AGRICULTURAL AND FOOD CHEMISTRY

Article

Subscriber access provided by Northern Illinois University

Flavonoids and a Limonoid from the Fruits of Citrus unshiu and their Biological Activity

Hee Jeong Eom, Dahae Lee, Seulah Lee, Hyung Jun Noh, Jae Wook Hyun, Pyoung Ho Yi, Ki Sung Kang, and Ki Hyun Kim

J. Agric. Food Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jafc.6b03465 • Publication Date (Web): 08 Sep 2016 Downloaded from http://pubs.acs.org on September 9, 2016

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Journal of Agricultural and Food Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works

However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1 Flavonoids and a Limonoid from the Fruits of *Citrus unshiu* and

2 their Biological Activity

3 Hee Jeong Eom,[†] Dahae Lee,^{†,‡} Seulah Lee,[†] Hyung Jun Noh,[§] Jae Wook Hyun,[#] 4 Pyoung Ho Yi,[#] Ki Sung Kang,^{‡,*} Ki Hyun Kim^{†,*} 5 6 [†]School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea 7 [‡]College of Korean Medicine, Gachon University, Seongnam 461-701, Republic of Korea 8 [§]Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, 9 RDA, Eumseoung 369-873, Republic of Korea 10 [#]Citrus Research Station, National Institute of Horticultural & Herbal Science, Rural 11 Development Administration, Jeju 697-943, Republic of Korea 12 13 14 15 *Corresponding author (Tel: +82-31-290-7700; Fax: +82-31-290-7730; E-mail: khkim83@skku.edu) 16 17 18

19	
20	ABSTRACT: The fruits of Citrus unshiu are one of the most popular and mostly enjoyed
21	fruits in Korea. As we continue to seek for bioactive metabolites from Korean natural
22	resources, our study on chemical constituents of the fruits of C. unshiu resulted in the
23	isolation of a new flavonoid glycoside, limocitrunshin 1, along with seven other flavonoids
24	2-8 and a limonoid 9. All structures were identified by spectroscopic methods, namely 1D
25	and 2D NMR, including HSQC, HMBC and ¹ H- ¹ H COSY experiments, HRMS, and chemical
26	methods. Compounds 3, 5, and 9 are reported to be isolated from this fruit for the first time.
27	The isolated compounds were applied to activity tests to verify their inhibitory effects on
28	inflammation and nephrotoxicity. Compounds 5 and 9 showed the most potent inhibitory
29	activity on renal cell damage and nitric oxide production, respectively. Thus, the fruits of C.
30	unshiu could serve as a valuable natural source of bioactive components with health benefits
31	for potential application in functional foods.
32	
33	
34	KEYWORDS: Citrus unshiu; Rutaceae; flavonoid; nitric oxide; nephrotoxicity
35	
36	
37	
38	

41

39

42 Citrus unshiu Markovich (Rutaceae), also known as the Satsuma mandarin or Satsuma 43 tangerine, is cultivated in subtropical countries with moderate climate, such as Korea, Japan, 44 China and Russia. As the fruits of C. unshiu are seedless and are easily peeled, they are one 45 of the mostly enjoyed fruits in Korea. Citrus fruit is a major product of Jeju Island in Korea, and many varieties are cultivated there. Peels of mature fruits of C. unshiu have been used as 46 a Chinese traditional medicine, as well as in Korea.¹⁻³ The peels of citrus fruits contain 47 phenolic compounds, such as flavanones and hydroxyl cinnamic acids; hesperidin and 48 narirutin are two main constituents of the flavanones in C. unshiu fruit.⁴⁻⁶ The peels of C. 49 unshiu are known to possess a wide variety of biological and pharmacological activity by in 50 vitro and in vivo studies. For example, the peels showed antioxidant activity⁷ and inhibition 51 of the growth of tumor in murine renal cell carcinoma in mice through immune-mediated 52 pathways.² The peels also exhibited the inhibitory activities of hydroperoxide production.⁸ 53 certain virus such as hepatitis C,⁹ as well as growth of certain bacteria.¹⁰ From a recent study, 54 the peels of C. unshiu were reported to have the inhibitory effects on the pro-inflammatory 55 cytokines in lipopolysaccharide (LPS)-activated RAW 264.7 cells.¹ 56

In spite of intensive research on the pharmacological features of *C. unshiu* peels, the flesh of the whole fruit has not drawn much attention in biological research although it is the portion that people actually consume. There are few reports dealing with chemical constituents of the whole fruit.¹¹ The whole fruit has also been used in natural Korean medicine to improve skin elasticity, relieve cough and fatigue, and prevent bronchitis, flu, and cancers.¹² In our continuation to seek for bioactive metabolites from Korean natural resources, the fresh whole

parts of C. unshiu fruit were investigated to explore the anti-inflammatory properties of C. 63 64 unshiu fruits. From our recent study, we reported the isolation of a novel cyclic peptide, citrusin XI, and its anti-inflammatory effects in LPS-stimulated RAW 264.7 cells.¹¹ As part 65 66 of our study to seek for novel bioactive constituents from C. unshiu fruit, phytochemical investigation of the whole fruit was carried out and nine compounds including a new 67 68 flavonoid glycoside, seven flavonoids and a limonoid, were isolated. The structure of the new 69 compound was identified using spectroscopic techniques including 1D and 2D NMR, HRMS, 70 and other chemical methods. The isolates were further assessed for the inhibition on nitric 71 oxide (NO) production and renal cell damage.

- 72
- 73 **MATERIALS AND METHODS**
- 74

General Experimental Procedures. Infrared (IR) spectra were measured on an IFS-66/s 75 FT-IR spectrometer (Bruker, Karlsruhe, Germany). Ultraviolet (UV) spectra were acquired on 76 77 an Agilent 8453 UV-visible spectrophotometer (Agilent Technologies, Santa Clara, CA). 78 Optical rotations were recorded on a Jasco P-1020 polarimeter (Jasco, Easton, MD). High-79 resolution (HR)-electrospray ionization (ESI) mass spectra were obtained on an UPLC-QTOF Xevo G2-S mass spectrometer (Waters Corporation, Milford, CT). Nuclear magnetic 80 81 resonance (NMR) spectra were obtained from a Bruker AVANCE III 700 NMR spectrometer operating at 700 MHz (¹H) and 175 MHz (¹³C) (Bruker). Agilent 1200 Series HPLC system 82 83 (Agilent Technologies) equipped with a photo diode array (PDA) detector was used for preparative high-performance liquid chromatography (HPLC) using a 250 mm \times 20 mm i.d., 84 85 10 µm, YMC-Pack ODS-AM C18(2) column (YMC America, Inc., Allentown, PA). Agilent

