

Available online at www.sciencedirect.com

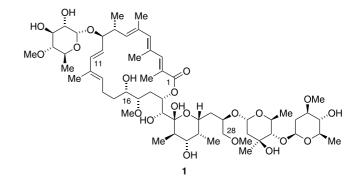
Tetrahedron

Tetrahedron 61 (2005) 401-408

Development of an end-game strategy towards apoptolidin: a sequential Suzuki coupling approach

Bohan Jin, Qingsong Liu and Gary A. Sulikowski*

Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, TX 77842-3012, USA

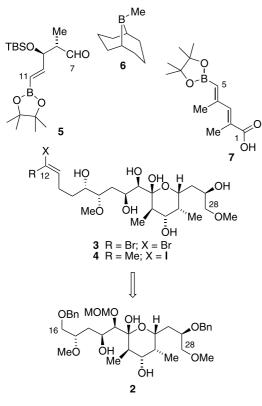

Received 30 April 2004; revised 26 October 2004; accepted 28 October 2004

Available online 18 November 2004

Abstract—An end-game strategy towards the synthesis of apoptolidin has been demonstrated in a model study, in which the C(1)-C(15) fragment was successfully assembled using three consecutive Suzuki coupling reactions. © 2004 Elsevier Ltd. All rights reserved.

1. Introduction and discussion

In the mid-1980's Seto and co-workers in Japan developed several immortalized cell lines transfected with oncogenes in order to screen natural product isolates for genotype selective anticancer agents.¹ In 1997, these investigations led to the isolation of apoptolidin from the Nocardiopsis sp. soil bacteria, a macrolide natural product that selectively induces apoptosis in cells transformed with the E1A oncogene.^{2a} One year later the complete structure of apoptolidin was assigned based on NMR analysis and featured two sugar units located at C(9) and C(27) and an aglycone consisting of a 20-membered macrolactone (1).^{2b} Apoptolidin was determined to induce apoptosis in cells transformed with the E1A oncogene while exhibiting cytostatic activity against normal cells. This unique pattern of cytotoxicity was later shown by workers at Stanford University to correlate with apoptolidin's ability to inhibit mitochondrial F₀F₁-ATPase.³ Apoptolidin's remarkably selective cytotoxicity profile could prove useful in the development of new strategies for cancer treatment, as well as further the understanding of cellular events leading to apoptosis in cells.⁴ Owing to its biological attributes and complex molecular architecture, apoptolidin has been the subject of extensive synthetic studies.^{5–7} Previously, we reported a synthesis of the C(16)-C(28) fragment 2 (Scheme 2).^{4f} In this paper we describe the successful development of an end-game strategy resulting in the completion of the C(1)-C(15) fragment of 1.^{5e,g}

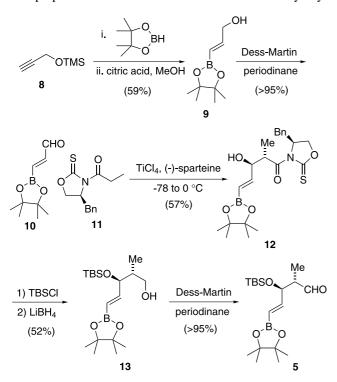

2. Synthetic design

The goal of our synthetic design was to develop a convergent route that integrates a novel synthesis of the polyene fragment imbedded in the 20-membered macrolactone, particularly the unique C(1)-C(7) highly substituted trienoate moiety. To that end, we propose strategic bond disconnections of apoptolidin leading to three major components: the lower portion as either a 1,1-geminal dibromide 3 or vinyliodide 4; the C(7)–(11) boronate 5; and the C(1)–C(5) dienoate boronate 7 (Scheme 1). Our plan was to form the C(11)-C(12) bond first via a Suzuki crosscoupling reaction between 1,1-dibromo olefin 3 (or vinyliodide 4) and boronate 5. Subsequently the aldehyde functionality at C(7) of the coupled product would be homologated to a 1,1-geminal dibromide, which would then be used in a second Suzuki cross-coupling reaction with the C(1)-C(5) boronate 7. In the end, we would convert the remaining vinylbromides at C(6) and C(12), or the mono bromide at C(6) if vinyliodide 4 would have been used in the

Keywords: Natural product synthesis; Trienoate; Cross-coupling.

^{*} Corresponding author. Tel.: +1 979 845 5746; fax: +1 979 862 7963; e-mail: g-sulikowski@tamu.edu

^{0040–4020/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2004.10.088

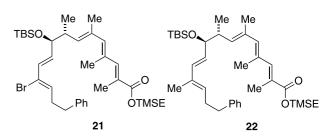


Scheme 1.

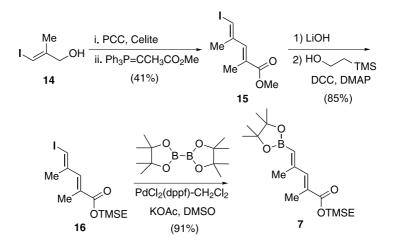
first Suzuki coupling reaction, to the requisite methyl groups via a final cross-coupling reaction using Me-9-B-BBN 6.⁸

3. Results and discussion

The preparation of boronate 5 started with trimethylsilyl

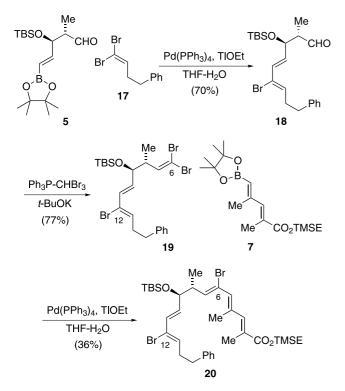


ether 8^{9a} (Scheme 2). Following a procedure developed by Vaultier,^{9b} hydroboration of $\mathbf{\tilde{8}}$ using pinacolborane was followed by acidic methanolysis to afford allylic alcohol 9 in 59% yield for two steps. The oxidation of 9 to aldehyde 10 was then accomplished in near quantitative yield by Dess-Martin periodinane oxidation¹⁰ following a modified work up protocol.¹¹ Aldol reaction between 10 and thioxazolidinone 11 furnished syn aldol product 12 in 57% yield (>99:1 diastereoselectivity determined by HPLC). The relatively low yield was presumably a reflection of the instability of aldehyde 10 under the reaction conditions.¹² The structure of adduct 12 was unambiguously confirmed by single crystal X-ray analysis.¹³ The resulting hydroxyl group was protected as a TBS silvlether (84%), and the auxiliary was reductively removed to furnish alcohol 13 in 61% yield. Finally, Dess-Martin oxidation gave rise to the C(7)–C(11) aldehyde 5.


