Communications

Hydroamination

DOI: 10.1002/anie.200501423

Titanium-Catalyzed Intermolecular Hydroamination of Vinylarenes**

Ludwig T. Kaspar, Benjamin Fingerhut, and Lutz Ackermann*

Most substituted amines are made today by multistep syntheses. Therefore, addition reactions of simple amines onto unsaturated carbon-carbon multiple bonds, hydroamination reactions,[1-6] are of considerable importance for industry and academia. Transformations of alkynes and allenes can be catalyzed by a variety of reagents.^[7] However, protocols for intermolecular hydroamination reactions of more readily available olefins have thus far proven limited. Various lanthanide complexes catalyze hydroamination reactions of alkenes, but they lack compatibility with a number of important funcgroups.^[8,9] tional Significant research activity has focused on the use of late-transition-metal complexes for intermolecular hydroamination reactions of olefins,

featuring iridium,^[10–12] rhodium,^[13–18] nickel,^[19,20] palladium,^[21–24] platinum,^[25,26] and ruthenium.^[27,28] The high cost of these complexes, their stabilizing ligands, or the additives constitute a limitation of these protocols. Recently, we reported a Group 4 metal catalyzed^[29] intermolecular^[30] hydroamination of norbornene.^[31] Herein we present titanium-catalyzed^[32] hydroamination reactions of vinylarenes as well as an application of this procedure to the synthesis of a tetrahydroisoquinoline.

Initial experiments showed that catalytic amounts of the Lewis acid $TiCl_4$ converted styrene (1a) in the presence of four equivalents of 4-chloroaniline (2a) efficiently at 130 °C (Table 1, entry 1). Control experiments indicated that a

[*] DiplChem. L. T. Kaspar, B. Fingerhut, Dr. L. Ackermann						
Ludwig-Maximilians-Universität München						
Department of Chemistry and Biochemistry						
Butenandtstrasse 5–13, Haus F, 81377 München (Germany)						
Fax: (+49)089-2180-77425						
E-mail: Lutz.Ackermann@cup.uni-muenchen.de						

Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.

InterScience[®]

electron-withdrawing group, does not occur in the presence of concentrated sulfuric acid.^[33,34] Under the above reaction conditions, mixtures of hydroamination and *ortho*-hydroarylation products were obtained

amination and *ortho*-hydroarylation products were obtained. While the reaction time for quantitative conversion could be reduced significantly with microwave irradiation, the amount

simple Brønsted acid mediated reaction is not operative (entries 3 and 4). These results are in agreement with

observations made by Hartwig et al., who found that even the *intramolecular* addition of amines, not bearing an

Table 1: Hydroamination of vinylarenes 1 with 4-chloroaniline (2a).^[a]

[a] Reaction conditions: 1 (1 mmol), 2a (4 mmol), toluene (2 mL), 130 °C. [b] By GC analysis. [c] Yields of isolated product. [d] With microwave irridiation. [e] 1.0 equiv TiCl₄.

of hydroarylation product increased (entries 6, 9, and 10). As the *ortho*-alkylated product was also predominantly formed when stoichiometric amounts of the Lewis acid TiCl₄ were employed (entry 7), we wondered if a rearrangement of the hydroamination product occurs. Accordingly, we synthesized secondary amine **3a** independently through a palladiumcatalyzed amination reaction^[35] and subjected it to the hydroamination reaction conditions [Eq. (1)]. Indeed, the secondary amine **3a** was quantitatively converted, while the primary amine **4a** remained unchanged under the reaction conditions [Eq. (2)].

Subsequently, we studied the scope of the catalytic intermolecular hydroamination of styrene derivatives (Table 2). A number of vinylarenes **1** and aniline derivatives **2** were efficiently converted with catalytic amounts of TiCl₄, leading to the functionalized products in high yields. Electron-poor amines underwent more efficient reactions

Table 2: Titanium-catalyzed hydroamination of vinylarenes 1.^[a]

	R' + R'' + R''' + R'' + R'''								
			1	2		3 4	Ļ		
Entry	R	R'	Amine		<i>t</i> [h]	3/4 ^[b]	Yield 3 [%] ^[c]	Yield 4 [%] ^[c]	Yield 3+4 [%] ^[c]
1	Н	H (1a)	3,5-(CF ₃) ₂ C	C ₆ H ₃ NH ₂ (2b)	30	>99:1	87 (3 d)	-	87
2	Cl	H (1 d)	3,5-(CF ₃) ₂ C	$_{6}H_{3}NH_{2}$ (2b)	30	99:1	68 (3 e)	-	68
3	F	H (1c)	3,5-(CF ₃) ₂ C	$L_6H_3NH_2$ (2b)	30	>99:1	81 (3 f)	-	81
4	н	H (1a)	2-CNC ₆ H ₄ I	NH ₂ (2c)	22 ^[d,e]	91:9	62 (3 g)	-	62
5	н	H (1a)	2,4-Br ₂ C ₆ H	$_{3}NH_{2}$ (2d)	20 ^[d]	7:93	_	65 (4 h)	65
6	н	H (1a)	4-FC ₆ H₄NI	H₂ (2e)	3 ^[f,g]	32:68	21 (3 i)	47 (4 i)	68
7	н	H (1a)	3,5-(CH ₃) ₂	$C_6H_3NH_2$ (2 f)	20 ^[g,h]	8:92	-	50 (4 j)	50
8	н	Me (1e)	2-ClC ₆ H₄N	H ₂ (2 g)	19 ^[d]	< 1:99	-	85 (4 k)	85
9	н	H (1a)	2,4,6-Cl ₃ C ₆	$H_2 N H_2$ (2h)	16 ^[g]	-	-		-
10	OMe	H (1 f)	2,4-Br ₂ C ₆ H	₃ NH ₂ (2 d)	22	< 1:99	_	51 (4 1)	51
11	н	H (1a)	3,5-(CF ₃) ₂ C	₆ H ₃ NH ₂ (2b)	22 ^[i]	>99:1	85 (3 d)	-	85

