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Abstract: A thiophenol-mediated method for cycliza-  clic and spirocyclic compounds from easily available
tion of alkynes is described. The reaction cascade in-  precursors. During this cyclization process, a phenyl-
volves the intermolecular addition of a phenylthiyl thio moiety is incorporated into the final cyclized
radical to a terminal triple bond generating an alkenyl  products. This functionalization is particularly attrac-
radical, followed by a 1,5-hydrogen atom transfer and tive for further transformation of the products.

a 5-exo-trig radical cyclization. This very efficient tin-

free procedure allows one to prepare highly function- Keywords: alkynes; cyclization; hydrogen transfer;
alized cyclopentane derivatives as well as fused bicy- radicals; spiro compounds; sulfur

Introduction tion, the new radical species can cyclize to give a cyclo-
pentane derivative (Scheme 1).5~!
Radical reactions represent a valuable tool for organic The alkenyl radicals are usually prepared by reaction

synthesis.! For instance, carbon-carbon bonds can be  of the corresponding vinyl halide with a stannyl radi-
formed under mild conditions with a unique functional  cal.®*~*! The pioneering work of Curran demonstrated
group tolerance. Moreover, radical reactions can be the potential of this reaction [see Scheme 1, Eq. (1)]
highly regio- and stereoselective and their ability to be  and following this work many applications have been
involved in cascade reactions makes them particularly  developed.**! However, the practicability of this proc-
attractive. The use of hydrogen atom abstraction is of  ess is hampered by the use of tin derivatives and by the
particular interest since it allows functionalization of re-  formation of uncyclized product via direct reduction of
mote unreactive positions without using of transition theintermediate alkenyl radical. Radical addition to ter-
metal catalysts.”) The highly reactive alkenyl radicals minal or disubstituted alkynes offers an attractive alter-
are suitable precursors for efficient intramolecular 1,5-  native for the generation of alkenyl radicals that under-
hydrogen abstraction at C—H bonds. After transloca- go 1,5-translocation to alkyl radicals and 5-exo-trig cy-
clization (related reactions involving the formation of

heterocycles via transient silyl,”* alkoxyl®'” and imid-

yl' radicals are also reported). Inter- and intramolecu-

/ . lar additions of carbon-centered radicals are utilized to

C- 15-HT d 5-exo-trig O/ initiate such cascade processes.[*'*"'*! Bachi and later

H : H : Alcaide employed the intermolecular radical addition

of tin hydride!™® and more recently, in parallel to the

present work, we developed a dialkyl phosphite-mediat-
MeO,C ,  BusSnCl NaBH.CN _  MeO,C - ed reaction.!'”!
MeO,C o £BUOH 7 Meo,C o Thiyl radicals are easily generated from thiols and di-
o

o\> sulfides and add efficiently in a reversible manner to car-
bon-carbon multiple bonds leading to carbon-centered
Scheme 1. 1,5-Hydrogen transfer-cyclization process. radicals."®!”) The resulting radicals have been extensive-
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ly used for further cyclization onto alkenes,”?!! oxime

ethers and hydrazones.” To the best of our knowledge,
only one report of a thiophenol-mediated radical addi-
tion onto an alkyne followed by a radical transloca-
tion-cyclization process has been reported.””! In this re-
port, Burke described the formation of tetrahydrofuran-
2-carboxylic acid derivatives involving the generation of
captodative stabilized radicals. Even in this favorable
system, the formation of non-cyclized products via di-
rect reduction of the alkenyl radical intermediate could
not be totally suppressed. We report here that, despite
its high radical reducing power, the thiophenol-mediat-
ed reaction is far more efficient than initially expected
when run under non-chain reaction conditions and gen-
eration of non-stabilized alkyl radical is even possible.
Expeditious preparation of fused-ring and spirocyclic
compounds illustrates the potential of this approach
and complements our preliminary results reported re-
cently.**!