86	1200 Series HPLC system equipped with a diode array detector and a 6130 Series ESI mass
87	spectrometer was used for LC-MS analysis using an analytical Kinetex C18 100 Å column
88	(100 mm \times 2.1 mm i.d., 5 μm) (Phenomenex, Torrance, CA). Column chromatography used
89	silica gel 60, 230-400 mesh, and RP-C18 silica gel, 230-400 mesh (Merck, Darmstadt,
90	Germany). Sephadex LH-20 (Pharmacia, Uppsala, Sweden) was used for molecular sieve
91	column chromatography. Thin-layer chromatography (TLC) analysis was conducted by using
92	precoated silica gel F ₂₅₄ plates and reverse-phase (RP)-18 F _{254s} plates (Merck). Spots on TLC
93	were detected using UV and by heating after dipping in solvent of anisaldehyde-sulfuric acid.
94	Plant Material. Fully ripe fruits of the 'Miyagawa-wase' variety of Satsuma mandarin (C.
95	unshiu Marc.) were cultivated from the National Institutes of Horticultural and Herbal
96	Science, Jeju, Korea, in August 2012. The materials were identified by one of the authors (J.
97	W. Hyun). A voucher specimen (SKKU-CU 2012-8) has been stored in the herbarium of the
57	
98	School of Pharmacy, Sungkyunkwan University, Suwon, Korea.
98 99	School of Pharmacy, Sungkyunkwan University, Suwon, Korea. Extraction and Isolation. The whole parts of fresh <i>C. unshiu</i> fruits (1.0 kg) were partially
98 99 100	 School of Pharmacy, Sungkyunkwan University, Suwon, Korea. Extraction and Isolation. The whole parts of fresh <i>C. unshiu</i> fruits (1.0 kg) were partially chopped, then extracted with 100% EtOH for 2 d twice at room temperature, accompanied
98 99 100 101	School of Pharmacy, Sungkyunkwan University, Suwon, Korea. Extraction and Isolation. The whole parts of fresh <i>C. unshiu</i> fruits (1.0 kg) were partially chopped, then extracted with 100% EtOH for 2 d twice at room temperature, accompanied with slight shaking or swirling. The resultant extracts were then filtered and the filtrate was
98 99 100 101 102	School of Pharmacy, Sungkyunkwan University, Suwon, Korea. Extraction and Isolation. The whole parts of fresh <i>C. unshiu</i> fruits (1.0 kg) were partially chopped, then extracted with 100% EtOH for 2 d twice at room temperature, accompanied with slight shaking or swirling. The resultant extracts were then filtered and the filtrate was concentrated under vacuum pressure. After suspension of the crude extract (89.0 g) in
 98 99 100 101 102 103 	School of Pharmacy, Sungkyunkwan University, Suwon, Korea. Extraction and Isolation. The whole parts of fresh <i>C. unshiu</i> fruits (1.0 kg) were partially chopped, then extracted with 100% EtOH for 2 d twice at room temperature, accompanied with slight shaking or swirling. The resultant extracts were then filtered and the filtrate was concentrated under vacuum pressure. After suspension of the crude extract (89.0 g) in distilled water (10 L), it was subjected to solvent partition using hexane, EtOAc, and <i>n</i> -BuOH,
98 99 100 101 102 103 104	School of Pharmacy, Sungkyunkwan University, Suwon, Korea. Extraction and Isolation. The whole parts of fresh <i>C. unshiu</i> fruits (1.0 kg) were partially chopped, then extracted with 100% EtOH for 2 d twice at room temperature, accompanied with slight shaking or swirling. The resultant extracts were then filtered and the filtrate was concentrated under vacuum pressure. After suspension of the crude extract (89.0 g) in distilled water (10 L), it was subjected to solvent partition using hexane, EtOAc, and <i>n</i> -BuOH, which yielded residues of 230 mg, 3.0 g, and 15.0 g, respectively.
 98 99 100 101 102 103 104 105 	 School of Pharmacy, Sungkyunkwan University, Suwon, Korea. Extraction and Isolation. The whole parts of fresh <i>C. unshiu</i> fruits (1.0 kg) were partially chopped, then extracted with 100% EtOH for 2 d twice at room temperature, accompanied with slight shaking or swirling. The resultant extracts were then filtered and the filtrate was concentrated under vacuum pressure. After suspension of the crude extract (89.0 g) in distilled water (10 L), it was subjected to solvent partition using hexane, EtOAc, and <i>n</i>-BuOH, which yielded residues of 230 mg, 3.0 g, and 15.0 g, respectively. The EtOAc-soluble fraction (3.0 g) was fractionated on silica gel column chromatography
 98 99 100 101 102 103 104 105 106 	School of Pharmacy, Sungkyunkwan University, Suwon, Korea. Extraction and Isolation. The whole parts of fresh <i>C. unshiu</i> fruits (1.0 kg) were partially chopped, then extracted with 100% EtOH for 2 d twice at room temperature, accompanied with slight shaking or swirling. The resultant extracts were then filtered and the filtrate was concentrated under vacuum pressure. After suspension of the crude extract (89.0 g) in distilled water (10 L), it was subjected to solvent partition using hexane, EtOAc, and <i>n</i> -BuOH, which yielded residues of 230 mg, 3.0 g, and 15.0 g, respectively. The EtOAc-soluble fraction (3.0 g) was fractionated on silica gel column chromatography (300 g, 3×55 cm) with a gradient solvent system of <i>n</i> -hexane-EtOAc [1:1 (0.3 L)], CHCl ₃ -
 98 99 100 101 102 103 104 105 106 107 	School of Pharmacy, Sungkyunkwan University, Suwon, Korea. Extraction and Isolation. The whole parts of fresh <i>C. unshiu</i> fruits (1.0 kg) were partially chopped, then extracted with 100% EtOH for 2 d twice at room temperature, accompanied with slight shaking or swirling. The resultant extracts were then filtered and the filtrate was concentrated under vacuum pressure. After suspension of the crude extract (89.0 g) in distilled water (10 L), it was subjected to solvent partition using hexane, EtOAc, and <i>n</i> -BuOH, which yielded residues of 230 mg, 3.0 g, and 15.0 g, respectively. The EtOAc-soluble fraction (3.0 g) was fractionated on silica gel column chromatography (300 g, 3×55 cm) with a gradient solvent system of <i>n</i> -hexane-EtOAc [1:1 (0.3 L)], CHCl ₃ - MeOH [50:1 (0.2 L), 10:1 (0.2 L), 5:1 (0.3 L), 2:1 (0.3 L), and 1:1 (0.3 L)], and 100% MeOH
 98 99 100 101 102 103 104 105 106 107 108 	School of Pharmacy, Sungkyunkwan University, Suwon, Korea. Extraction and Isolation. The whole parts of fresh <i>C. unshiu</i> fruits (1.0 kg) were partially chopped, then extracted with 100% EtOH for 2 d twice at room temperature, accompanied with slight shaking or swirling. The resultant extracts were then filtered and the filtrate was concentrated under vacuum pressure. After suspension of the crude extract (89.0 g) in distilled water (10 L), it was subjected to solvent partition using hexane, EtOAc, and <i>n</i> -BuOH, which yielded residues of 230 mg, 3.0 g, and 15.0 g, respectively. The EtOAc-soluble fraction (3.0 g) was fractionated on silica gel column chromatography (300 g, 3×55 cm) with a gradient solvent system of <i>n</i> -hexane-EtOAc [1:1 (0.3 L)], CHCl ₃ -MeOH [50:1 (0.2 L), 10:1 (0.2 L), 5:1 (0.3 L), 2:1 (0.3 L), and 1:1 (0.3 L)], and 100% MeOH (0.5 L) to give thirty fractions (E1 – E30), based on TLC analysis. Fraction E7 (260 mg) was