The synthesis of the C(1)–C(5) dienoate boronate 7 started with the known alcohol 14 (Scheme 4).¹⁴ PCC oxidation, followed by Wittig olefination gave dienoate 15 in 41% yield for the two steps. The methyl ester was then exchanged for a trimethylsilylethyl ester (16) which was subsequently cross coupled with bis(pinacolato)diborane to give boronate 7 in 91% yield (Scheme 3).¹⁵

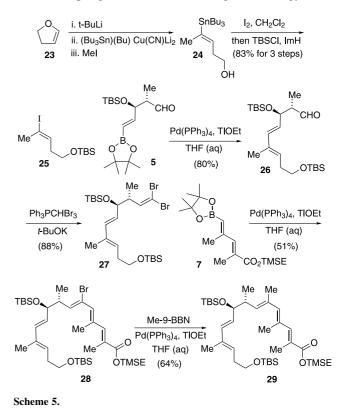
With the requisite C(7)–C(11) (5) and C(1)–C(5) (7) fragments in hand, we first set out to examine the possibility of using 1,1-dibromide **3** (Scheme 1) in the first Suzuki coupling reaction in order to form the C(11)–C(12) bond. To this end, dibromide **17** was used in a model study depicted in Scheme 4. Boronate **5** underwent Suzuki coupling with 1,1-geminal dibromide **17** in the presence of Pd(PPh₃)₄ and TlOEt¹⁶ to give diene **18** in 70% yield. The aldehyde group was subsequently homologated to dibromide **19** using the ylide derived from Ramirez salt (PPh₃CHBr₃, *t*-BuOK).¹⁷ Attempted Corey–Fuchs olefination¹⁸ of **18** resulted in β-elimination of the OTBS group. A second Suzuki coupling reaction was then carried out between **19** and dienoate boronate **7** to afford the complete trienoate **20**.

What needed to be done at this stage was the conversion of the remaining C(6) and C(12) vinylbromides to the required methyl groups. After screening a variety of palladium mediated processes to no avail, using Me₄Sn,¹⁹ MeMgBr,^{20a} and AlMe₃^{20b} as the methyl sources, we turned our attention again to Suzuki coupling reactions using Me-9-B-BBN, CH₃B(OH)₂,²¹ and methyl pinacolborate²² as the methyl sources.


Under standard reaction conditions $[Pd(PPh_3)_4,TlOEt, THF-H_2O]$, the C(6) bromide underwent facile cross-

Scheme 3.

coupling, however, the more electron-rich but less sterically demanding C(12) bromide was found to be surprisingly resistant towards methylation, despite prolonged reaction times and heating. For example, when Me-9-B-BBN was used, **21** was isolated as the only product in 78% yield. With CH₃B(OH)₂, again only **21** was obtained in a comparable 74% yield. The only case where the bis-methylated product **22** was obtained was when methyl pinacolborate was used, however, as a 1:2 inseparable mixture with **21** (major product).


In light of the difficulty in effecting a cross-coupling reaction at the C(12) bromide, we elected to examine the possibility of using vinyliodide **4** (Scheme 1) in the first Suzuki coupling reaction to form the C(11)–C(12) bond, in which case the C(12) methyl group was already in place. Vinyliodide **25**, synthesized from dihydrofuran **23**,²³ was

used in the model study described in Scheme 5. Boronate 5 underwent Suzuki coupling reaction with vinyliodide **25** in the presence of Pd(PPh₃)₄ and TlOEt to afford diene **26** in 80% yield. The aldehyde functionality was subsequently homologated to 1,1-geminal dibromide **27**. A second Suzuki coupling reaction was subsequently carried out between **27** and dienoate boronate **7** to furnish trienoate **28**. Finally, the C(6) bromide was uneventfully methylated using Me-9-B-BBN to afford the complete trienoate fragment **29** in high purity and good yield (64%).

4. Conclusion

In summary, the C(1)–C(15) polyene portion of apoptolidin has been synthesized, successfully demonstrating a tandem Suzuki coupling reaction based end-game strategy. The

application of this strategy to the synthesis of apoptolidin will be reported in due course.

5. Experimental

5.1. General

Unless indicated, all commercial reagents were used as received without further purification. All reactions were carried out under a nitrogen or argon atmosphere using dry glassware that had been flame-dried under a stream of nitrogen, unless otherwise noted. All reaction solvents were dried and/or purified before use. Reagent grade tetrahydrofuran was dried over 4 Å molecular sieves; dichloromethane and benzene were distilled from calcium hydride. Reactions were monitored by thin-layer chromatography (TLC) using 0.25 mm E. Merck precoated silica gel plates. Visualization was accomplished with UV light and aqueous ceric ammonium molybdate solution or anisaldehyde stain followed by charring on a hot-plate. Flash chromatography was performed with the indicated solvents using silica gel 60 (particle size 230–400 mesh) with the indicated solvent system. Yields refer to chromatographically and spectroscopically pure compounds unless otherwise stated. Melting points were taken on a micro melting point apparatus and are uncorrected. Proton nuclear magnetic resonance (¹H NMR) spectra and carbon-13 (¹³C NMR) spectra were recorded on a 300 or 500 MHz spectrometer at ambient temperature. ¹H and ¹³C NMR data are reported as δ values relative to tetramethylsilane (δ 0 ppm, \hat{CDCl}_3) or residual non-deuterated solvent δ 7.26 ppm from CHCl₃, δ 7.16 ppm for C₆D₅H). For ¹³C spectra, chemical shifts are reported relative to the δ 77.23 ppm resonance of CDCl₃ or the δ 128.39 resonance of $\overline{C_6}D_6$. Infrared (IR) spectra were recorded as thin films or solutions in the indicated solvent. Mass spectra were obtained at the Laboratory for Biological Mass Spectrometry (Texas A&M University).

5.1.1. Trimethyl-prop-2-ynyloxy-silane 8.^{9a} To a solution of propargyl alcohol (20 mL, 344 mmol) in ether (150 mL, reagent grade) at 0 °C was added TMSC1 (66 mL, 516 mmol, reagent grade) and pyridine (50 mL, 619 mmol, reagent grade). The white slurry was stirred at ambient temperature for 43 h, diluted with petroleum ether (300 mL), and filtered through a bed of silica gel and rinsed with petroleum ether–ether (1 L, 10:1). Solvent was removed to give 34 g (77%) of **8** as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 4.26 (d, J=1.2 Hz, 2H), 2.38 (t, J=1.5 Hz, 1H), 0.19 (s, 9H).

5.1.2. 3-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)prop-2-en-1-ol 9. To a solution of **8** (20 g, 169 mmol) in CH₂Cl₂ (15 mL) at 0 °C was added BH₃·SMe₂ (16.9 mL, 169 mmol). The colorless solution was stirred at 0 °C for 1 h and then at ambient temperature for 3 h before a solution of 179 (10.8 g, 84.5 mmol) in CH₂Cl₂ (10 mL) was introduced via cannula. The reaction mixture was then heated to 50 °C and stirred sealed for 4 d. Solvent was removed and MeOH (60 mL) was added, followed by citric acid (17.7 g, 84.5 mmol). After 5 min, solvent was removed in vacuo and the residue was diluted with ether (700 mL) and washed with NaHCO₃ (4×60 mL, sat.). The aqueous layers were back extracted with ether (3×100 mL). The organic layers were combined and solvent was removed in vacuo. Flash chromatography of the residue (petroleum ether–ether: 2:1) gave 9.2 g (59%, 2 steps) of **9** as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 6.73 (dt, *J*=18.0, 4.5 Hz, 1H), 5.68 (dt, *J*=18.0, 1.8 Hz, 1H), 4.22 (m, 2H), 1.25 (s, 12H); ¹³C NMR (75 MHz, CDCl₃) δ 151.8, 83.2, 64.4, 24.7; HRMS (ESI) *m*/*z* 191.1462 [(M+Li)⁺, calcd for C₉H₁₇BO₃ 191.1431].

