motif assembles.

We are grateful to the EPSRC for a research studentship (to J. M. S.).

Footnote

† The complex crystallises as $[Ph_3PCI \cdots CI \cdots CIPPh_3]CI \cdot 2CH_2Cl_2$; there is no bonding interaction between **1** and the dichloromethane solvent of crystallisation molecules: *Crystal data*: cubic, space group Pa_3^- (no. 205), a = 15.994(5) Å, U = 4091(1) Å³, Z = 4, $D_c = 1.358$ g cm⁻³, $\mu = 6.57$ cm⁻¹, F(000) = 1712. The structure analysis is based on 782 reflections (Mo-K α , $2\theta_{max} = 49.9^{\circ}$), 265 observed [$I > 1.75\sigma(I)$], 82 parameters. Absorption correction (min., max. transmission 0.82, 1.00). The structure was solved by direct methods and refined by full-matrix least-squares. Final residuals R = 0.057, $R_w = 0.054$. The dichloromethane solvent of crystallisation was disordered. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Information for Authors, Issue No. 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 182/252.

References

- 1 A. Michaelis, Liebigs Ann. Chem., 1876, 181, 256.
- 2 G. A. Wiley and W. R. Stine, Tetrahedron Lett., 1967, 2321.

- 3 D. B. Denney, D. Z. Denney and B. C. Chang, J. Am. Chem. Soc., 1968, 90, 6332.
- 4 K. B. Dillon, R. J. Lynch, R. N. Reeve and T. C. Waddington, J. Chem. Soc., Dalton Trans., 1976, 1243.
- 5 C. Brown, M. Murray and R. Schmutzler, J. Chem. Soc. C, 1970, 876.
- 6 E. L. Muetterties and W. Mahler, Inorg. Chem., 1965, 4, 119.
- E. G. Schnell and E. G. Rochow, J. Am. Chem. Soc., 1956, 78, 1084.
 F. Seel, K. Rudolph and R. Budenz, Z. Anorg. Allg. Chem., 1965, 341,
- 196.
 9 R. Bartsch, O. Stelzer and R. Schmutzler, *Z. Naturforsch., Teil B*, 1981, 36, 1349.
- 10 R. Appel and H. Scholer, Chem. Ber., 1977, 110, 2382.
- 11 A. D. Beveridge and G. S. Harris, J. Chem. Soc., 1966, 520.
- 12 G. S. Harris and M. F. Ali, Tetrahedron Lett., 1968, 37.
- 13 G. G. Arzoumandis, Chem. Commun., 1969, 217.
- 14 K. B. Dillon and T. C. Waddingon, Spectrochim. Acta, Part A, 1971, 27, 2381.
- 15 A. Finch, P. N. Gates and A. S. Muir, J. Raman Spectrosc., 1988, 19, 91.
- 16 J. Goubeau and R. Baumgartner, Z. Electrochem., 1960, 64, 598.
- 17 N. Bricklebank, S. M. Godfrey, A. G. Mackie, C. A. McAuliffe and R. G. Pritchard, J. Chem. Soc., Chem. Commun., 1992, 355.
- 18 S. M. Godfrey, D. G. Kelly, A. G. Mackie, C. A. McAuliffe, R. G. Pritchard and S. M. Watson, J. Chem. Soc., Chem. Commun., 1991, 1163.
- 19 N. Bricklebank, S. M. Godfrey, A. G. Mackie, C. A. McAuliffe, R. G. Pritchard and P. J. Kobryn, J. Chem. Soc., Dalton Trans., 1993, 101.
- 20 N. Bricklebank, S. M. Godfrey, H. P. Lane, C. A. McAuliffe, R. G. Pritchard and J. M. Moreno, J. Chem. Soc., Dalton Trans., 1995, 2421.
- 21 N. Bricklebank, S. M. Godfrey, C. A. McAuliffe and R. G. Pritchard, J. Chem. Soc., Dalton Trans., 1993, 2261.
- 22 F. Weller, D. Nuszhar, K. Dehnicke, F. Gingle and J. Strahle, Z. Anorg. Allg. Chem., 1991, 602, 7.
- 23 K. M. Doxsee, E. M. Hanawait and T. J. R. Weakley, Acta Crystallogr., Sect. C, 1992, 48, 1288.
- 24 M. A. H. A. Al-Juboori, P. N. Gates and A. S. Muir, J. Chem. Soc., Chem. Commun., 1991, 1270.
- 25 C. A. McAuliffe, B. Beagley, G. A. Gott, A. G. Mackie, P. P. Mac Rory and R. G. Pritchard, Angew. Chem., Int. Ed. Engl., 1987, 26, 264.
- 26 N. Bricklebank, S. M. Godfrey, H. P. Lane, C. A. McAuliffe, R. G. Pritchard and J. M. Moreno, J. Chem. Soc., Dalton Trans., 1995, 3873.
- 27 A. Augustine, G. Ferguson and F. C. March, Can. J. Chem., 1975, 53, 1647.

Received, 11th September 1996; Com. 6/062841