109 subjected to an RP-C₁₈ silica gel column chromatography (20 g, 1×10 cm) using MeOH-110 H_2O [2:1 (0.3 L)] as a solvent to yield 10 sub-fractions (E7a – E7j). Fraction E7b (52 mg) 111 was further purified by using semi-preparative reverse-phase HPLC (250 mm \times 10 mm i.d., 112 10 µm, Phenomenex Luna C18(2) column, flow rate; 1.5 mL/min) with MeOH-H₂O (2:1) to 113 afford compounds 2 (12.0 mg), 4 (6.4 mg), and 9 (8.0 mg). 114 The *n*-BuOH-soluble fraction (15.0 g) was fractionated on HP-20 column chromatography (500 g, 5×55 cm) with the use of a gradient solvent system of MeOH-H₂O (from 0:1 to 1:0) 115 116 to give six fractions (B1 - B6) according to TLC analysis. Fraction B2 (4.5 g) was subjected to a column chromatography using silica gel (300 g, 3×55 cm) with CHCl₃-MeOH-H₂O 117 118 [7:3:1 (2.0 L)] as a solvent system to obtain 32 sub-fractions (B2(1) - B2(32)). Fraction 119 B2(11) (122 mg) was further purified with preparative reverse phase HPLC (250 mm \times 20 120 mm i.d., 10 µm, YMC-Pack ODS-AM C18(2) column, flow rate; 8.0 mL/min) by using 40% 121 MeOH to obtain compound 8 (38.0 mg). Fraction B2(31) (277 mg) was also separated by 122 preparative HPLC using the same column (flow rate; 10.0 mL/min) with 40% MeOH to yield 123 compound 5 (9.0 mg), along with subfraction B2(31)A (87.0 mg), which was then purified by 124 semi-preparative reverse phase HPLC (250 mm \times 10 mm i.d., 10 μ m, Phenomenex Luna 125 C18(2) column, flow rate; 2.0 mL/min) with 30% MeOH to furnish compound 7 (30.0 mg). Fraction B4 (2.8 g) was applied to a silica gel column (300 g, 3×55 cm) using CHCl₃-126 127 MeOH-H₂O [8:3:1 (0.8 L), 6:3:1 (0.8 L), and 6:4:1 (0.5 L)] and 100% MeOH (1.0 L) as a 128 gradient solvent system to give 29 sub-fractions (B4(1) - B4(29)). Fraction B4(9) (44 mg) 129 was further purified using semi-preparative RP HPLC (250 mm × 10 mm i.d., 10 µm, 130 Phenomenex Luna C18(2) column, flow rate; 2.0 mL/min) with 40% MeOH to afford 131 compound 6 (5.2 mg). Fraction B4(15) (168 mg) was also separated by semi-preparative 132 HPLC using the same column system with 40% MeOH to yield compound 1 (21.5 mg).

ACS Paragon Plus Environment

Journal of Agricultural and Food Chemistry

133	Finally, fraction B6 (3.2 g) was applied to column chromatography with silica gel (300 g, $3 \times$
134	55 cm) using a gradient solvent system of CHCl ₃ -MeOH-H ₂ O [8:3:1 (1.0 L)] and 100%
135	MeOH (1.0 L) to give 20 sub-fractions (B6(1) - B6(20)). Fraction B6(10) (383 mg) was
136	further purified using semi-preparative HPLC (250 mm \times 10 mm i.d., 10 μm , Phenomenex
137	Luna C18(2) column, flow rate; 3.0 mL/min) with 40% MeOH to obtain compound 3 (6.0
138	mg).

Limocitrunshin (1). Amorphous yellow powder. $[\alpha]_D^{25}$ +13.57 (*c* 0.14, MeOH); UV 139 (MeOH) λ_{max} (log ε): 204 (4.5), 260 (3.2), 272 (3.1) 358 (2.3) nm; IR (KBr) ν_{max} : 3326, 2942, 140 2826, 1714, 1672, 1590, 1455, 1352, 1110, 1030 cm⁻¹; ¹H NMR (CD₃OD, 700 MHz): δ 7.97 141 (1H, br s, H-2'), 7.73 (1H, br d, J = 8.0 Hz, H-6'), 6.94 (1H, d, J = 8.0 Hz, H-5'), 6.29 (1H, br142 143 s, H-6), 5.36 (1H, d, J = 7.5 Hz, H-1"), 4.25 (1H, dd, J = 11.0, 1.0 Hz, H-6"a), 4.14 (1H, dd, J = 11.0, 3.0 Hz, H-6"b), 3.98 (3H, s, 3'-OCH₃), 3.94 (3H, s, 8-OCH₃), 3.53 (1H, m, H-2"), 3.50 144 (1H, m, H-5"), 3.39 (1H, m, H-3"), 3.33 (1H, m, H-4"), 2.52 (4H, m, H-2"', H-4"'), 1.23 (3H, s, 145 H-6"); ¹³C NMR (CD₃OD, 700 MHz): δ 178.5 (C-4), 171.5 (C-5"), 171.3 (C-1"), 157.9 (C-146 147 7), 157.6 (C-2), 157.1 (C-5), 150.1 (C-4'), 149.4 (C-9), 147.5 (C-3'), 134.4 (C-3), 128.2 (C-8), 148 123.1 (C-6'), 122.1 (C-1'), 115.2 (C-5'), 113.3 (C-2'), 104.7 (C-10), 103.0 (C-1"), 99.3 (C-6), 149 77.0 (C-3"), 75.0 (C-5"), 74.9 (C-2"), 70.8 (C-4"), 69.7 (C-3"), 63.6 (C-6"), 61.2 (8-OCH₃), 55.8 (3'-OCH₃), 45.2 (C-2"), 45.1 (C-4"), 26.9 (C-6"); High-resolution (HR)-ESIMS 150 151 (negative-ion mode) m/z: 651.1547 [M – H]⁻ (calcd for C₂₉H₃₁O₁₇, 651.1561). 152 Acid Hydrolysis of Compound 1. Compound 1 (1.0 mg) was hydrolyzed with 1 N HCl

(1.0 mL) for 6 h at 100 °C. Then the hydrolysate was cooled and filtered, and a yellowish precipitate was obtained, which was identified by NMR to be the aglycone portion, limocitrin.¹³ The filtrate was then neutralized by passage through an Amberlite IRA-67 ion-

156 exchange resin column (Rohm and Haas, Philadelphia, PA). The H₂O eluent was repeatedly 157 evaporated until the liquid was completely removed, then was analyzed using TLC over silica gel (CHCl₃/MeOH/H₂O, 8:5:1), loaded with authentic sugar [TLC R_f (glucose) = 0.30] for the 158 159 comparison. The sugar residue and L-cysteine methyl ester hydrochloride (1.0 mg) were 160 dissolved in 0.1 mL of anhydrous pyridine, and the resultant mixture was gently stirred at 161 60 °C for 2 h. The mixture was then evaporated under vacuum, and the reaction mixture was 162 trimethylsilylated using 0.3 mL of hexamethyldisilazane (HMDS, Sigma-Aldrich, St. Louis, 163 MO)/trimethychlorosilane (TMCS, Sigma-Aldrich)/pyridine (3:1:9) at 60 °C for another 1.5 164 h. It was then concentrated and was solvent-partitioned using *n*-hexane, to yield *n*-hexane-165 soluble and H₂O-soluble layers. The *n*-hexane layer was examined using gas chromatography (GC).^{14,15} The $t_{\rm R}$ value of the standard D-glucose (D-Glc) derivative prepared in the same way 166 167 was 18.58 min. D-Glc was detected from compound 1 by co-injection of hydrolysate with 168 standard silvlated sample, giving a single peak at 18.59 min.