5.1.3. 3-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)propenal 10. To a solution of **9** (4.3 g, 23.3 mmol) in CH₂Cl₂ (7 mL) was added Dess-Martin periodinane (11.9 g, 28 mmol). The white slurry was stirred for 1.5 h. Solvent was removed in vacuo and the residue was filtered through a fine fritted funnel and rinsed with petroleum ether-ether (330 mL, 10:1). Removal of solvent gave 4.2 g (>95%) of 10 as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 9.57 (d, *J*=7.5 Hz, 1H), 6.77 (dd, *J*=18.5, 8.0 Hz, 1H), 6.64 (d, *J*=18.5 Hz, 1H), 1.28 (s, 12H); ¹³C NMR (75 MHz, CDCl₃) δ 195.1, 147.0, 84.4, 24.7; HRMS (ESI) *m*/*z* 189.1272 [(M+Li)⁺, calcd for C₉H₁₅BO₃ 189.1274]

5.1.4. 1-(4-Benzyl-2-thioxo-oxazolidin-3-yl)-3-hydroxy-2-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2yl)-pent-4-en-1-one 12. To a solution of 1-(4-benzyl-2thioxo-oxazolidin-3-yl)-propan-1-one (2.4 g, 9.7 mmol) in CH₂Cl₂ (20 mL) at 0 °C was slowly added titanium tetrachloride (9.7 mL, 9.7 mmol, 1.0 M in CH₂Cl₂). The resulting yellow slurry was stirred at 0 °C for 5 min, before (-)-sparteine (2.95 mL, 12.8 mmol) was introduced neat. The homogeneous solution was stirred at 0 °C for 20 min before being cooled to -78 °C. A solution of 10 (1.8 g, 9.9 mmol) in CH₂Cl₂ (20 mL) was added via cannula over 10 min. The reaction mixture was stirred at -78 °C for 1.5 h and then at 0 °C for another 30 min. The reaction was quenched with a saturated aqueous solution of NH₄Cl (10 mL) and filtered through a bed of Celite and rinsed with CH₂Cl₂. HPLC analysis of the crude product showed a diastereomeric ratio of > 99:1. Flash chromatography of the residue (petroleum ether–ether: $4:1 \rightarrow 1:1$) gave 5.8 g (57%) of **12** as a white solid. Recrystallization from EtOAc gave a colorless needle crystalline suited for X-ray analysis. Mp 138–139 °C. $[\alpha]_{\rm D} = +62.3^{\circ}$ (c 3.7, CH₂Cl₂); IR (CH₂Cl₂) 3595, 2986, 1696, 1358, 963 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 7.19–7.33 (m, 5H), 6.55 (dd, J=18.0, 4.5 Hz, 1H), 5.76 (dd, J=18.0, 2.0 Hz, 1H), 4.92 (m, 1H), 4.78 (dq, J=7.0, 3.0 Hz, 1H), 4.63 (m, 1H), 4.30 (m, 2H), 3.24 (dd, J=13.5, 3.5 Hz, 1H), 2.74 (dd, J=13.5, 10.0 Hz, 1H), 1.25 (s, 12H), 1.24 (d, J=7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) & 184.9, 177.3, 151.1, 135.1, 129.4, 129.0, 127.5, 83.4, 72.9, 70.2, 60.1, 42.1, 37.5, 24.8, 24.7, 10.5; HRMS (ESI) m/z 432.2016 [(M)⁺, cald for C₂₂H₃₁BNO₅S 432.2044].

5.1.5. 3-(*tert*-Butyl-dimethyl-silanyloxy)-2-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pent-4en-1-ol 13. To a solution of 12 (1.6 g, 3.8 mmol) in CH_2Cl_2 (6 mL) at 0 °C was imidazole (772 mg, 11.3 mmol) and TBSCl (1.7 g, 11.3 mmol). The reaction mixture was stirred at 0 °C for 1 h and then at ambient temperature for 17 h. The mixture was quenched with water (10 mL). The aqueous layer was separated and extracted with CH_2Cl_2 (3×50 mL). The combined organic layers were dried over Na_2SO_4 and concentrated in vacuo. Flash chromatography of the residue (petroleum ether-ether: 10:1) gave 2.5 g (84%) of the corresponding TBS ether as a colorless oil. $[\alpha]_{\rm D} = +35.4^{\circ}$ $(c \ 0.48, CH_2Cl_2); IR (CH_2Cl_2) 2996, 1716, 1153 cm^{-1}.$ ¹H NMR (300 MHz, CDCl₃) δ 7.18–7.34 (m, 5H), 6.58 (dd, J =18.0, 5.1 Hz, 1H), 5.63 (dd, J=18.0, 1.2 Hz, 1H), 4.76 (m, 2H), 4.56 (dt, J=4.8, 1.2 Hz, 1H), 4.27 (dd, J=9.3, 1.8 Hz, 1H), 4.18 (m, 1H), 3.28 (dd, J=12.9, 3.0 Hz, 1H), 2.73 (dd, J=13.2, 10.2 Hz, 1H), 1.23 (s, 12H), 1.18 (d, J=6.6 Hz, 3H), 0.87 (s, 9H), -0.05 (s, 3H), -0.07 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 185.0, 175.0, 152.8, 135.3, 129.4, 128.9, 127.3, 83.1, 74.9, 69.8, 60.7, 43.8, 37.2, 25.7, 24.7, 24.6, 18.0, 11.0, -4.4, -5.4; HRMS (ESI) m/z 546.2881 $[(M+H)^+$, calcd for C₂₈H₄₅BNO₅SSi 546.2792]. To a solution of thus obtained TBS ether (4.6 g, 8.4 mmol) in ether-MeOH (20 mL-155 μ L) at 0 °C was added LiBH₄ (7.9 mL, 15.6 mmol, 2.0 M in ether). The reaction mixture was stirred at ambient temperature for 4.5 h, diluted with petroleum ether (100 mL), and filtered through a bed of silica gel and rinsed with petroleum ether-ether (600 mL, 1:2). Solvent was removed in vacuo. Flash chromatography of the residue (petroleum ether–ether: $5:1 \rightarrow 2:1$) gave 1.86 g (61%) of 13 as a colorless oil. $[\alpha]_{\rm D} = -20.8^{\circ}$ (c 0.48, CH₂Cl₂); IR (CH₂Cl₂) 3490, 2960, 1639, 856 cm⁻¹ ¹H NMR (500 MHz, CDCl₃) δ 6.59 (dd, J=17.5, 5.0 Hz, 1H), 5.64 (dd, J=17.5, 2.0 Hz, 1H), 4.30 (m, 1H), 3.60 (dd, J=11.0, 9.0 Hz, 1H), 3.44 (dd, J=10.5, 4.5 Hz, 1H), 1.98 (m, 1H), 1.25 (s, 12H), 0.88 (s, 9H), 0.80 (d, J = 7.0 Hz, 3H),0.04 (s, 3H), 0.00 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 152.1, 83.2, 77.4, 65.7, 40.8, 25.8, 24.8, 24.7, 18.1, 12.1, -4.5, -5.2; HRMS (ESI) m/z 357.2636 [(M)⁺, calcd for C₁₈H₃₇BO₄Si 357.2646].