Results and Discussion
Development of the Method

An efficient and preparatively useful procedure for the
formation of a 5-membered ring via a radical transloca-
tion-cyclization process should fulfill the following crite-
ria: 1) the starting material and reagents should be easily
available; 2) the direct reduction of the intermediate al-
kenyl radicals leading to non-cyclized product should be
minimized; 3) the final product should be a versatile syn-
thetic intermediate; 4) the toxicity of the reagent should
be as low as possible and product contamination (a ma-
jor drawback of the tin hydride procedure) should be
eliminated. With these few criteria in mind, we decided
to test the use of terminal alkynes as radical precursors
together with a source of thiyl radicals. Preliminary ex-
periments were run with diphenyl disulfide and the ter-
minal alkyne 1a [Scheme 2, Eq. (2)]. The expected di-
thioacetal 2a was not observed, indicating that trapping
of the final radical with diphenyl disulfide is not work-
ing. However, traces of the reduced product 3a were iso-
lated and attributed to the presence of a small amount of
thiophenol in the reaction mixture.*

Based on this preliminary result, the use of thiophenol
was investigated. Under standard reaction conditions
(refluxing benzene, 10 mol % AIBN), only a low con-
version was obtained with different substrates. There-
fore, a systematic study for the optimization of the reac-
tion conditions was undertaken with substrate 1b
[Scheme 3, Eq. (3)]. Best results are obtained in reflux-
ing --BuOH by using syringe pump addition of thiophe-
nol (2 equivalents) over 20 hours under AIBN initiation.
The amount of the initiator plays a crucial role in this
process. The use of two equivalents of AIBN gives the
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reaction.
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Scheme 3. Optimization of the reaction conditions with thio-
phenol.

best results and the cyclized product 3b is isolated in
90% yield. The uncyclized product 4b is not detected
by '"H NMR analysis of the crude product. From a prac-
tical point of view, the procedure is particularly simple
since no work-up is required. At the end of the reaction,
the crude reaction mixture is concentrated by evapora-
tion of the solvent under reduced pressure and directly
submitted to purification by flash chromatography.
The efficiency of this thiophenol-mediated reaction is
amazing when compared with the tin hydride reaction.
Indeed, thiophenol is a much more powerful reducing
agent than tin hydride,”” however, direct reduction of
the alkenyl radical intermediate is in most cases not ob-
served. The assumed mechanism of the thiophenol
mediated reaction is depicted in Scheme 4. The phenyl-
thiyl radical is generated from thiophenol and AIBN
and adds to the terminal alkyne presumably in a reversi-
ble manner. The alkenyl radical undergoes 1,5-hydro-
gen-transfer followed by 5-exo cyclization and reduction
of the phenylthio-substituted alkyl radical by thiophe-
nol. The phenylthiyl radical can either start a new chain
reaction or dimerize to give the diphenyl disulfide. Un-
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Scheme 4. Proposed mechanism.

der our reaction conditions, the disulfide is inert and
does not react with any of the radicals involved in the
chain process. The use of a stoichiometric amount of
AIBN allows regeneration of the thiyl radical by reac-
tion with either thiophenol or diphenyl disulfide.

Preparation of Cyclopentane Derivatives

The scope and limitations of the process were investigat-
ed next. For this purpose, a series of substrates, easily
prepared by alkylation of dimethyl propargylmalonate,
were treated under our optimized reaction conditions
[Scheme 5, Eq. (4)]. When the translocated radical is
stabilized by a heteroatom (substrate 1b, 1¢ and 1d), ex-
cellent yields of cyclic products 3b, 3¢ and 3d are ob-
tained and no traces of non-cyclized products are detect-
ed. Similar results are obtained with translocated radi-
cals stabilized by delocalization (products 3e, 3f and
3a). The relative configurations of the major isomers
of 3a and 3b-3f have not been assigned, however, relat-
ed systems possessing gem-diester substituents are
known to give the cis-cyclopentanes as major isomers
when R'=CO,R or alkyl and R?*=H, and the trans-iso-
mer when R'=OTBDMS or phenyl and R*=H.5*%]
Interestingly, the formation of non-substituted alkyl
radicals is also possible. For instance, the tertiary alkyl
radical derived from 1g affords the cyclic compound 3g
in 83% yield. A primary alkyl radical generated from
1h affords the cyclic product 3h as a single product albeit
in moderate yield.