169 Determination of the Absolute Configuration for Compound 1. (S)-1-

170 Phenylethylamine (1.9 μ L, 15.0 μ mol), Et₃N (3.2 μ L, 22.5 μ mol), (Benzotriazol-1-171 yloxy)tripyrrolidinophosphonium hexafluorophosphate (PyBOP, Sigma-Aldrich) (5.8 mg, 172 11.5 µmol), and hydroxybenzotriazole (HOBt, Sigma-Aldrich) (2.0 mg, 15.0 µmol) were 173 added to the solution containing compound 1 (4.9 mg. 7.5 umol) and 0.3 mL of DMF under ice-cooling, and the resultant mixture was stirred at 25 °C for 9 h.¹⁶ The reaction was 174 175 quenched with dilute aqueous HCl, and a yellowish residue was obtained after drying under 176 vacuum. The residue was separated on Sephadex LH-20 column chromatography using 50% 177 MeOH to furnish amide **1a** (4.2 mg). Compound **1a** was identified by LC-MS analysis, where 178 a molecular ion peak at m/z 756.2 $[M + H]^+$ was observed. LiBH₄ (2.6 mg, 79.5 µmol) was added to the solution containing **1a** (4.0 mg, 5.3 µmol) and THF (0.3 mL) under ice-cooling. 179

180 The solution was stirred for 24 h at 25 °C, then the reaction was guenched with dilute 181 aqueous HCl and the resultant mixture was extracted with EtOAc. The resulting extract was 182 separated using a silica gel Waters Sep-Pak Vac 6 cc (CHCl₃-MeOH, 3:1) and a colorless oil 183 was obtained, which was then acetylated with Ac_2O (2.5 μ L, 26.5 μ mol) in pyridine (30 μ L). The reaction mixture was stirred for 24 h at 25 °C, diluted with H₂O, extracted with EtOAc, 184 and concentrated to yield **1b** (4.5 mg) as a colorless oil. The ¹H NMR spectrum of **1b** was 185 186 found to be consistent with that of (3R)-5-O-acetyl-1-[(S)-phenylethyl]-mevalonamide when compared, rather than the (3S) isomer previously reported.^{17,18} 187 (3R)-5-O-Acetyl-1-[(S)-phenylethyl]-mevalonamide (1b). Colorless oil. ¹H NMR 188 189 (CDCl₃, 700 MHz): δ 7.27–7.37 (5H, m, Ph), 6.11 (1H, br s, NH), 5.14 (1H, m, H-1'), 4.23

190 (2H, t, J = 6.5 Hz, H-5), 2.41, 2.28 (each 1H, d, J = 14.5 Hz, H-2), 2.04, (3H, s, Ac), 1.85-191 1.83 (2H, m, H-4), 1.50 (3H, d, J = 6.5 Hz, H-2'), 1.23 (3H, s, H-6); ESIMS m/z 294.1 [M + 192 H]⁺.

193 **Chemicals and Reagents.** Cisplatin and LPS were obtained from Sigma-Aldrich (Seoul,

South Korea). The cell viability assay kit (Ez-Cytox) was obtained from Dail Lab Service Co.
(Seoul, Korea). Fetal bovine serum (FBS) and Dulbecco's modified Eagle's medium
(DMEM) were obtained from Invitrogen Co. (Grand Island, NY).

197 Inhibitory Activity towards NO Production by LPS-induced Macrophages. RAW

198 264.7 cells were purchased from the American Type Culture Collection (Rockville, MD) and 199 cultured in DMEM (Cellgro, Manassas, VA) supplemented with 10% FBS, 1% penicillin and 200 streptomycin (Invitrogen Co.) and 4 mM L-glutamine in an atmosphere of 5% CO₂ at 37 °C. 201 When the cells were approximately 80% confluent, they were seeded in 96-well culture plates 202 at 1×10^5 cells per well and incubated for 24 h for adhesion. The cells were then treated with 203 control (0.5% DMSO) or with the indicated concentrations of the isolates 1-9 or 1 μ g/mL of 204 LPS. After incubation for 24 h, 80 μ L of cell culture medium was mixed with 80 μ L of Griess 205 reagent and the mixture was incubated for 10 min. The absorbance was measured at 540 nm 206 using a microplate reader. The quantity of nitrite was determined from a sodium nitrite standard curve. After the nitric oxide assay, cell viability was determined. When the cells 207 were approximately 80% confluent, they were seeded in 96-well culture plates at 5×10^5 cells 208 209 per well and incubated for 24 h for adhesion. The cells were treated with control (0.5% 210 DMSO), with the indicated concentrations of isolates 1-9, or with 1 μ g/mL of LPS. After 211 incubation for 24 h, 10 µL of Ez-Cytox reagent was added to each well, and the cells were 212 incubated for 2 h. Quercetin was used as a positive control. Cell viability was measured by 213 absorbance at 450 nm using a microplate reader.

214 Protective Effect against Cisplatin-induced Damage in LLC-PK1 Renal Cells. Pig

kidney epithelium LLC-PK1 cells were purchased from the American Type Culture 215 216 Collection (Rockville) and cultured in DMEM (Cellgro), supplemented with 10% FBS, 1% 217 penicillin and streptomycin (Invitrogen Co.), and 4 mM L-glutamine in an atmosphere of 5% CO₂ at 37 °C. Cell viability was determined using the Ez-Cytox cell viability detection kit. 218 219 Pig kidney epithelium LLC-PK1 cells were used to evaluate renoprotective activity against 220 cisplatin-induced cytotoxicity. When the cells were approximately 80% confluent, they were seeded in 96-well culture plates at 1×10^4 cells per well and incubated for 24 h for adhesion. 221 222 Then cells were treated with control (0.5% DMSO) or the indicated concentrations of isolates 223 1-9. After incubation for 2 h, 30 μ M of cisplatin was added to each well, and incubated for 224 another 24 h. After incubation, 10 µL of Ez-Cytox reagent was added to each well, and the 225 cells were incubated for 2 h. N-acetyl cysteine (NAC) was used as a positive control. Cell viability was measured by absorbance at 450 nm using a microplate reader. 226

227 Western Blotting Analysis. LLC-PK1 cells cultured in 6-well plates were treated with 228 250μ M of 5 and 8 for 24 h, and cells were lysed with radioimmunoprecipitation assay 229 (RIPA) buffer supplemented with 1 mM phenylmethylsulfonyl fluoride (PMSF) immediately 230 before use. Concentration of protein was determined using the Protein Assay Kit (Thermo 231 Fisher Scientific, Waltham, MA). Equal amounts (20 µg/lane) of protein (whole-cell extracts) 232 were separated by electrophoresis and transferred onto PVDF transfer membranes. Specific 233 proteins were analyzed using epitope-specific primary antibodies to phospho-JNK, p53, 234 cleaved caspase-3, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and horseradish 235 peroxidase (HRP) conjugated anti-rabbit antibodies (Cell Signaling Technology). Bound 236 antibodies were detected using ECL Advance Western Blotting Detection Reagents (GE 237 Healthcare, Little Chalfont, UK) and visualized with a FUSION Solo Chemiluminescence 238 System (PEQLAB Biotechnologie GmbH, Erlangen, Germany).

Statistical Analysis. One-way analysis of variance (ANOVA) followed by a multiple
comparison test with Bonferroni adjustment was used for statistical analysis using SPSS ver.
19.0 (SPSS Inc., Chicago, IL). *P* values of less than 0.05 were considered statistically
significant.

243

244 **RESULTS AND DISCUSSION**

245

Isolation and Structural Elucidation of Compounds. Whole *C. unshiu* fruits were
extracted with 100% EtOH to give crude EtOH extracts (89.0 g) which were solventpartitioned using hexane, EtOAc, and *n*-BuOH. Chemical investigation of the two fractions,

EtOAc-soluble and *n*-BuOH-soluble fractions, using repeated column chromatography and
HPLC purification resulted in isolation and identification of a novel flavonoid glycoside,
limocitrunshin 1, along with seven other flavonoids 2–8 and a limonoid 9 (Figure 1).