5.1.6. 3-(tert-Butyl-dimethyl-silanyloxy)-2-methyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pent-4enal 5. To a solution of 13 (890 mg, 2.49 mmol) in CH₂Cl₂ (10 mL) was added Dess-Martin periodinane (1.16 g, 2.75 mmol). The white slurry was stirred for 1.5 h. Solvent was removed in vacuo and the residue was filtered through a fine fritted funnel and rinsed with petroleum ether-ether (330 mL, 10:1). Removal of solvent gave 885 mg (>95%) of 5 as a colorless oil. $[\alpha]_{\rm D} = +12.8^{\circ}$ (c 5.08, CH₂Cl₂); IR (CH₂Cl₂) 2960, 1737, 1639, 1148 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 9.73 (d, J=1.0 Hz, 1H), 6.55 (dd, J=17.5, 5.0 Hz, 1H), 5.68 (dd, J=17.5, 1.5 Hz, 1H), 4.64 (m, 1H), 2.40 (m, 1H), 1.21 (s, 12H), 1.00 (d, J=2.0 Hz, 3H), 0.82 (s, 9H), -0.03 (s, 3H), -0.04 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 204.4, 152.2, 83.3, 73.5, 51.9, 25.8, 24.8, 24.7, 18.1, 7.9, -4.2, -5.2; HRMS (ESI) m/z $355.2476 [(M)^+, \text{ calcd for } C_{18}H_{35}BO_4Si \ 355.2476].$

5.1.7. 5-Iodo-2,4-dimethyl-penta-2,4-dienoic acid methyl ester 15. To a solution of 14^{14} (9.3 g, 47 mmol) in CH₂Cl₂ (350 mL) at 0 °C was added Celite (21 g) and pyridinium chlorochromate (15 g, 70 mmol). The mixture was stirred at 0 °C for 3.5 h and filtered through a bed of silica gel and rinsed with ether (500 mL). Solvent was removed in vacuo to give a volatile brown crude oil. To a solution of the above-generated oil in CH₂Cl₂ (50 mL) at 0 °C was added Ph₃P=C(CH₃)COOMe (10.6 g, 30 mmol). The solution was stirred at ambient temperature for 1.5 h. Solvent was

removed and the residue was filtered through a bed of silica gel and rinsed with ether (500 mL). Solvent was removed to give a crude oil. Flash chromatography of the residue (petroleum ether–ether: 20:1) gave 5.1 g (41%) of **15** as a pale yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.03 (m, 1H), 6.39 (t, *J*=1.2 Hz, 1H), 3.74 (s, 3H), 1.98 (dd, *J*=1.2, 0.6 Hz, 3H), 1.93 (d, *J*=1.8 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 168.6, 143.6, 138.9, 128.0, 85.4, 52.1, 24.5, 14.2; HRMS (ESI) *m/z* 272.9937 [(M+Li)⁺, calcd for C₈H₁₁IO₂ 272.9964].

5.1.8. 5-Iodo-2,4-dimethyl-penta-2,4-dienoic acid 2-trimethylsilanyl-ethyl ester 16. To a solution of 15 (2.55 g, 9.6 mmol) in MeOH-H₂O (9-3 mL) was added lithium hydroxide (1.2 g, 48 mmol). The clear solution was stirred at ambient temperature for 6.5 h. Solvent was removed in vacuo and the residue was diluted with CH₂Cl₂ (20 mL) and water (10 mL). The biphasic mixture was then acidified with concentrated aqueous HCl to pH=3. The aqueous layer was separated and extracted with CH_2Cl_2 (3×50 mL). The combined organic layers were dried over Na₂SO₄ and concentrated in vacuo. Flash chromatography of the residue (petroleum ether-ether: 4:1) gave 2.4 g (99%) of the corresponding carboxylic acid as a colorless oil. ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 7.17 \text{ (s, 1H)}, 6.49 \text{ (s, 1H)}, 2.01 \text{ (d, } J =$ 1.2 Hz, 3H), 1.94 (d, J=1.5 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) *b* 173.8, 143.6, 140.9, 86.9, 24.4, 13.8. To a solution of the above carboxylic acid (470 mg, 1.86 mmol) in CH₂Cl₂ (4 mL) was added DMAP (cat.) and trimethylsilylethyl alcohol (281 µL, 1.96 mmol). The mixture was cooled to 0 °C and DCC (404 mg, 1.96 mmol) was added. The reaction mixture was stirred at 0 °C for 80 min then at ambient temperature for 30 min. The white slurry was filtered and rinsed with ether (100 mL). Solvent was removed in vacuo. Flash chromatography of the residue (petroleum ether-ether: 20:1) gave 562 mg (86%) of 16 as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.01 (s, 1H), 6.37 (s, 1H), 4.22 (m, 2H), 1.97 (s, 3H), 1.91 (d, J=1.5 Hz, 3H), 1.01 (m, 2H), 0.03 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 143.7, 138.5, 128.4, 85.2, 63.2, 24.5, 17.3, 14.2, -1.5; HRMS (ESI) m/z 359.0515 [(M+Li)⁺, calcd for C₁₂H₂₁IO₂Si 359.0516].

5.1.9. 2,4-Dimethyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-penta-2,4-dienoic acid 2-trimethylsilanylethyl ester 7. To a mixture of PdCl₂(dppf)–CH₂Cl₂ (34 mg, 0.04 mmol), KOAc (409 mg, 4.2 mmol), and bis(pinacolato)diboron (1 g, 4.2 mmol) flushed with argon was added a solution of 16 (490 mg, 1.4 mmol) in DMSO (5 mL) via cannula. The resulting dark reddish solution was heated to 80 °C and stirred in the dark under Ar for 10 min. It was cooled to ambient temperature, diluted with ether (250 mL), washed with water (30 mL), and dried over Na₂SO₄. Solvent was removed in vacuo. Flash chromatography of the residue (petroleum ether-ether: 15:1) gave 444 mg (91%) of 7 as a pale yellow solid; IR (CH₂Cl₂) 2991, 2249, 1706, 1265, 907 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ 7.09 (s, 1H), 5.36 (s, 1H), 4.22 (m, 2H), 2.09 (s, 3H), 1.96 (d, J=1.5 Hz, 3H), 1.26 (s, 12H), 0.02 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 168.9, 154.8, 142.9, 128.3, 83.0, 62.9, 24.8, 21.3, 17.3, 14.1, -1.5; ¹¹BNMR (96 MHz, CDCl₃, BF₃·OEt₂ as reference) δ 95.9; HRMS (FAB) m/z 375.2139 $[(M+Na)^+$, calcd for $C_{18}H_{33}BO_4SiNa$ 375.2146].