The results described in Scheme 5 (compounds 3b, 3¢,
3e, 3f and 3g) compare well with the results obtained by
Curran starting from alkenyl bromides using tin hydride
as reducing agent.” The thiophenol method was further
investigated with substrate 1i [Scheme 6, Eq. (5)]. The
reaction affords a mixture of three products: the desired
cyclic product 3i (57%), the non-cyclized alkenyl thio-
ether 4i (17%) and the benzothiophene derivative 5i re-
sulting from the intramolecular addition of the transient
alkenyl radical onto the phenyl ring.*” The side product
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Scheme 5. Reaction with propargylmalonate derivatives.
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Scheme 6. Limitation of the method: formation of reduced
products and benzothiophene derivatives.

5i defines clearly the limit of the thiophenol method.
When the hydrogen abstraction step is too slow (a rate
constant of =5x10° M 's ! can be estimated for this
1,5 H-transfer)® the intramolecular addition of the vinyl
radical onto the aromatic ring becomes a competitive
process and the use of higher dilution will not allow us

to enhance the ratio of hydrogen transfer. Attempts to
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Scheme 7. Effect of the substitution at the propargylic center.

generate a primary radical from 1j [Scheme 6, Eq. (5)]
affords the thioether 4j in 54% yield together with
some benzothiophene 5j (< 5%). In a similar example,
the tin hydride method failed also to give the product
of radical translocation-cyclization and a rate constant
for the 1,5-hydrogen-transfer was estimated to be
<10°M 's 1P

Substrates bearing an alkyl substituent at the propar-
gylic position were investigated next (Scheme 7). Inter-
estingly, most of these substrates give very high yields of
hydrogen transfer. For instance, the generation of terti-
ary alkyl radicals from 1k affords the cyclic compound
3k in 79% yield as single diastereomer. The ester deriv-
ative 1l affords the cyclopentane 31in 97% yield. Gener-
ation of secondary (from 3m) and primary (from 3n) al-
kyl radicals is also possible and leads to the expected cy-
clic compounds in 62% and 20% yield, respectively.
Similar results are obtained with precursors bearing an
n-pentyl substituent at the propargylic position. Cyclo-
pentanes 30 and 3p are isolated both in 90% yield with
a complete regioselectivity. Indeed, a competitive 1,5-
hydrogen-transfer involving the propargyl n-pentyl
side chain is not observed, presumably because of the
absence of a Thorpe-Ingold effect. In order to assess
the relative configuration of the products, a closely relat-
ed crystalline sulfone was prepared. The reaction of 1k
was repeated with thiocresol and the p-tolyl thioether
6 was isolated in 95% yield as a single diastereomer. Ox-
idation with magnesium monoperoxyphthalate
(MMPP) afforded the sulfone 7 that gave upon recrys-
tallization crystals suitable for X-ray analysis
(Scheme 8).1°!

Comparison of the results of Schemes 7 and 6 demon-
strates clearly that the propargylic substituent has a very
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Scheme 8. Determination of the relative configuration of 7 by
X-ray crystal structure analysis.
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Scheme 9. Effect of vicinal substituents.

beneficial effect on the rate of hydrogen transfer. The
presence of vicinal substituents (the propargylic sub-
stituent and the gem-diesters) is at the origin of a rate ac-
celeration similar to the one observed by Jung in related
vic-disubstituted systems.™ To test further this hypoth-
esis, substrate 8 possessing only vicinal substituents was
prepared (Scheme 9). Upon treatment with thiophenol/
AIBN, the cyclized product 9 (85% yield, one diaster-
eomer) is obtained. This result supports the presence
of vic-disubtituent effect enhancing the rate of hydrogen
transfer.