252 Compound 1 was isolated as an amorphous, yellowish powder; its molecular formula, $C_{29}H_{32}O_{17}$ was established by HR-ESIMS in negative ion mode at m/z 651.1547 [M – H]⁻ 253 (calcd for $C_{29}H_{31}O_{17}$, 651.1561). The absorption bands for OH (3326 cm⁻¹), carbonyl (1714 254 cm⁻¹), conjugated carbonyl (1672 cm⁻¹), and benzyl groups (1590 and 1455 cm⁻¹) were 255 256 observed in the IR spectrum. In the UV spectrum, absorption bands that appeared at 260, 272, and 358 nm suggested that compound 1 possesses a flavonol skeleton. The ¹H and ¹³C NMR 257 data consisted of signals that are similar to that of 5,7,8,3',4'-pentasubstituted flavonol 258 glycoside¹⁹ with two methoxy groups [δ_H 3.98 (s); δ_C 55.8 and δ_H 3.94 (s); δ_C 61.2] and one 259 sugar unit as shown by signals of an anomeric proton at $\delta_{\rm H}$ 5.36 (d, J = 7.5 Hz, H-1") and its 260 261 corresponding anomeric carbon at δ_{C} 103.0 (C-1"). The heteronuclear multiple bond correlations (HMBC) between δ_H 3.98 (OCH₃) and δ_C 147.5 (C-3') and between δ_H 3.94 262 (OCH₃) and $\delta_{\rm C}$ 128.2 (C-8) was observed and thus confirmed the locations of methoxy 263 264 groups at C-3' and C-8 of the aglycone, respectively (Figure 2). Acid hydrolysis of 1 yielded 265 a sugar and limocitrin, 3,4',5,7-tetrahydroxy-3',8-dimethoxyflavone, which was verified through comparison with reported NMR data.¹³ The sugar was identified as D-glucose using 266 267 GC analysis, where the retention time of the derivative of the sugar residue and the standard 268 sugar were compared. The position of glycosidic linkage was determined by the correlation 269 between $\delta_{\rm H}$ 5.36 (H-1") and $\delta_{\rm C}$ 134.4 (C-3) in HMBC experiment, indicating the glucose unit to be located at C-3 of the aglycone. The remaining signals in the ¹H and ¹³C NMR spectra of 270 271 1 were identified as a 3-hydroxy-3-methylglutaryl (HMG)-moiety by the HMBC correlations of H-2" (δ_H 2.52)/C-1" (δ_C 171.3), H-4" (δ_H 2.52)/C-5" (δ_C 171.5), and H-6" (δ_H 1.23)/C-2" 272

273	$(\delta_C 45.2)$, C-3 ^{III} ($\delta_C 69.7$), and C-4 ^{III} ($\delta_C 45.1$). On the basis of the HMBC correlations
274	between δ_H 4.25 and 4.14 (H-6") and δ_C 171.3 (C-1""), the HMG substituent was established
275	to be located at C-6 of the glucose moiety (Figure 2). The absolute configuration of the HMG
276	unit was determined by the refined method using the steps of amination and reduction. ¹⁶
277	Amination with (S)-1-phenylethylamine gave compound 1a (Figure 3). Reduction of 1a with
278	LiBH ₄ followed by acetylation with Ac ₂ O yielded 5-O-acetyl-1-[(S)-phenylethyl]-
279	mevalonamide (1b): the ¹ H NMR data of 1b were identical to those of $(3R)$ -5-O-acetyl-1-
280	[(S)-phenylethyl]-mevalonamide, instead of (3S) isomer. ^{17,18} Thus, with the above evidences,
281	compound 1 was unambiguously identified as limocitrin-3-O-[(S)-3-hydroxy-3-
282	methylglutaryl- $(1\rightarrow 6)$]- β -D-glucopyranoside, and was named limocitrunshin. Previously, the
283	gross structure of 1 was identified from C. unshiu without verifying the absolute
284	configuration, $20,21$ but the complete structure of 1 including the identification of the (3S)-
285	HMG-moiety were established for the first time in this study. The previously reported NMR
286	data in the literature were very similar to those of compound 1, but they had apparent
287	differences in the ^{13}C NMR data of the HMG unit [particularly, δ_C 69.7 (C-3"") in 1 and δ_C
288	68.8 (C-3") in the reported data], ²¹ which suggested that compound 1 is not identical to the
289	previously reported one. Compound 1 is the first example of the limocitrin $3-\beta$ -D-
290	glucopyranoside possessing the (3S)-HMG-moiety.

The naturally occurring products conjugated with HMG group are seldom present in various types of natural products including sesquiterpenoids,^{18,22} diterpenoids,²³ triterpenoids,²⁴⁻²⁷ steroids,²⁸ and flavonoids.²⁹⁻³³ The majority of compounds with the HMG moiety belong to flavonoid glycosides, and the HMG moiety tends to be attached at C-6 of sugar such as glucose or galactose.²⁹⁻³³ Citrus fruits have been reported to contain the flavonoid glycosides carrying the HMG unit,^{20,21,30,31} but this study is the first report of the verification of 3*S*-

297 configuration for the HMG group using the refined method in the flavonoid glycosides of C. 298 unshiu. An extensive literature survey showed that the HMG group does not seem to have significance in biological activities. Several HMG-conjugated flavonoid glycosides did not 299 300 have inhibitory effects on NO production in lipopolysaccharide (LPS)-induced RAW 264.7 cells³³ nor antimicrobial activity against methicillin-resistant *Staphylococcus aureus* (MRSA) 301 302 and Helicobacter pylori (H. pylori), although the other related flavonoids without the HMG group showed the antimicrobial activity.³⁰ In addition, the presence of the HMG group in 303 triterpenoids did not affect cytotoxic activities against several cancer cell lines^{25,26} nor 304 inhibitory effects on LPS-induced NO production in murine microglia BV-2 cells.²⁶ However. 305 there was an interesting report for the HMG group that the linkage of the HMG group at C-3 306 307 in triterpenoids markedly increased the selective inhibition of COX-1 activity when 308 compared to the related triterpenoids without the HMG group, which were selective inhibitors of COX-2.27 309

The known compounds were identified as nobiletin (3',4',5,6,7,8-hexamethoxyflavone) (2),³⁴ kaempferol 3-*O*-rutinoside (3),³⁵ limocitrin 3-glucoside (4),¹⁹ kaempferol 3-(2^{*G*}rhamnosylrutinoside) (5),³⁵ didymin (4'-methoxyl naringenin 7-*O*-rutinoside) (6),³⁶ (2*S*)narirutin 4'-*O*-glucoside (4'- β -D-glucosyl naringenin 7-*O*-rutinoside) (7),³⁷ naringenin 7-*O*rutinoside (8),³⁸ and methyl nomilinate (9)³⁹ respectively, by comparing their spectroscopic and physical data with those in the literature as well as by measurement of their specific rotations. Compounds 3, 5, and 9 were reported from *C. unshiu* for the first time.

Evaluation of Biological Activity of Compounds 1–9. Compounds **1–9** were evaluated for

inhibitory effects on inflammation and nephrotoxicity to verify their potential health benefits.

319 Murine macrophage RAW 264.7 cells were used for evaluating inhibitory activity towards

NO production by LPS-activated macrophages.^{40,41} Treatment of RAW 264.7 cells with up to

321 $200 \,\mu\text{M}$ of compounds 1-9 did not show any cytotoxic effects (Figure 4A). Conversely, all of 322 the compounds significantly inhibited NO production (Figure 4B), which is involved in inflammatory processes.⁴² Particularly, compound 9 (IC₅₀ = 65 μ M) was the strongest 323 324 inhibitor as compared to the positive control used in this study $[IC_{50} (quercetin): 150]$ μ M].^{43,44} The other compounds also showed inhibitory activity on NO with IC₅₀ values in the 325 range 70-110 µM [IC₅₀ (1): 75 µM, IC₅₀ (2): 95 µM, IC₅₀ (3): 110 µM, IC₅₀ (4): 75 µM, IC₅₀ 326 (5): 70 μM, IC₅₀ (6): 85 μM, IC₅₀ (7): 70 μM, and IC₅₀ (8): 70 μM]. The most potent inhibitor, 327 328 methyl nomilinate (9) is a class of limonoids which are highly oxygenated nortriterpenoids 329 with a prototypical structure and a β -substituted furan ring. Its occurrence is abundant in 330 citrus fruits and other plants of the families Rutaceae and Meliaceae. There has been only 331 limited work that focused on the anti-inflammatory effects of limonoids, but recently many limonoids were reported to inhibit NO production in RAW 264.7 macrophage cells induced 332 by LPS,⁴⁵⁻⁴⁸ which suggests the potential of limonoids for the development of anti-333 inflammatory agents. The other active compounds were all flavonoids and their inhibitory 334 effects on NO production have been extensively studied.49 In the structure-activity 335 336 relationships, it has been reported that a C-2,3 double bond in the flavonoid skeleton is 337 essential for the activity and that the efficacy of activity was dependent upon the substitution patterns within the flavonoids.⁴⁹ 338