5.1.10. 6-Bromo-3-(tert-butyl-dimethyl-silanyloxy)-2methyl-9-phenyl-nona-4,6-dienal 18. To a solution of 5 (400 mg, 1.13 mmol) and 17 (109 mg, 0.376 mmol) in THF-H₂O (9-3 mL, degassed) was added Pd(PPh₃)₄ (44 mg, 0.0376 mmol). After 5 min, TlOEt (48 µL, 0.67 mmol) was introduced and the mixture was stirred in the dark for 90 min. A second batch of Pd(PPh₃)₄ (44 mg, 0.0376 mmol) was added and the mixture was stirred for another 1 h. The resulting dark slurry was filtered through a bed of Celite and rinsed with ether (300 mL). Solvent was removed in vacuo. Flash chromatography of the residue (petroleum ether–ether: $100:0 \rightarrow 30:1 \rightarrow 20:1$) gave 115 mg (70%) of **18** as a colorless oil. $[\alpha]_{\rm D} = -3.5^{\circ}$ (c 0.57, CH₂Cl₂); IR (CH₂Cl₂) 2971, 2858, 1747, 840 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 9.72 (d, J=1.5 Hz, 1H), 7.89– 7.30 (m, 5H), 6.19 (d, J = 15.0 Hz, 1H), 6.01 (dd, J = 15.0, 5.5 Hz, 1H), 5.96 (t, J=7.0 Hz, 1H), 4.68 (m, 1H), 2.74 (m, 2H), 2.59 (q, J=7.0 Hz, 2H), 2.46 (m, 1H), 1.07 (d, J=7.0 Hz, 3H), 0.87 (s, 9H), 0.03 (s, 3H), 0.01 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 204.3, 141.1, 133.8, 133.6, 130.2, 128.4, 128.3, 126.1, 124.8, 72.1, 52.6, 34.4, 33.3, 25.7, 18.1, 8.2, -4.2, -5.0; HRMS (ESI) m/z 437.1508 $[(M+H)^+$, calcd for C₂₂H₃₃BrO₂Si 437.1511].

5.1.11. [4-Bromo-1-(3,3-dibromo-1-methyl-allyl)-7-phenyl-hepta-2,4-dienyloxy]-tert-butyl-dimethyl-silane 19. To a slurry of Ph₃P-CHBr₃ (1.47 g, 2.86 mmol) in THF (3 mL) at 0 °C was added *t*-BuOK (291 mg, 1.6 mmol). The bright yellow slurry was stirred at ambient temperature for 20 min and cooled to 0 °C. A solution of 18 (115 mg, 0.26 mmol) in THF (12 mL) was then introduced via cannula. The reaction mixture was stirred at 0 °C for 15 h and quenched with brine (10 mL). The aqueous layer was separated and extracted with ether $(3 \times 50 \text{ mL})$. The combined organic layers were dried over Na₂SO₄ and concentrated in vacuo. Flash chromatography of the residue (petroleum ether–ether: $30:1 \rightarrow 1:1$) gave 134 mg (77%) of **19** as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.17– 7.29 (m, 5H), 6.28 (d, J = 9.5 Hz, 1H), 6.15 (d, J = 15.0 Hz, 1H), 5.96 (dd, J = 14.5, 5.5 Hz, 1H), 5.94 (t, J = 7.0 Hz, 1H), 4.23 (t, J=5.0 Hz, 1H), 2.75 (m, 2H), 2.61 (q, J=7.5 Hz, 2H), 2.56 (m, 1H), 0.97 (d, J=7.0 Hz, 3H), 0.89 (s, 9H), 0.04 (s, 3H), -0.01 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 141.3, 141.2, 134.4, 133.1, 129.8, 128.4, 128.4 (overlapping signal), 126.0, 125.2, 88.3, 74.1, 65.4, 44.9, 34.4, 33.4, 25.8, 18.2, 13.3, -4.4, -5.0; HRMS (ESI) m/z 597.0004 [(M+ $Li)^+$, calcd for C₂₃H₃₃Br₃OSi 597.0011].

5.1.12. 6,12-Dibromo-9-(*tert*-butyl-dimethyl-silanyloxy)-2,4,8-trimethyl-15-phenyl-pentadeca-2,4,6,10,12-pentaenoic acid 2-trimethylsilanyl-ethyl ester 20. To a solution of 19 (19 mg, 0.032 mmol) and 7 (58 mg, 0.163 mmol) in THF–H₂O (1.5–0.5 mL, degassed) was added Pd(PPh₃)₄ (4 mg, 0.00327 mmol). After 5 min, TlOEt (4.2 μ L, 0.0589 mmol) was introduced and the mixture was stirred in the dark for 30 min. The resulting dark yellow slurry was filtered through a bed of Celite and rinsed with ether (100 mL). Solvent was removed in vacuo. Flash chromatography of the residue (petroleum ether–ether: 50:1 \rightarrow 10:1 \rightarrow 1:1) gave 8.4 mg (36%) of 20 as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.18–7.29 (m, 5H), 7.08 (s, 1H), 6.15 (d, J=14.5 Hz, 1H), 6.05 (s, 1H), 6.03 (dd, J=14.5, 6.0 Hz, 1H), 5.92 (t, J=7.0 Hz, 1H), 5.65 (dd, J=9.0, 1.0 Hz, 1H), 4.23 (m, 2H), 2.82 (m, 1H), 2.74 (m, 2H), 2.60 (q, J=8.0 Hz, 2H), 2.00 (s, 3H), 1.93 (d, J=1.5 Hz, 3H), 1.03 (d, J=7.0 Hz, 3H), 1.02 (m, 2H), 0.88 (s, 3H), 0.04 (s, 9H), 0.02 (s, 3H), 0.00 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 168.8, 141.2, 141.0, 135.9, 135.6, 134.9, 133.6, 132.9, 129.7, 128.4, 128.4 (overlapping signal), 126.1, 125.2, 120.1, 75.1, 63.1, 43.9, 34.5, 33.3, 25.8, 18.2, 18.1, 17.4, 14.5, 14.2, -1.4, -4.3, -4.9; HRMS (ESI) m/z743.2177 [(M+Li)⁺, calcd for C₃₅H₅₄Br₂O₃Si₂ 743.2138].

5.1.13. 12-Bromo-9-(tert-butyl-dimethyl-silanyloxy)-2,4,6,8-tetramethyl-15-phenyl-pentadeca-2,4,6,10,12pentaenoic acid 2-trimethylsilanyl-ethyl ester 21. To a solution of 20 (12.6 mg, 0.017 mmol) in THF (1.5 mL, degassed) was sequentially added Pd(PPh₃)₄ (4 mg, 0.0034 mmol), Me-9-B-BBN (204 µL, 0.51 mmol, 2.5 M in THF), TIOEt (18 µL, 0.255 mmol), and H₂O (0.3 mL, degassed). The yellow-brownish slurry was stirred in the dark for 19 h. The resulting dark slurry was filtered through a bed of Celite and rinsed with ether (100 mL). Solvent was removed in vacuo. Flash chromatography of the residue (petroleum ether-ether: 20:1) gave 9 mg (78%) of 21 as a colorless oil. It was further purification by HPLC (silica gel, 4 mL/min, 269 nm detection, 1% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃) δ 7.18-7.29 (m, 5H), 7.13 (s, 1H), 6.06 (d, J = 14.5 Hz, 1H), 6.03 (s, 1H), 5.94 (dd, J =14.5, 5.5 Hz, 1H), 5.88 (t, J=7.0 Hz, 1H), 5.19 (d, J=10.0 Hz, 1H), 4.23 (m, 2H), 3.99 (t, J=5.5 Hz, 1H), 2.73 (m, 2H), 2.60 (m, 2H), 2.31 (m, 1H), 2.01 (d, J=1.0 Hz, 3H), 1.81 (d, J=1.0 Hz, 3H), 1.77 (s, 3H), 1.03 (m, 2H), 0.91 (d, J=6.5 Hz, 3H), 0.88 (s, 9H), 0.04 (s, 9H), 0.00 (s, 3H), -0.03 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.2, 142.6, 141.3, 136.3, 134.8, 133.2, 132.4, 132.2, 132.1, 128.7, 128.4, 128.3, 126.2, 126.0, 125.5, 76.1, 62.9, 40.6, 34.5, 33.3, 25.9, 23.6, 18.3, 18.0, 17.4, 15.5, 14.2, -1.4, -4.3, -4.9; HRMS (ESI) m/z 695.2927 [(M+Na)⁺, calcd for C₃₆H₅₇BrO₃Si₂Na 695.2922].