Fused Bicyclic Compounds
The preparation of fused bicyclic compounds was envis-
aged next. For this purpose, the cycloalkanones 10a—10¢

were preparedin 70—77% yield by conjugate addition of

Adv. Synth. Catal. 2005, 347, 1587-1594
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Scheme 11. Fused bicyclic alkanes.

the commercially available dimethyl propargylmalo-
nate onto the corresponding cycloalkenones in the pres-
ence of DBU [Scheme 10, Eq. (7)].

Treatment with thiophenol and AIBN under standard
conditions affords the expected fused bicyclic deriva-
tives in good yields as a single regioisomer [Scheme 10,
Eq. (8)]. As planned, hydrogen abstraction is only tak-
ing place at the a-position of the ketone leading to a sta-
bilized enolate radical. In case of the cyclopentanone
10a, the process is very efficient and the fused bicyclic
compound 11a is obtained as an endo/exo 91:9 mixture
of diastereomers in 79% yield after flash chromatogra-
phy (entry 1). Cyclohexanone 10b and cycloheptanone
10c¢ derivatives give similar results (11b 75%, 11¢ 78%)
with a lower stereoselectivity control in the cyclization
step. The relative endo configuration of the major iso-
mers of 11a and 11b is not proven but tentatively attrib-
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Scheme 12. Spirocyclic ketones.

uted according to well documented literature prece-
dents.1*3-3¢!

Encouraged by these results, we decided to investigate
the more challenging case of 1,5-hydrogen shift in non-
functionalized cycloalkanes. The substituted cycloal-
kanes 12a—12¢ were treated with thiophenol/AIBN un-
der the standard conditions [Scheme 11, Eq. (9)]. The
[3.3.0]- and [5.3.0]fused bicyclic products 13a and 13¢
were obtained in 79% and 88% yield. Preparation of
the [4.3.0]bicyclic species 13b was less efficient (47%
yield).

Spirocyclic Compounds

Standard procedures for spirocyclization of alkynes are
intramolecular carbomercuration,””~*! and iodocarbo-
cyclization of a-iodocycloalkanones using Lewis acids
such as AICI;.*Y Free radical cyclizations have emerged
as a powerful method of carbocyclization. For instance,
Clive has reported the use of a-(phenylseleno) ketones
as radical precursors in 5-exo cyclizations.*?) Sha and
co-workers have demonstrated that a-carbonyl radicals
generated from a-iodo ketones cyclize efficiently in a 5-
exo-dig mode in the presence of tributyltin hydride and
AIBN.*#I Only few reports deal with the use of 1,5-hy-
drogen transfer for the preparation of spiroalkanes.[*~*"]
The thiophenol-mediated hydrogen transfer-cyclization
process represents a very attractive procedure for the
preparation of spirocyclic systems since the precursors
are easily available and the generation of tertiary alkyl
radical via 1,5-hydrogen transfer is particularly efficient
(vide supra). A first series of experiments was run with
the easily available cyclic ketones 14a—14¢ according
to Scheme 12 [Eq. (10)]. The spirocyclic ketones 15a—
15c¢ are obtained in good yield (73% —92%) and moder-
ate stereoselectivity.*!

Substituted 5-cycloalkylpent-1-yne derivatives 16a—
16d were investigated next according to Scheme 13
[Eq. (11)]. The non-substituted precursor 16a affords
none of the desired spirocyclic derivative 17a. Substrate
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Scheme 13. Spirocyclic alkanes.

16b, possessing a substituent at the propargylic position,
gives the desired spiro compound 17b in low yield (28%).
The presence of an alkoxy substituent at position 4 in 16¢
has a positive effect and the spiro derivative 17¢ is ob-
tained in 47% yield (29% starting material recovered).
Finally, 4,4-disubstituted pentyne 16d affords the spiro-
cyclic compound 17d in 88% yield demonstrating fur-
ther the importance of gem-disubstituents.