Next, the kidney protective effects of compounds 1-9 were assessed in LLC-PK1 cells using a WST assay.⁵⁰ The kidney protection effects of isolates 1-9 are shown in Figure 5A. Pretreatment of LLC-PK1 cells with compounds 1, 2, 5, 8 and 9 at concentrations of 125 and kignificantly abrogated cisplatin-induced nephrotoxicity (Figure 5A). Of these, compounds 5 and 8 were selected for further mechanistic studies because of their ameliorating effects on cell viability damage, leading to recovery of more than 90% at the

345 250 μ M concentration (**Figure 5A**).

346 Western blotting was performed in order to investigate the protective mechanism of 347 compounds 5 and 8 on the expression of proteins involved in the apoptotic response. Results 348 from Western blot analysis are shown in Figure 5B. We determined that cisplatin promoted high levels of phosphorylated JNK (phospho-JNK), p53 and cleavage of caspase-3, which 349 350 triggered apoptosis of LLC-PK1 cells, while pretreatment with compounds 5 and 8 decreased 351 levels of phospho-JNK, p53, and cleaved caspase-3 protein (Figure 5B). Therefore, the 352 kidney cell protective effects of compounds 5 and 8 are shown to involve the inhibition of pathways of apoptosis through the JNK-p53-caspase apoptotic cascade. 353 354 Recently, it was reported that several flavonoids isolated from peat moss Sphagnum palustre showed the protective effects against kidney damage induced by cisplatin⁵¹ and that 355

flavonoids in a multi-herbal decoction, known as Chungsimyeonja-tang, possessed protective effects against cisplatin-induced nephrotoxicity.⁵² Unfortunately, it was difficult to find any significant relevance between structure and activity of the flavonoid molecules in this kidney protection assay.

In conclusion, chemical investigation of the EtOH extract of *C. unshiu* fruit led to the isolation and identification of a total of 9 components including a new flavonoid glycoside, which may be at least partially responsible for the health benefits of *C. unshiu* fruit. Among the isolates, compound **9** inhibited potent NO production in LPS-stimulated macrophages, and compounds **5** and **8** showed the most potent inhibition of renal cell damage. Thus, this study revealed the possible application of the fruits of *C. unshiu* as a beneficial natural source of bioactive metabolites with health benefits in functional foods.

367

368 ASSOCIATED CONTENT

369	*Supporting Information							
370	The Supporting Information is available free of charge on the ACS Publications website at							
371								
372								
373	∎AU	THOR	INFOR	ΜΑΤΙΟ	N			
374								
375	Corre	spondin	g Author	s				
376	*(Ki	Sung	Kang)	(Tel:	+82-31-750-5402;	Fax:	+82-31-750-5416;	E-mail:
377	kkan	g@gacho	on.ac.kr)					
378	*(Ki	Hyun	Kim)	(Tel:	+82-31-290-7700;	Fax:	+82-31-290-7730;	E-mail:
379	<u>khkim</u>	<u>83@skk</u>	u.edu)					
380								
381	Autho	or Contri	butions					
382	H.J.E.	, D.L., S	.L., and H	.J.N. pe	rformed most of the e	xperime	ntal work. H.J.N. cond	ceived the
383	projec	t and des	igned the	experin	nents. J.W.H. and P.H.	Y. provi	ded the needed materi	als. H.J.E.
384	and K	.H.K. de	esigned ar	nd imple	emented the separatio	n and p	urification protocols.	D.L. and
385	K.S.K	. designe	ed and in	nplemen	ted the biological tes	st protoc	cols. K.S.K., S.L., an	d K.H.K.
386	draftee	d and rev	ised the n	nanuscri	pt. All authors read ar	nd appro	ved the final manuscri	ipt.
387								
200								
200								

389 Funding

390	This research was supported by Basic Science Research Program through the National
391	Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future
392	Planning (2015R1C1A1A02037383).
393	
394	Note
395	The authors declare there are no conflicts of interest.
396	

- 397
- 398

399 **REFERENCES**

- 400 (1) Oh, Y. C.; Cho, W. K.; Jeong, Y. H.; Im, G. Y.; Yang, M. C.; Hwang, Y. H.; Ma, J. Y.
 401 Anti-inflammatory effect of *Citrus unshiu* peel in LPS-stimulated RAW 264.7
 402 macrophage cells. *Am. J. Chin. Med.* 2012, *40*, 611-629.
- 403 (2) Lee, S.; Ra, J.; Song, J. Y.; Gwak, C. H.; Kwon, H. J.; Yim, S. V.; Hong, S. P.; Kim, J.;
- Lee, K. H.; Cho, J. J.; Park, Y. S.; Park, C. S.; Ahn, H. J. Extracts from *Citrus unshiu*promote immune-mediated inhibition of tumor growth in a murine renal cell carcinoma
 model. *J. Ethnopharmacol.* 2011, *133*, 973-979.
- 407 (3) Kamei, T.; Kumano, H.; Iwata, K.; Nariai, Y.; Matsumoto, T. The effect of a traditional
 408 Chinese prescription for a case of lung carcinoma. *J. Altern. Complement. Med.* 2000,
 409 6, 557-559.
- (4) Ma, Y. Q.; Ye, X. Q.; Fang, Z. X.; Chen, J. C.; Xu, G. H.; Liu, D. H. Phenolic
 compounds and antioxidant activity of extracts from ultrasonic treatment of Satsuma
 mandarin (*Citrus unshiu* Marc.) peels. J. Agric. Food Chem. 2008, 56, 5682–5690.
- 413 (5) Inoue, T.; Tsubaki, S.; Ogawa, K.; Onishi, K.; Azuma, J. Isolation of hesperidin from
- 414 peels of thinned *Citrus unshiu* fruits by microwave-assisted extraction. *Food Chem.*415 **2010**, *123*, 542–547.
- (6) Kaur, J.; Kaur, G. An insight into the role of citrus bioactives in modulation of colon
 cancer. J. Funct. Foods 2015, 13, 239–261.
- 418 (7) Bocco, A.; Cuvelier, M. E.; Richard, H.; Berset, C. Antioxidant activity and phenolic
 419 composition of citrus peel and seed extracts. *J. Agric. Food Chem.* 1998, 46, 2123–
 420 2129.
- 421 (8) Higashi-Okai, K.; Kamimoto, K.; Yoshioka, A.; Okai, Y. Potent suppressive activity of 422 fresh and dried peels from Satsuma mandarin *Citrus unshiu* (Marcorv.) on

hydroperoxide generation from oxidized linoleic acid. Phytother. Res. 2002, 16, 781-