5.1.14. tert-Butyl-(4-iodo-pent-3-enyloxy)-dimethylsilane 25. To a solution of CuCN (448 mg, 5 mmol) in THF-ether (6–10 mL) at -40 °C was added *n*-BuLi (4.85 mL, 10 mmol, 2.06 M in hexanes). After 5 min, cooling bath was removed and the mixture was stirred at ambient temperature for 15 min and cooled to -40 °C. Bu₃SnH (2.7 mL, 10 mmol) was then introduced and the mixture was stirred at -40 °C for 70 min. Separately, to a solution of dihydrofuran (378 µL, 5 mmol) in THF (5 mL) at -60 °C was added t-BuLi (3.5 mL, 6 mmol, 1.7 M in pentane). The mixture was stirred at -60 °C for 10 min and at 0 °C for 55 min before it was transferred to the abovegenerated mixture via cannula. The resulting orange solution was then stirred at 0 °C for 1.5 h. MeI (2.2 mL, 35 mmol) was added and the mixture was allowed to warm to ambient temperature in 1 h and stirred at ambient temperature for another 3 h. The resulting mixture was poured into a mixture of NH₄Cl (100 mL, sat.) and NH₃-H₂O (25 mL) at 0 °C and stirred for 30 min. The aqueous layer was separated and extracted with ether $(3 \times 100 \text{ mL})$. The combined organic layers were dried briefly over Na₂SO₄ and concentrated in vacuo. Removal of solvent

gave 196 as a colorless crude oil, which was used in the next step without further purification. To a solution of the abovegenerated alcohol 24 in CH₂Cl₂ (5 mL) at 0 °C was added a solution of I_2 (1.4 g, 5.4 mmol) in CH_2Cl_2 (45 mL) until brown color persisted. Imidazole (1 g, 14.8 mmol) was then added followed by TBSCl (2.23 g, 14.8 mmol). The resulting slurry was stirred at 0 °C for 20 min and quenched with $Na_2S_2O_3$ (25 mL) and stirred for 5 min. The aqueous layer was separated and extracted with ether $(3 \times 100 \text{ mL})$. The combined organic layers were dried briefly over Na₂SO₄ and concentrated in vacuo. Flash chromatography of the residue (petroleum ether–ether: $100:0 \rightarrow 20:1$) gave 1.35 g (83%, 3 steps) of 25 as a colorless oil. Observed physical properties were identical with those previously reported.²³ ¹H NMR (500 MHz, CDCl₃) δ 6.14 (tq, J=8.0, 1.0 Hz, 1H), 3.59 (t, J=6.5 Hz, 2H), 2.35 (s, 3H), 2.22 (q, J=6.5 Hz, 2H), 0.87 (s, 9H), 0.03 (s, 6H); ¹³C NMR $(125 \text{ MHz}, \text{CDCl}_3) \delta 137.7, 95.3, 61.8, 34.2, 27.7, 25.9,$ 18.3, -5.3; HRMS (ESI) m/z 333.0731 [(M+Li)⁺, calcd for C₁₁H₂₃IOSi 333.0723].

5.1.15. 3,9-Bis-(tert-butyl-dimethyl-silanyloxy)-2,6dimethyl-nona-4,6-dienal 26. To a solution of 25 (87 mg, 0.246 mmol) and 7 (53 mg, 0.164 mmol) in THF-H₂O (3-1 mL, degassed) was added Pd(PPh₃)₄ (19 mg, 0.0164 mmol). After 5 min, TIOEt (17 µL, 0.246 mmol) was introduced and the mixture was stirred in the dark for 35 min. The resulting reddish-brown slurry was filtered through a bed of Celite and rinsed with ether (200 mL). Solvent was removed in vacuo. Flash chromatography of the residue (petroleum ether-ether: 20:1) gave 56.3 mg (80%) of **26** as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 9.74 (d, J=1.5 Hz, 1H), 6.18 (d, J=15.5 Hz, 1H), 5.48 (dd, J = 15.5, 7.0 Hz, 1H), 5.45 (t, J = 7.7 Hz, 1H), 4.54 (dd, J=6.5, 5.0 Hz, 1H), 3.62 (t, J=7.0 Hz, 2H), 2.46 (m, 1H), 2.34 (q, J=6.5 Hz, 2H), 1.71 (s, 3H), 1.04 (d, J = 7.0 Hz, 3H), 0.86 (s, 9H), 0.85 (s, 9H), 0.02 (s, 6H), 0.01 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 204.8, 136.1, 134.3, 129.5, 126.6, 73.8, 62.6, 53.2, 32.1, 25.9, 25.8, 18.3, 18.1, 12.6, 8.5, -4.1, -5.0, -5.3, -5.3;HRMS (ESI) m/z 433.3149 [(M+Li)⁺, calcd for C₂₃H₄₆O₃Si₂ 433.3146].

5.1.16. 1.1-Dibromo-4.10-bis-(tert-butyl-dimethyl-silanyloxy)-3,7-dimethyl-deca-1,5,7-triene 27. To a slurry of Ph₃P-CHBr₃ (579 g, 1.12 mmol) in THF (2 mL) at 0 °C was added t-BuOK (67 mg, 0.6 mmol). The bright yellow slurry was stirred at ambient temperature for 20 min and cooled to 0 °C. A solution of **26** (32 mg, 0.075 mmol) in THF (4 mL) was then introduced via cannula. The reaction mixture was stirred at 0 °C for 1 h and quenched with brine (10 mL). The aqueous layer was separated and extracted with ether (3 \times 50 mL). The combined organic layers were dried over Na₂SO₄ and concentrated in vacuo. Flash chromatography of the residue (petroleum ether-ether: 30:1) gave 38.2 mg (88%) of 27as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 6.27 (d, J = 9.5 Hz, 1H), 6.13 (d, J = 15.5 Hz, 1H), 5.46 (dd, J = 15.5 Hz, 1H), 5.4J=15.5, 7.0 Hz, 1H), 5.44 (t, J=7.0 Hz, 1H), 4.11 (t, J=5.5 Hz, 1H), 3.63 (t, J=6.5 Hz, 2H), 2.53 (m, 1H), 2.35 (q, J=7.0 Hz, 2H), 1.72 (s, 3H), 0.96 (d, J=6.5 Hz, 3H),0.88 (s, 9H), 0.87 (s, 9H), 0.03 (s, 6H), 0.02 (s, 3H), -0.03(s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 141.7, 135.5, 134.5, 128.8, 127.5, 87.8, 75.6, 62.7, 45.3, 32.1, 25.9, 25.8, 18.4,

18.2, 13.6, 12.7, -4.2, -4.9, -5.2, -5.3; HRMS (ESI) *m*/*z* 587.1530 [(M+Li)⁺, calcd for C₂₄H₄₆Br₂O₂Si₂ 587.1563].