Conclusion

We have developed an efficient procedure to run cas-
cade reactions involving 1,5-hydrogen atom abstraction
followed by aradical cyclization. Such reactions are clas-
sically run under tin hydride conditions starting from
haloalkenes. In the procedure presented here, alkenyl
radicals are generated from easily available terminal al-
kynes and thiophenol. This tin-free procedure gives high
yields of radical translocation products. By proper de-
sign of gem- and vic-disubstituents effects, it is possible
to generate efficiently non-stabilized radicals via 1,5-hy-
drogen transfer. This efficient and convenient proce-
dure allows the formation of fused rings and spiro deriv-
atives under tin-free conditions. Interestingly, the prod-
ucts bear a phenylthio substituent that offers many op-
portunities for further transformations. Application in
the total synthesis of active compounds containing fused
ring or spiro-bicyclic skeletons are currently under in-
vestigation and will be reported in due course.*!

Experimental Section
General information, full experimental procedures and analyt-

ical data are available as Supporting Information.
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General Procedure for the Thiophenol-Mediated
Reaction

To a solution of the alkyne (1.0 mmol) and AIBN (1.0 mmol,
164 mg) in refluxing r-BuOH (100 mL) was added over 20 h a
solution of AIBN (1 mmol, 164 mg) in benzene (2 mL) and a
solution of thiophenol (2.0 mmol, 220 mg) in benzene (2 mL)
through a syringe pump (the needles were placed in the con-
denser). After completion of the reaction (TLC monitoring),
the solution was cooled down and ~-BuOH evaporated under
reduced pressure. The residue was filtered through a short
pad of silica gel (AcOEt/hexane). The filtrate was evaporated
under reduce pressure and flash chromatography (AcOEt/hex-
ane) of the residue afforded the desired cyclized products. The
ratio of isomers was determined by GC-MS analysis of the
crude reaction mixture.

2-Isopropyl-4,4-dimethyl-3-phenylsulfanylmethylcyclo-
pentane-1,1-dicarboxylic acid dimethyl ester (3k): According
to the general procedure, from 1k (268 mg, 1 mmol). Flash
chromatography (hexane/AcOEt, 9:1) gave 3k as a single
product; yield: 299 mg (79%); '"H NMR (300 MHz): §=7.35-
7.25 (m, 4H), 7.19-7.15 (m, 1H), 3.72 (s, 3H), 3.69 (s, 3H),
3.09 (dd, J=12.2, 3.8 Hz, 1H), 2.93 (dd, J=12.2, 10.0 Hz,
1H), 2.72 (dd, J=10.4, 2.6 Hz, 1H), 2.41 (d, J=13.9 Hz, 1H),
2.08-1.98 (m, 2H), 1.95 (d, /=13.9 Hz, 1H), 1.26 (s, 3H), 0.99
(d, J=72Hz, 3H), 0.95 (s, 3H), 0.83 (d, /J=7.0 Hz, 3H);
PCNMR (75MHz): 6=174.0, 1722, 137.7 (C,), 129.3
(2CH), 129.0 (2CH), 126.0, 62.4 (C,), 55.2, 52.8, 52.6, 50.4
(CH,), 48.1, 40.0 (C,), 35.9 (CH,), 30.7, 27.7, 24.0, 23.4, 17.7;
HR-MS: calcd. for C,;H;,0,S [M*]: 378.1864; found: 378.1863.

4-Ox0-3-phenylsulfanylmethylhexahydropentalene-1,1-
dicarboxylic acid dimethyl ester (11a): According to general
procedure, from 10a (252 mg, 1 mmol). Flash chromatography
(hexane/AcOEt, 6:1) gave 11a as a mixture of 2 diastereomers
in a 91:9 ratio; yield: 286 mg (79%). The ratio of the isomers
was determined by '"H NMR analysis of the crude reaction mix-
ture before flash chromatography. Major isomer (endo-11a):
"H NMR (400 MHz, CDCly): §=7.12-7.40 (m, 5H), 3.75 (s,
3H), 3.72 (s, 3H), 3.42-3.55 (m, 2H), 2.88 (dd, 1H, J=8.82,
10.67), 2.65 (dd, 1H, J=9.93, 12.93), 2.53 (dd, 1H, J=6.25,
12.87), 2.43 (m, 1H), 2.25 (m, 3H), 2.06 (m, 1H), 1.54 (dd, 1H,
J=9.19, 13.24); ®C NMR (100 MHz, CDCl;): §=24.6 (CH,),
36.2 (CH,), 38.4 (CH,), 39.9 (CH,), 40.1 (CH), 47.1 (CH),
53.0 (CHj), 53.2 (CH), 53.4 (CHj), 63.7 (C), 126.3 (CH),
128.9 (2*CH), 129.7 (2*CH), 136.1 (C), 169.8 (C), 171.8 (C),
218.9 (C); HR-MS: calcd. for C,;H,,0;S [M*]: 362.1188; found:
362.1188.