423

424	784.
425	(9) Suzuki, M.; Sasaki, K.; Yoshizaki, F.; Fujisawa, M.; Oguchi, K.; Cyong, J. C. Anti-
426	hepatitis C virus effect of Citrus unshiu peel and its active ingredient nobiletin. Am. J.
427	Chin. Med. 2005, 33, 87–94.
428	(10) Jo, C. R.; Park, B. J.; Chung, S. H.; Kim, C. B.; Cha, B. S.; Byun, M. W.
429	Antibacterial and anti-fungal activity of citrus (Citrus unshiu) essential oil extracted
430	from peel by-products. Food Sci. Biotechnol. 2004, 13, 384–386.
431	(11) Noh, H. J.; Hwang, D.; Lee, E. S.; Hyun, J. W.; Yi, P. H.; Kim, G. S.; Lee, S. E.; Pang,
432	C.; Park, Y. J.; Chung, K. H.; Kim, G. D.; Kim, K. H. Anti-inflammatory activity of a
433	new cyclic peptide, citrusin XI, isolated from the fruits of Citrus unshiu. J.
434	Ethnopharmacol. 2015, 163, 106-112.
435	(12) Choi, K. J. Functional Foods and Nutraceuticals, first ed. Seoul: Dong Myeong
436	Publishers, 2008, p. 147.
437	(13) Horie, T.; Tsukayama, M.; Kawamura, Y.; Seno, M.; Yamamoto, S. Studies of the
438	selective O-alkylation and dealkylation of flavonoids. XI. A new convenient method
439	for synthesizing 3,5,7-trihydroxy-8-methoxyflavones from 7-hydroxy-3,5,8-
440	trimethoxyflavones. Bull. Chem. Soc. Jpn. 1988, 61, 441-447.
441	(14) Hara, S.; Okabe, H.; Mihashi, K. Gas-liquid chromatographic separation of aldose
442	enantiomers as trimethylsilyl ethers of methyl 2-(polyhydroxyalkyl)-thiazolidine- $4(R)$ -
443	carboxylates. Chem. Pharm. Bull. 1987, 35, 501-506.
444	(15) Kim, K. H.; Kim, M. A.; Moon, E.; Kim, S. Y.; Choi, S. Z.; Son, M. W.; Lee, K. R.
445	Furostanol saponins from the rhizomes of Dioscorea japonica and their effects on NGF
446	induction. Bioorg. Med. Chem. Lett. 2011, 21, 2075-2078.

447	(16) Hattori, Y.; Horikawa, K.; Makabe, H.; Hirai, N.; Hirota, M.; Kamo, T. A refined
448	method for determining the absolute configuration of the 3-hydroxy-3-methylglutaryl
449	group. Tetrahedron: Asymmetry 2007, 18, 1183-1186.
450	(17) Kamo, T.; Hirai, N.; Matsumoto, C.; Ohigashi, H.; Hirota, M. Revised chirality of the
451	acyl group of 8'-O-(3-hydroxy-3-methylglutaryl)-8'-hydroxyabscisic acid.
452	Phytochemistry 2004, 65, 2517-2520.
453	(18) Fujimoto, H.; Nakamura, E.; Kim, Y. P.; Okuyama, E.; Ishibashi, M.; Sassa, T.
454	Immunomodulatory constituents from an Ascomycete, Eupenicillium crustaceum, and
455	revised absolute structure of macrophorin D. J. Nat. Prod. 2001, 64, 1234-1237.
456	(19) Bennini, B.; Chulia, A. J.; Kaouadji, M.; Thomasson, F. Flavonoid glycosides from
457	Erica cinerea. Phytochemistry 1992, 31, 2483-2486.
458	(20) Sawabe, A. Bioactive compounds in citrus fruit peels. Food. Food Ingredients J. Jpn.
459	1996 , <i>169</i> , 37-44.
460	(21) Sawabe, A.; Matsubara, Y.; Iizuka, Y.; Okamoto, K. Studies on physiologically active
461	substances in citrus fruit peel. Part XIV. Structures and hypotensive effect of flavonoid
462	glycosides in young Citrus unshiu peelings. Yukagaku 1989, 38, 53-59.
463	(22) Surup, F.; Thongbai, B.; Kuhnert, E.; Sudarman, E.; Hyde, K. D.; Stadler, M.
464	Deconins A-E: Cuparenic and mevalonic or propionic acid conjugates from the
465	Basidiomycete Deconica sp. 471. J. Nat. Prod. 2015, 78, 934-938.
466	(23) Mohamed, K. M.; Ohtani, K.; Kasai, R.; Yamasaki, K. 3-Hydroxy-3-methylglutaryl
467	dolabellane diterpenes from Chrozophora obliqua. Phytochemistry 1995, 39, 151-161.
468	(24) Kamo, T.; Asanoma, M.; Shibata, H.; Hirota, M. Anti-inflammatory lanostane-type
469	triterpene acids from Piptoporus betulinus. J. Nat. Prod. 2003, 66, 1104-1106.
470	(25) Ma, L.; Gu, Y. C.; Luo, J. G.; Wang, J. S.; Huang, X. F.; Kong, L. Y. Triterpenoid

471	saponins from Dianthus versicolor. J. Nat. Prod. 2009, 72, 640-644.
472	(26) Kim, K. H.; Moon, E.; Choi, S. U.; Kim, S. Y.; Lee, K. R. Lanostane triterpenoids
473	from the mushroom Naematoloma fasciculare. J. Nat. Prod. 2013, 76, 845-851.
474	(27) Yoshikawa, K.; Inoue, M.; Matsumoto, Y.; Sakakibara, C.; Miyataka, H.; Matsumoto,
475	H.; Arihara, S. Lanostane triterpenoids and triterpene glycosides from the fruit body of
476	Fomitopsis pinicola and their inhibitory activity against COX-1 and COX-2. J. Nat.
477	Prod. 2005, 68, 69-73.
478	(28) Kawashima, K.; Mimaki, Y.; Sashida, Y. Steroidal saponins from the bulbs of Allium
479	schubertii. Phytochemistry 1993, 32, 1267-1272.
480	(29) Song, S.; Zheng, X.; Liu, W.; Du, R.; Bi, L.; Zhang, P. 3-Hydroxymethylglutaryl
481	flavonol glycosides from a Mongolian and Tibetan medicine, Oxytropis racemosa.
482	Chem. Pharm. Bull. 2010, 58, 1587-1590.
483	(30) Nakagawa, H.; Takaishi, Y.; Tanaka, N.; Tsuchiya, K.; Shibata, H.; Higuti, T.
484	Chemical constituents from the peels of Citrus sudachi. J. Nat. Prod. 2006, 69, 1177-
485	1179.
486	(31) Fu, X.; Li, X. C.; Wang, Y. H.; Avula, B.; Smillie, T. J.; Mabusela, W.; Syce, J.;
487	Johnson, Q.; Folk, W.; Khan, I. A. Flavonol glycosides from the South African
488	medicinal plant Sutherlandia frutescens. Planta Med. 2010, 76, 178-181.
489	(32) Donna, L. D.; Luca, G. D.; Mazzotti, F.; Napoli, A.; Salerno, R.; Taverna, D.;
490	Sindona, G. Statin-like principles of bergamot fruit (Citrus bergamia): Isolation of 3-
491	hydroxymethylglutaryl flavonoid glycosides. J. Nat. Prod. 2009, 72, 1352-1354.
492	(33) Wang, S. S.; Zhang, X. J.; Que, S.; Tu, G. Z.; Wan, D.; Cheng, W.; Liang, H.; Ye, J.;
493	Zhang, Q. Y. 3-Hydroxy-3-methylglutaryl flavonol glycosides from Oxytropis falcata.
494	J. Nat. Prod. 2012, 75, 1359-1364.
	22