5.1.17. 6-Bromo-9,15-bis-(tert-butyl-dimethyl-silanyloxy)-2,4,8,12-tetramethyl-pentadeca-2,4,6,10,12-pentaenoic acid 2-trimethylsilanyl-ethyl ester 28. To a solution of 27 (38 mg, 0.0656 mmol) and 7 (115 mg, 0.32 mmol) in THF-H₂O (3–1 mL, degassed) was added $Pd(PPh_3)_4$ (7.6 mg, 0.00656 mmol). After 5 min, TlOEt (8 µL, 0.118 mmol) was introduced and the mixture was stirred in the dark for 30 min. The resulting yellow slurry was filtered through a bed of Celite and rinsed with ether (100 mL). Solvent was removed in vacuo. Flash chromatography of the residue (petroleum ether-ether: 50:1) gave 8.4 mg (36%) of **28** as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.08 (s, 1H), 6.13 (d, J=15.5 Hz, 1H), 6.04 (d, J = 1.0 Hz, 1H), 5.65 (dd, J = 9.0, 1.0 Hz, 1H), 5.53 (dd, J =15.5, 7.0 Hz, 1H), 5.42 (t, J=7.5 Hz, 1H), 4.23 (m, 2H), 4.10 (t, J=6.0 Hz, 1H), 3.62 (t, J=7.0 Hz, 2H), 2.78 (m, 1H), 2.34 (q, J = 7.0 Hz, 2H), 2.00 (d, J = 1.5 Hz, 3H), 1.92 (d, J=1.5 Hz, 3H), 1.72 (s, 3H), 1.02 (d, J=6.5 Hz, 3H),1.01 (m, 2H), 0.87 (s, 9H), 0.86 (s, 9H), 0.04 (s, 9H), 0.02 (s, 6H), 0.01 (s, 3H), -0.02 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 168.8, 141.1, 136.4, 135.5, 135.4, 134.6, 133.8, 128.5, 128.3, 128.1, 119.7, 76.6, 63.0, 62.7, 44.3, 32.0, 25.9, 25.8, 18.4, 18.2, 18.1, 17.3, 14.8, 14.2, 12.6, -1.5, -4.1,-4.9, -5.3, -5.3; HRMS (ESI) m/z 733.3690 [(M+Li)⁺, calcd for C₃₆H₆₇BrO₄Si₃Li 733.3691].

5.1.18. 9,15-Bis-(tert-butyl-dimethyl-silanyloxy)-2,4,6, 8,12-pentamethyl-pentadeca-2,4,6,10,12-pentaenoic acid 2-trimethylsilanyl-ethyl ester 29. To a solution of 28 (50 mg, 0.068 mmol) in THF (3 mL, degassed) was sequentially added Pd(PPh₃)₄ (8 mg, 0.0068 mmol), Me-9-B-BBN 189 (378 µL, 0.68 mmol, 1.8 M in THF), TIOEt $(9 \,\mu\text{L}, 0.12 \,\text{mmol})$, and H_2O (0.6 mL, degassed). The yellow slurry was stirred in the dark for 23 h. HPLC analysis of the reaction mixture showed complete consumption of starting material 200. The resulting dark slurry was filtered through a bed of Celite and rinsed with ether (100 mL). Solvent was removed in vacuo. Flash chromatography of the residue (petroleum ether-ether: 20:1) gave 36.6 mg (81%) of 201 as a colorless oil. Further purification by HPLC (silica gel, 4 mL/min, 269 nm detection, $0 \rightarrow 3\%$ gradient EtOAc/hexanes) gave 29 mg (64%) of analytically pure **29** as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.13 (s, 1H), 6.05 (d, J = 16.0 Hz, 1H), 6.04 (s, 1H), 5.43 (dd, J = 16.0, 7.0 Hz, 1H), 5.38 (t, J = 7.0 Hz, 1H), 5.20 (dt, J = 7.0 HJ = 10.0, 1.5 Hz, 1H), 4.23 (m, 2H), 3.91 (t, J = 6.0 Hz, 1H), 3.61 (t, J=7.0 Hz, 2H), 2.33 (q, J=7.0 Hz, 2H), 2.29 (m, 1H), 2.01 (d, J=1.5 Hz, 3H), 1.82 (d, J=1.0 Hz, 3H), 1.76 (s, 3H), 1.68 (s, 3H), 1.03 (m, 2H), 0.89 (d, J=7.0 Hz, 3H),0.87 (s, 9H), 0.86 (s, 9H), 0.04 (s, 9H), 0.02 (s, 6H), 0.00 (s, 3H), -0.05 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.2, 142.8, 134.9, 134.7, 134.6, 133.2, 133.1, 131.5, 129.2, 127.9, 126.2, 77.5, 62.8, 62.7, 40.8, 32.1, 25.9, 23.6, 18.3, 18.2, 18.0, 17.4, 15.4, 14.1, 12.6, -1.4, -4.1, -4.8,-5.2, -5.3; HRMS (ESI) m/z 685.4479 [(M+Na)⁺, calcd for C₃₇H₇₀O₄Si₃Na 685.4480].

Acknowledgements

Support by the National Institutes of Health (CA-59515-08) and the Robert A. Welch foundation (A-1230) is gratefully acknowledged. The National Science Foundation (CHE-0077917) is acknowledged for providing funds for the purchase of NMR instrumentation. We also thank Joseph Reibenspies for determining the X-ray crystal structure of aldol adduct and Shane E. Tichy for high resolution mass spectrum analysis.