3-Phenylsulfanylmethylhexahydropentalene-1,1-dicar-
boxylic acid dimethyl ester (13a): According to the general
procedure, from 12a (238 mg, 1 mmol). Flash chromatography
(hexane/AcOEt,9:1) gave 13a as a mixture of diastereomers in
a 94:6 ratio; yield: 268 mg (77%). Major isomer (endo-13a):
"H NMR (300 MHz): §=7.36-7.26 (m, 4H), 7.22-7.16 (m,
1H), 3.71 (s, 3H), 3.70 (s, 3H), 3.27 (q, /=9.2 Hz, 1H), 3.01 -
2.89 (m, 2H), 2.66 (m, 1H), 2.29-2.17 (m, 1H), 2.16-2.05 (m,
2H), 1.86-1.68 (m, 3H), 1.41-1.14 (m, 2H), 1.03-0.86 (m,
1H); "CNMR (75 MHz): =172.6, 170.9, 136.8 (C,), 129.5
(2CH), 128.9 (2CH), 126.1 (CH), 63.4 (C,), 52.8, 52.3, 47.8,
45.1, 38.8, 36.6 (CH,), 34.9 (CH,), 30.5 (CH,), 28.0 (CH,),
27.2 (CH,); HR-MS: calcd. for C;4H,,O,S [M™']: 346.1239;
found: 346.1239.
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2-Isopropyl-1-phenylsulfanylmethylspiro[4.5] decan-6-
one (15¢): According to the general procedure, from 14¢
(206 mg, 1 mmol). Flash chromatography (cyclohexane/t-
BuOMe, 95:5) gave 15¢ as a mixture of diastereomers in a
67:33 ratio; yield: 277 mg (88%). Major diastereomer:
'HNMR (400 MHz): $=7.33-7.25 (m, 4H), 7.16-7.12 (m,
1H), 3.01 (dd, /=10.7, 4.1 Hz, 1H), 2.91-2.82 (m, 1H), 2.82
(dd, J=10.7, 9.2 Hz, 1H), 2.49-2.35 (m, 2H), 2.03-1.92 (m,
1H), 1.90-1.59 (m, 10H), 1.41-1.32 (m, 1H), 0.91 (d, J=
6.8 Hz, 3H), 0.81 (d, J=Hz, 3H); *C NMR (100 MHz): 6 =
213.7, 138.1, 128.9 (2C), 128.6 (2C), 125.6, 58.7 (C,), 49.8,
43.2, 39.8, 36.3, 35.0, 31.2, 29.4, 26.0, 24.4, 22.5, 21.6, 17.0;
HR-MS: calcd. for C,yH,sOS [M *]: 316.1861; found: 316.1862.

tert-Butyl-(dimethylsilyl) 1-Methyl-4-
[(phenylsulfanyl)methyl]spiro[4.4]non-1-yl Ether
7d)

To a solution of 16d (140 mg, 0.5 mmol) and AIBN (41 mg,
0.25 mmol) in +~BuOH (50 mL) were added during 24 h
PhSH (55 mg, 0.5 mmol) and AIBN (123 mg, 0.75 mmol)
both via syringe pump as two solutions in benzene (2 x
2mL). +-BuOH was evaporated and the residue purified by
flash chromatography (hexane/EtOAc, 100:1) to afford 17d
as a 60:40 mixture of two diastereomers; yield: 160 mg
(82%); colorless oil; anal. calcd. for C,;H330SSi (390.70): C
70.71, H 9.80; found: C 70.76, H 9.78.
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