[a] Reaction conditions: 1 (1 mmol), 2 (4 mmol), TiCl₄ (20 mol%), toluene (2 mL). [b] By GC analysis. [c] Yields of isolated product. [d] 130 °C. [e] 1a (4 mmol), 2c (1 mmol). [f] With microwave irridiation. [g] 170 °C. [h] TiCl₄ (1 mmol). [j] HfCl₄ (20 mol%).

(entries 1–6). A variety of functional groups was tolerated by the catalyst, such as CF₃ (entries 1–3), Cl (entry 2), CN (entry 4), F (entries 3 and 6), and Br substituents (entries 5 and 10). Additionally, α -methylstyrene (**1e**) was quantitatively converted into product **4k**, which contains a quarternary carbon center (entry 8). Interestingly, di-*ortho*-substituted aniline **2h** was not converted (entry 9).^[31] In the reaction of aniline **2b** catalytic amounts of the Lewis acid HfCl₄ led to comparable results (entry 11).

Finally, we applied the titanium-catalyzed hydroamination reaction to a regioselective synthesis of a tetrahydroisoquinoline (Scheme 1).^[36] The highly regio- and chemoselective titanium-catalyzed hydroamination^[37,38] of enyne **5** and subsequent one-pot reduction gave aminoalkene **6** in good yield. Intramolecular hydroamination of the remaining

Angew. Chem. Int. Ed. 2005, 44, 5972-5974

double bond yielded the desired tetrahydroisoquinoline **7** with excellent regioselectivity and a diastereoselectivity of 4:1.^[39]

In summary, we have described a protocol for titaniumcatalyzed hydroamination reactions of styrene derivatives. A subsequent rearrangement gives rise to *ortho*-alkylated products. The catalytic system was applied to the synthesis of a tetrahydroisoquinoline derivative.

Experimental Section

Representative procedure for titanium-catalyzed hydroamination: A sealed tube was equipped with a septum and purged with N₂. The tube was charged with dry toluene (2 mL), 3,5-bis(trifluoromethyl)aniline (**2b**; 917 mg, 4.00 mmol), and styrene (**1a**; 104 mg, 1.00 mmol). TiCl₄ (0.022 mL, 0.20 mmol, 20 mol%) was added, the tube was sealed, and the resulting mixture was stirred for 30 h at 110°C. CH₂Cl₂ (5 mL), Et₂O (60 mL), aq NH₄OH (1N, 15 mL), and brine (50 mL) were added to the cold suspension. The separated aqueous phase was washed with Et₂O (2×60 mL). The combined organic phases were dried over MgSO₄ and concentrated in vacuo. Purification by column chromatography (silica gel, *n*-pentane/Et₂O 100:1) yielded *N*-1-phenylethyl-3,5-bis(trifluoromethyl)aniline (**3d**) as a yellow oil (290 mg, 87%).

Received: April 25, 2005 Published online: August 12, 2005

Keywords: alkenes \cdot catalysis \cdot heterocycles \cdot hydroamination \cdot titanium

- [1] T. E. Müller, M. Beller, Chem. Rev. 1998, 98, 675-704.
- J. J. Brunet, D. Neibecker in *Catalytic Heterofunctionalization* (Eds.: A. Togni, H. Grützmacher), Wiley-VCH, Weinheim, 2001, pp. 91–132.
- [3] J. Seayad, A. Tillack, C. G. Hartung, M. Beller, Adv. Synth. Catal. 2002, 344, 795–813.