References and notes

- Hayakawa, Y.; Sohda, K.; Shin-ya, K.; Hidaka, T.; Seto, H. J. Antibiot. 1995, 48, 954–961. (b) Hayakawa, Y.; Sohda, K.; Furihata, K.; Kuzuyama, T.; Shin-ya, K.; Seto, H. J. Antibiot. 1996, 49, 974–979. (c) Hayakawa, Y.; Adachi, H.; Kim, J. W.; Shin-ya, K.; Seto, H. Tetrahedron 1998, 54, 15871–15878.
- Kim, J. W.; Adachi, H.; Shin-ya, K.; Hayakawa, Y.; Seto, H. J. Antibiot. 1997, 50, 628–630. (b) Hayakawa, Y.; Kim, J. W.; Adachi, H.; Shin-ya, K.; Fujita, K.; Seto, H. J. Am. Chem. Soc. 1998, 120, 3524–3525.
- Salomon, A. R.; Woehringer, D. W.; Herzenberg, L. A.; Khosla, C. *Chem. Biol.* 2001, *8*, 71–80. (b) Salomon, A. R.; Voehringer, D. W.; Herzenberg, L. A.; Khosla, C. *Proc. Natl. Acad. Sci. U.S.A.* 2000, *97*, 14766–14771.
- Salomon, A. R.; Zhang, Y.; Seto, H.; Khosla, C. Org. Lett. 2001, 3, 57–59. (b) Wender, P. A.; Gulledge, A.; Jankowski, O. D.; Seto, H. Org. Lett. 2002, 4, 3819–3822. (c) Pennington, J. D.; Williams, H. J.; Salomon, A. R.; Sulikowski, G. A. Org. Lett. 2002, 4, 3823–3825. (d) Wender, P. A.; Jankowski, O. D.; Tabet, E. A.; Seto, H. Org. Lett. 2003, 5, 487–490. (e) Wender, P. A.; Jankowski, O. D.; Tabet, E. A.; Seto, H. Org. Lett. 2003, 5, 2299–2302.
- Nicolaou, K. C.; Li, Y.; Weyershausen, B.; Wei, H. *Chem. Commun.* 2000, 307–308. (b) Schuppan, J.; Ziemer, B.; Koert, U. *Tetrahedron Lett.* 2000, 41, 621–624. (c) Sulikowski, G. A.; Lee, W.-M.; Jin, B.; Wu, B. *Org. Lett.* 2000, 2, 1439–1442. (d) Toshima, K.; Arita, T.; Kato, K.; Tanaka, D.; Matsumura, S. *Tetrahedron Lett.* 2001, 42, 8873–8876. (e) Chng, S.; Xu, J.; Loh, T. *Tetrahedron Lett.* 2003, 44, 4997–5000. (f) Chen, Y.; Evarts, J. B. Jr.; Torres, E.; Fuchs, P. L. *Org. Lett.* 2002, 4, 3571–3574. (g) Paquette, W. D.; Taylor, R. E. *Org. Lett.* 2004, 6, 103–106.
- Total synthesis of apoptolidin: (a) Nicolaou, K. C.; Li, Y.; Fylaktakidou, K. C.; Mitchell, H. J.; Wei, H.; Weyershausen, B. Angew. Chem. Int. Ed. 2001, 40, 3849–3854. Nicolaou, K. C.; Li, Y.; Fylaktakidou, K. C.; Mitchell, H. J.; Sugita, K. Angew. Chem. Int. Ed. 2001, 40, 3854–3857. (c) Nicolaou, K. C.; Fylaktakidou, K. C.; Monenschein, H.; Li, Y.; Weyershausen, B.; Mitchell, H. J.; Wei, H.; Guntupalli, P.; Hepworth, D.; Sugita, K. J. Am. Chem. Soc. 2003, 125, 15433–15442. (d) Nicolaou, K. C.; Li, Y.; Sugita, K.; Monenschein, H.; Guntupalli, P.; Mitchell, H. J.;

Fylaktakidou, K. C.; Vourloumis, D.; Giannakakou, P.; O'Brate, A. J. Am. Chem. Soc. **2003**, *125*, 15443–15454.

- (a) Total synthesis of apoptolidinone: Schuppan, J.; Wehlan, H.; Keiper, S.; Koert, U. Angew. Chem. Int. Ed. 2001, 40, 2063–2066. (b) Total synthesis of apoptolidin: Wehlan, H.; Dauber, M.; Fernaud, M.-T.M.; Schuppan, J.; Mahrwald, R.; Ziemer, B.; Garcia, M-E. J.; Koert, U. Angew. Chem. Int. Ed. 2004, 43, 4597–4601.
- For the synthesis of Me-9-BBN, see: Brown, H. C.; Kulkarni, S. U. *J. Organomet. Chem.* **1979**, *168*, 281–293. For related work, see: Soderquist, J. A.; Santiago, B. *Tetrahedron Lett.* **1990**, *31*, 5541–5542.
- Demina, M.; Velikanov, A.; Medvedeva, A.; Larina, L.; Voronkov, M. *J. Organomet. Chem.* **1998**, *553*, 129–133.
 (b) Jehanno, E.; Vaultier, M. *Tetrahedron Lett.* **1995**, *36*, 4439–4442.
- 10. Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155-4156.
- 11. The reaction solvent CH_2Cl_2 was removed in vacuo, and the residue was triturated with petroleum ether–ether (10:1) to give the aldehyde in quantitative yield and >95% purity. The normal basic (1.3 M NaOH) or reductive (aqueous NaHCO₃–Na₂S₂O₃) work-ups only resulted in decomposition of product.
- Crimmins, M. T.; King, B. W.; Tabet, E. A. J. Am. Chem. Soc. 1997, 119, 7883–7884. (b) Crimmins, M. T.; King, B. W.; Tabet, E. A.; Chaudhary, K. J. Org. Chem. 2001, 66, 894–902.
- 13. The atomic coordinates have been submitted to the Cambridge Crystallographic Data Centre.
- 14. Baker, R.; Castro, J. L. J. Chem. Soc., Perkin Trans. 1 1990, 47–65.
- Ishiyama, T.; Murata, M.; Miyaura, N. J. Org. Chem. 1995, 60, 7508–7510. (b) Takahashi, K.; Takagi, J.; Ishiyama, T.; Miyaura, N. Chem. Lett. 2000, 126–127. (c) Ishiyama, T.; Ishida, K.; Miyaura, N. Tetrahedron 2001, 57, 9813–9816.
- Frank, S. A.; Chen, H.; Kunz, R. K.; Schnaderbeck, M. J.; Roush, W. R. *Org. Lett.* **2000**, *2*, 2691–2694 and references within.
- Ramirez, F.; Mckelvie, N. J. Am. Chem. Soc. 1957, 79, 5829–5830. (b) Wolkoff, P. Can. J. Chem. 1975, 53, 1333–1335. (c) Dolhem, F.; Lievre, C.; Demailly, G. Tetrahedron Lett. 2002, 43, 1847–1849.
- Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 13, 3769–3772.
- Biagetti, M.; Bellina, F.; Carpita, A.; Viel, S.; Mannina, L.; Rossi, R. *Eur. J. Org. Chem.* **2002**, *6*, 1063–1076. (b) Villar, L.; Bullock, J. P.; Khan, M. M.; Nagarajan, A.; Bates, R. W. *J. Organomet. Chem.* **1996**, *517*, 9–18. (c) Rossi, R.; Bellina, F.; Carpita, A.; Raffaele, G. *Gazz. Chim. Ital.* **1995**, *9*, 381–392.
- 20. Miller, M.; Hegedus, L. S. J. Org. Chem. 1993, 24, 6779–6785.
 (b) Hirota, K.; Kitada, Y.; Kanbe, Y.; Maki, Y. J. Org. Chem. 1992, 57, 5268–5270.
- 21. Brown, H. C.; Cole, T. E. Organometallics 1985, 4, 816-821.
- Brown, H. C.; Park, W. S.; Cha, J. S.; Cho, B. T.; Brown, C. A. J. Org. Chem. 1986, 5, 337–342.
- Fargeas, V.; Menez, P. L.; Berque, I.; Ardisson, J.; Pancrazi, A. *Tetrahedron* **1996**, *52*, 6613–6634.