ACS Paragon Plus Environment

495	(34) Machida, K.; Osawa, K. On the flavonoid constituents from the peels of Citrus
496	hassaku Hort. ex Tanaka. Chem. Pharm. Bull. 1989, 37, 1092-1094.
497	(35) Kazuma, K.; Noda, N.; Suzuki, M. Malonylated flavonol glycosides from the petals
498	of Clitoria ternatea. Phytochemistry 2003, 62, 229-237.
499	(36) Liu, R.; Kong, L.; Li, A.; Sun, A. Preparative isolation and purification of saponin
500	and flavone glycoside compounds from Clinopodium chinensis (Benth) O. Kuntze by
501	high-speed countercurrent chromatography. J. Liq. Chromatogr. Relat. Technol. 2007,
502	30, 521–532.
503	(37) Kumamoto, H.; Matsubara, Y.; Iizuka, Y.; Okamoto, K.; Yokoi, K. Structures and
504	hypotensive effect of flavonoid glycosides in unshiu peel. II. Studies on physiologically
505	active substances in citrus peel. Part VII. Yukagaku 1986, 35, 379-381.
506	(38) Matsubara, Y.; Kumamoto, H.; Iizuka, Y.; Murakami, T.; Okamoto, K.; Miyake, H.;
507	Yokoi, K. Studies on physiologically active substances in citrus peel. Part II. Structure
508	and hypotensive effect of flavonoid glycosides in Citrus unshiu peelings. Agric. Biol.
509	Chem. 1985, 49, 909-914.
510	(39) Bennett, R. D.; Hasegawa, S.; Herman, Z. Glucosides of acidic limonoids in citrus.
511	Phytochemistry 1989, 28, 2777-2781.
512	(40) Kim, S.; Oh, M. H.; Kim, B. S.; Kim, W. I.; Cho, H. S.; Park, B. Y.; Park, C.; Shin, G.
513	W.; Kwon, J. Upregulation of heme oxygenase-1 by ginsenoside Ro attenuates
514	lipopolysaccharide-induced inflammation in macrophage cells. J. Ginseng Res. 2015,
515	<i>39</i> , 365-370.
516	(41) Baek , K. S.; Hong, Y. D.; Kim, Y.; Sung, N. Y.; Yang, S.; Lee, K. M.; Park, J. Y.;
517	Park, J. S.; Rho, H. S.; Shin, S. S.; Cho, J. Y. Anti-inflammatory activity of AP-SF, a
518	ginsenoside-enriched fraction, from Korean ginseng. J. Ginseng Res. 2015, 39, 155-

519	161.
520	(42) Yang, Y.; Lee, J.; Rhee, M. H.; Yu, T.; Baek, K. S.; Sung, N. Y.; Kim, Y.; Yoon, K.;
521	Kim, J. H.; Kwak, Y. S.; Hong, S.; Kim, J. H.; Cho, J. Y. Molecular mechanism of
522	protopanaxadiol saponin fraction-mediated anti-inflammatory actions. J. Ginseng Res.
523	2015 , <i>39</i> , 61-68.
524	(43) Syahida, A.; Israf, D. A.; Permana, D.; Lajis, N. H.; Khozirah, S.; Afiza, A. W.;
525	Khaizurin, T. A.; Somchit, M. N.; Sulaiman, M. R.; Nasaruddin, A. A. Atrovirinone
526	inhibits pro-inflammatory mediator release from murine macrophages and human
527	whole blood. Immunol. Cell Biol. 2006, 84, 250-258.
528	(44) Qureshi, A. A.; Guan, X. Q.; Reis, J. C.; Papasian, C. J.; Jabre, S.; Morrison, D. C.;
529	Qureshi, N. Inhibition of nitric oxide and inflammatory cytokines in LPS-stimulated
530	murine macrophages by resveratrol, a potent proteasome inhibitor. Lipids Health Dis.
531	2012 , <i>11</i> , 76.
532	(45) Xu, J. B.; Lin, Y.; Dong, S. H.; Wang, F.; Yue, J. M. Trichinenlides A-T,
533	mexicanolide-type limonoids from Trichilia sinensis. J. Nat. Prod. 2013, 76, 1872-
534	1880.
535	(46) Dzoyem, J. P.; Tsamo, A. T.; Melong, R.; Mkounga, P.; Nkengfack, A. E.; McGaw, L.
536	J.; Eloff, J. N. Cytotoxicity, nitric oxide and acetylcholinesterase inhibitory activity of
537	three limonoids isolated from Trichilia welwitschii (Meliaceae). Biol. Res. 2015, 48, 57.
538	(47) Pan, X.; Matsumoto, M.; Nishimoto, Y.; Ogihara, E.; Zhang, J.; Ukiya, M.; Tokuda,
539	H.; Koike, K.; Akihisa, M.; Akihisa, T. Cytotoxic and nitric oxide production-inhibitory
540	activities of limonoids and other compounds from the leaves and bark of Melia
541	azedarach. Chem. Biodivers. 2014, 11, 1121-1139.
542	(48) Sarigaputi, C.; Sangpech, N.; Palaga, T.; Pudhom, K. Suppression of inducible nitric

ACS Paragon Plus Environment

543	oxide synthase pathway by 7-deacetylgedunin, a limonoid from Xylocarpus sp. Planta
544	<i>Med.</i> 2015 , <i>81</i> , 312-319.
545	(49) Kim, H. K.; Cheon, B. S.; Kim, Y. H.; Kim, S. Y.; Kim, H. P. Effects of naturally
546	occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7
547	and their structure-activity relationships. Biochem. Pharmacol. 1999, 58, 759-765.
548	(50) Kim, T.; Kim, Y. J.; Han, I. H.; Lee, D.; Ham, J.; Kang, K. S.; Lee, J. W. The
549	synthesis of sulforaphane analogues and their protection effect against cisplatin
550	induced cytotoxicity in kidney cells. Bioorg. Med. Chem. Lett. 2015, 25, 62-66.
551	(51) Kang, H. R.; Lee, D.; Eom, H. J.; Lee, S. R.; Lee, K. R.; Kang, K. S.; Kim, K. H.
552	Identification and mechanism of action of renoprotective constituents from peat moss
553	Sphagnum palustre in cisplatin-induced nephrotoxicity. J. Funct. Foods 2016, 20, 358-
554	368.
555	(52) Kim, Y. J.; Kim, T. W.; Seo, C. S.; Park, S. R.; Ha, H.; Shin, H. K.; Jung, J. Y.
556	Quatification of flavonoid contents in Chungsimyeonja-tang, a multi-herbal decoction,
557	and its protective effect against cisplatin-induced nephrotoxicity. Nat. Prod. Sci. 2014,
558	20, 251-257.
559	

561	
562	Figure captions
563	Figure 1. Chemical structures of compounds 1-9.
564	
565	Figure 2. Key 1 H- 1 H COSY (—) and HMBC (\longrightarrow) correlations of 1 .
566	
567	Figure 3. Determination of the absolute configuration of HMG group of compound 1.
568	
569	Figure 4. (A) Comparison of the cell viability of compounds 1-9 in RAW 264.7 cells. (B)
570	Nitric oxide inhibition of compounds 1-9 in LPS-activated macrophage RAW 264.7 cells.
571	*p<0.05 means compared to the LPS-treated value.
572	
573	Figure 5. (A) Comparison of the protective effects of compounds 1-9 against cisplatin-
574	induced nephrotoxicity in LLC-PK1 cells. (B) Effects of compounds 5 and 8 on phospho-
575	JNK, JNK, phospho-p53, p53, and cleaved caspase-3 expression on cisplatin-induced
576	nephrotoxicity in LLC-PK1 cells. *p<0.05 means compared to the cisplatin-treated value.

Figure 1.

Figure 2.

(a) (S)-1-phenylethylamine, DMF, Et_3N , PyBOP, HOBt; (b) LiBH₄, THF; (c) Ac₂O, pyridine.

Figure 3.

Concentration (200 µM)

Figure 5.