Communications

- [4] P. W. Roesky, T. E. Müller, Angew. Chem. 2003, 115, 2812–2814; Angew. Chem. Int. Ed. 2003, 42, 2708–2710.
- [5] M. Beller, J. Seayad, A. Tillack, H. Jiao, Angew. Chem. 2004, 116, 3448–3479; Angew. Chem. Int. Ed. 2004, 43, 3368–3398.
- [6] K. C. Hultzsch, Adv. Synth. Catal. 2005, 347, 367–391.
- [7] F. Pohlki, S. Doye, *Chem. Soc. Rev.* **2003**, *32*, 104–114.
- [8] Y. K. Kim, T. Livinghouse, Y. Horino, J. Am. Chem. Soc. 2003, 125, 9560–9561.
- [9] S. Hong, T. J. Marks, Acc. Chem. Res. 2004, 37, 673-686.
- [10] A. L. Casalnuovo, J. C. Calabrese, D. Milstein, J. Am. Chem. Soc. 1988, 110, 6738-6748.
- [11] R. Dorta, P. Egli, F. Zürcher, A. Togni, J. Am. Chem. Soc. 1997, 119, 10857–10858.
- [12] J. Zhao, A. S. Goldman, J. F. Hartwig, *Science* 2005, 307, 1080– 1082.
- [13] D. R. Coulson, Tetrahedron Lett. 1971, 12, 429-430.
- [14] J.-J. Brunet, G. Commenges, D. Neibecker, L. Rosenberg, J. Organomet. Chem. 1994, 469, 221–228.
- [15] M. Beller, O. R. Thiel, H. Trauthwein, *Synlett* 1999, 243–245.
 [16] M. Beller, O. R. Thiel, H. Trauthwein, C. G. Hartung, *Chem.*
- *Eur. J.* **2000**, *6*, 2513–2522. [17] M. Beller, C. Breindl, M. Eichberger, C. G. Hartung, J. Seayed,
- O. R. Thiel, A. Tillack, H. Trauthwein, *Synlett* **2002**, 1579–1594. [18] M. Utsunomiya, R. Kuwano, M. Kawatsura, J. F. Hartwig, *J. Am*.
- *Chem. Soc.* **2003**, *125*, 5608–5609. [19] J. Pawlas, Y. Nakao, M. Kawatsura, J. F. Hartwig, J. Am. Chem.
- *Soc.* **2002**, *124*, 3669–3679.
- [20] L. Fadini, A. Togni, Chem. Commun. 2003, 30-31.
- [21] M. Kawatsura, J. F. Hartwig, J. Am. Chem. Soc. 2000, 122, 9546– 9547.
- [22] T. Minami, H. Okamoto, S. Ikeda, R. Tanaka, F. Ozawa, M. Yoshifuji, Angew. Chem. 2001, 113, 4633-4635; Angew. Chem. Int. Ed. 2001, 40, 4501-4503.
- [23] U. Nettekoven, J. F. Hartwig, J. Am. Chem. Soc. 2002, 124, 1166– 1167.
- [24] M. Utsunomiya, J. F. Hartwig, J. Am. Chem. Soc. 2003, 125, 14286-14287.
- [25] J.-J. Brunet, M. Cadena, N. C. Chu, O. Diallo, K. Jacob, E. Mothes, Organometallics 2004, 23, 1264–1268.
- [26] C. F. Bender, R. A. Widenhoefer, J. Am. Chem. Soc. 2005, 127, 1070–1071.
- [27] M. Utsunomiya, J. F. Hartwig, J. Am. Chem. Soc. 2004, 126, 2702–2703.
- [28] J. Takaya, J. F. Hartwig, J. Am. Chem. Soc. 2005, 127, 5756-5757.
- [29] A tantalum-catalyzed intermolecular hydroamination was reported: L. L. Anderson, J. Arnold, R. G. Bergman, Org. Lett. 2004, 6, 2519–2522.
- [30] For an elegant study on intramolecular hydroamination reactions using a cationic zirconium catalyst, see: a) P. D. Knight, I. Munslow, P. N. O'Shaughnessy, P. Scott, *Chem. Commun.* 2004, 894–895. See also; b) K. C. Hultzsch, D. V. Gribkov, *Angew. Chem.* 2004, 116, 5659–5663; *Angew. Chem. Int. Ed.* 2004, 43, 5542–5546.
- [31] L. Ackermann, L. T. Kaspar, C. J. Gschrei, Org. Lett. 2004, 6, 2515–2518.
- [32] I. Bytschkov, S. Doye, Eur. J. Org. Chem. 2003, 935-946.
- [33] B. Schlummer, J. F. Hartwig, Org. Lett. 2002, 4, 1471-1474.
- [34] See also: S. K. Talluri, A. Sudalai, Org. Lett. 2005, 7, 855-857.
- [35] For studies from this laboratory on palladium-catalyzed amination reactions, see: L. Ackermann, R. Born, Angew. Chem. 2005, 117, 2497–2500; Angew. Chem. Int. Ed. 2005, 44, 2444–2447.
- [36] J. D. Scott, R. M. Williams, Chem. Rev. 2002, 102, 1669-1730.
- [37] L. Ackermann, Organometallics 2003, 22, 4367-4368.
- [38] L. Ackermann, L. T. Kaspar, C. J. Gschrei, *Chem. Commun.* 2004, 2824–2825.
- [39] The relative stereochemistry of the diastereomers has not yet been elucidated.

5974 www.angewandte.org

© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim