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ABSTRACT: The fruits of Citrus unshiu are one of the most popular and mostly enjoyed 20 

fruits in Korea. As we continue to seek for bioactive metabolites from Korean natural 21 

resources, our study on chemical constituents of the fruits of C. unshiu resulted in the 22 

isolation of a new flavonoid glycoside, limocitrunshin 1, along with seven other flavonoids 23 

2–8 and a limonoid 9. All structures were identified by spectroscopic methods, namely 1D 24 

and 2D NMR, including HSQC, HMBC and 1H-1H COSY experiments, HRMS, and chemical 25 

methods. Compounds 3, 5, and 9 are reported to be isolated from this fruit for the first time. 26 

The isolated compounds were applied to activity tests to verify their inhibitory effects on 27 

inflammation and nephrotoxicity. Compounds 5 and 9 showed the most potent inhibitory 28 

activity on renal cell damage and nitric oxide production, respectively. Thus, the fruits of C. 29 

unshiu could serve as a valuable natural source of bioactive components with health benefits 30 

for potential application in functional foods. 31 

 32 

 33 

KEYWORDS: Citrus unshiu; Rutaceae; flavonoid; nitric oxide; nephrotoxicity 34 
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    39 

■■■■INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION    40 

 41 

Citrus unshiu Markovich (Rutaceae), also known as the Satsuma mandarin or Satsuma 42 

tangerine, is cultivated in subtropical countries with moderate climate, such as Korea, Japan, 43 

China and Russia. As the fruits of C. unshiu are seedless and are easily peeled, they are one 44 

of the mostly enjoyed fruits in Korea. Citrus fruit is a major product of Jeju Island in Korea, 45 

and many varieties are cultivated there. Peels of mature fruits of C. unshiu have been used as 46 

a Chinese traditional medicine, as well as in Korea.1-3 The peels of citrus fruits contain 47 

phenolic compounds, such as flavanones and hydroxyl cinnamic acids; hesperidin and 48 

narirutin are two main constituents of the flavanones in C. unshiu fruit.4-6 The peels of C. 49 

unshiu are known to possess a wide variety of biological and pharmacological activity by in 50 

vitro and in vivo studies. For example, the peels showed antioxidant activity7 and inhibition 51 

of the growth of tumor in murine renal cell carcinoma in mice through immune-mediated 52 

pathways.2 The peels also exhibited the inhibitory activities of hydroperoxide production,8 53 

certain virus such as hepatitis C,9 as well as growth of certain bacteria.10 From a recent study, 54 

the peels of C. unshiu were reported to have the inhibitory effects on the pro-inflammatory 55 

cytokines in lipopolysaccharide (LPS)-activated RAW 264.7 cells.1 56 

In spite of intensive research on the pharmacological features of C. unshiu peels, the flesh of 57 

the whole fruit has not drawn much attention in biological research although it is the portion 58 

that people actually consume. There are few reports dealing with chemical constituents of the 59 

whole fruit.11 The whole fruit has also been used in natural Korean medicine to improve skin 60 

elasticity, relieve cough and fatigue, and prevent bronchitis, flu, and cancers.12 In our 61 

continuation to seek for bioactive metabolites from Korean natural resources, the fresh whole 62 
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parts of C. unshiu fruit were investigated to explore the anti-inflammatory properties of C. 63 

unshiu fruits. From our recent study, we reported the isolation of a novel cyclic peptide, 64 

citrusin XI, and its anti-inflammatory effects in LPS-stimulated RAW 264.7 cells.11 As part 65 

of our study to seek for novel bioactive constituents from C. unshiu fruit, phytochemical 66 

investigation of the whole fruit was carried out and nine compounds including a new 67 

flavonoid glycoside, seven flavonoids and a limonoid, were isolated. The structure of the new 68 

compound was identified using spectroscopic techniques including 1D and 2D NMR, HRMS, 69 

and other chemical methods. The isolates were further assessed for the inhibition on nitric 70 

oxide (NO) production and renal cell damage.  71 

 72 

■■■■MATERIALS AND METHODSMATERIALS AND METHODSMATERIALS AND METHODSMATERIALS AND METHODS        73 

 74 

GeneralGeneralGeneralGeneral    EEEExperimental xperimental xperimental xperimental PPPProcedures.rocedures.rocedures.rocedures.    Infrared (IR) spectra were measured on an IFS-66/s 75 

FT-IR spectrometer (Bruker, Karlsruhe, Germany). Ultraviolet (UV) spectra were acquired on 76 

an Agilent 8453 UV-visible spectrophotometer (Agilent Technologies, Santa Clara, CA). 77 

Optical rotations were recorded on a Jasco P-1020 polarimeter (Jasco, Easton, MD). High-78 

resolution (HR)-electrospray ionization (ESI) mass spectra were obtained on an UPLC-QTOF 79 

Xevo G2-S mass spectrometer (Waters Corporation, Milford, CT). Nuclear magnetic 80 

resonance (NMR) spectra were obtained from a Bruker AVANCE III 700 NMR spectrometer 81 

operating at 700 MHz (1H) and 175 MHz (13C) (Bruker). Agilent 1200 Series HPLC system 82 

(Agilent Technologies) equipped with a photo diode array (PDA) detector was used for 83 

preparative high-performance liquid chromatography (HPLC) using a 250 mm × 20 mm i.d., 84 

10 µm, YMC-Pack ODS-AM C18(2) column (YMC America, Inc., Allentown, PA). Agilent 85 
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1200 Series HPLC system equipped with a diode array detector and a 6130 Series ESI mass 86 

spectrometer was used for LC-MS analysis using an analytical Kinetex C18 100 Å column 87 

(100 mm × 2.1 mm i.d., 5 µm) (Phenomenex, Torrance, CA). Column chromatography used 88 

silica gel 60, 230-400 mesh, and RP-C18 silica gel, 230-400 mesh (Merck, Darmstadt, 89 

Germany). Sephadex LH-20 (Pharmacia, Uppsala, Sweden) was used for molecular sieve 90 

column chromatography. Thin-layer chromatography (TLC) analysis was conducted by using 91 

precoated silica gel F254 plates and reverse-phase (RP)-18 F254s plates (Merck). Spots on TLC 92 

were detected using UV and by heating after dipping in solvent of anisaldehyde-sulfuric acid.  93 

Plant Plant Plant Plant MMMMaterialaterialaterialaterial.... Fully ripe fruits of the ‘Miyagawa-wase’ variety of Satsuma mandarin (C. 94 

unshiu Marc.) were cultivated from the National Institutes of Horticultural and Herbal 95 

Science, Jeju, Korea, in August 2012. The materials were identified by one of the authors (J. 96 

W. Hyun). A voucher specimen (SKKU-CU 2012-8) has been stored in the herbarium of the 97 

School of Pharmacy, Sungkyunkwan University, Suwon, Korea. 98 

Extraction and Extraction and Extraction and Extraction and IIIIsolationsolationsolationsolation.... The whole parts of fresh C. unshiu fruits (1.0 kg) were partially 99 

chopped, then extracted with 100% EtOH for 2 d twice at room temperature, accompanied 100 

with slight shaking or swirling. The resultant extracts were then filtered and the filtrate was 101 

concentrated under vacuum pressure. After suspension of the crude extract (89.0 g) in 102 

distilled water (10 L), it was subjected to solvent partition using hexane, EtOAc, and n-BuOH, 103 

which yielded residues of 230 mg, 3.0 g, and 15.0 g, respectively.  104 

The EtOAc-soluble fraction (3.0 g) was fractionated on silica gel column chromatography 105 

(300 g, 3 × 55 cm) with a gradient solvent system of n-hexane-EtOAc [1:1 (0.3 L)], CHCl3-106 

MeOH [50:1 (0.2 L), 10:1 (0.2 L), 5:1 (0.3 L), 2:1 (0.3 L), and 1:1 (0.3 L)], and 100% MeOH 107 

(0.5 L) to give thirty fractions (E1 – E30), based on TLC analysis. Fraction E7 (260 mg) was 108 
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subjected to an RP-C18 silica gel column chromatography (20 g, 1 × 10 cm) using MeOH-109 

H2O [2:1 (0.3 L)] as a solvent to yield 10 sub-fractions (E7a – E7j). Fraction E7b (52 mg) 110 

was further purified by using semi-preparative reverse-phase HPLC (250 mm × 10 mm i.d., 111 

10 µm, Phenomenex Luna C18(2) column, flow rate; 1.5 mL/min) with MeOH-H2O (2:1) to 112 

afford compounds 2 (12.0 mg), 4 (6.4 mg), and 9 (8.0 mg).  113 

The n-BuOH-soluble fraction (15.0 g) was fractionated on HP-20 column chromatography 114 

(500 g, 5 × 55 cm) with the use of a gradient solvent system of MeOH-H2O (from 0:1 to 1:0) 115 

to give six fractions (B1 – B6) according to TLC analysis. Fraction B2 (4.5 g) was subjected 116 

to a column chromatography using silica gel (300 g, 3 × 55 cm) with CHCl3-MeOH-H2O 117 

[7:3:1 (2.0 L)] as a solvent system to obtain 32 sub-fractions (B2(1) – B2(32)). Fraction 118 

B2(11) (122 mg) was further purified with preparative reverse phase HPLC (250 mm × 20 119 

mm i.d., 10 µm, YMC-Pack ODS-AM C18(2) column, flow rate; 8.0 mL/min) by using 40% 120 

MeOH to obtain compound 8 (38.0 mg). Fraction B2(31) (277 mg) was also separated by 121 

preparative HPLC using the same column (flow rate; 10.0 mL/min) with 40% MeOH to yield 122 

compound 5 (9.0 mg), along with subfraction B2(31)A (87.0 mg), which was then purified by 123 

semi-preparative reverse phase HPLC (250 mm × 10 mm i.d., 10 µm, Phenomenex Luna 124 

C18(2) column, flow rate; 2.0 mL/min) with 30% MeOH to furnish compound 7 (30.0 mg). 125 

Fraction B4 (2.8 g) was applied to a silica gel column (300 g, 3 × 55 cm) using CHCl3-126 

MeOH-H2O [8:3:1 (0.8 L), 6:3:1 (0.8 L), and 6:4:1 (0.5 L)] and 100% MeOH (1.0 L) as a 127 

gradient solvent system to give 29 sub-fractions (B4(1) – B4(29)). Fraction B4(9) (44 mg) 128 

was further purified using semi-preparative RP HPLC (250 mm × 10 mm i.d., 10 µm, 129 

Phenomenex Luna C18(2) column, flow rate; 2.0 mL/min) with 40% MeOH to afford 130 

compound 6 (5.2 mg). Fraction B4(15) (168 mg) was also separated by semi-preparative 131 

HPLC using the same column system with 40% MeOH to yield compound 1 (21.5 mg). 132 
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Finally, fraction B6 (3.2 g) was applied to column chromatography with silica gel (300 g, 3 × 133 

55 cm) using a gradient solvent system of CHCl3-MeOH-H2O [8:3:1 (1.0 L)] and 100% 134 

MeOH (1.0 L) to give 20 sub-fractions (B6(1) – B6(20)). Fraction B6(10) (383 mg) was 135 

further purified using semi-preparative HPLC (250 mm × 10 mm i.d., 10 µm, Phenomenex 136 

Luna C18(2) column, flow rate; 3.0 mL/min) with 40% MeOH to obtain compound 3 (6.0 137 

mg).  138 

LimocitrunshinLimocitrunshinLimocitrunshinLimocitrunshin    (1).(1).(1).(1). Amorphous yellow powder. [α] 25
D  +13.57 (c 0.14, MeOH); UV 139 

(MeOH) λmax (log ε): 204 (4.5), 260 (3.2), 272 (3.1) 358 (2.3) nm; IR (KBr) νmax: 3326, 2942, 140 

2826, 1714, 1672, 1590, 1455, 1352, 1110, 1030 cm-1; 1H NMR (CD3OD, 700 MHz): δ 7.97 141 

(1H, br s, H-2'), 7.73 (1H, br d, J = 8.0 Hz, H-6'), 6.94 (1H, d, J = 8.0 Hz, H-5'), 6.29 (1H, br 142 

s, H-6), 5.36 (1H, d, J = 7.5 Hz, H-1''), 4.25 (1H, dd, J = 11.0, 1.0 Hz, H-6''a), 4.14 (1H, dd, J 143 

= 11.0, 3.0 Hz, H-6''b), 3.98 (3H, s, 3'-OCH3), 3.94 (3H, s, 8-OCH3), 3.53 (1H, m, H-2''), 3.50 144 

(1H, m, H-5''), 3.39 (1H, m, H-3''), 3.33 (1H, m, H-4''), 2.52 (4H, m, H-2''', H-4'''), 1.23 (3H, s, 145 

H-6'''); 13C NMR (CD3OD, 700 MHz): δ 178.5 (C-4), 171.5 (C-5'''), 171.3 (C-1'''), 157.9 (C-146 

7), 157.6 (C-2), 157.1 (C-5), 150.1 (C-4'), 149.4 (C-9), 147.5 (C-3'), 134.4 (C-3), 128.2 (C-8), 147 

123.1 (C-6'), 122.1 (C-1'), 115.2 (C-5'), 113.3 (C-2'), 104.7 (C-10), 103.0 (C-1''), 99.3 (C-6), 148 

77.0 (C-3''), 75.0 (C-5''), 74.9 (C-2''), 70.8 (C-4''), 69.7 (C-3'''), 63.6 (C-6''), 61.2 (8-OCH3), 149 

55.8 (3'-OCH3), 45.2 (C-2'''), 45.1 (C-4'''), 26.9 (C-6'''); High-resolution (HR)-ESIMS 150 

(negative-ion mode) m/z: 651.1547 [M – H]- (calcd for C29H31O17, 651.1561).  151 

Acid Acid Acid Acid HHHHydrolysis of ydrolysis of ydrolysis of ydrolysis of CCCCompound 1.ompound 1.ompound 1.ompound 1.    Compound 1 (1.0 mg) was hydrolyzed with 1 N HCl 152 

(1.0 mL) for 6 h at 100 °C. Then the hydrolysate was cooled and filtered, and a yellowish 153 

precipitate was obtained, which was identified by NMR to be the aglycone portion, 154 

limocitrin.13 The filtrate was then neutralized by passage through an Amberlite IRA-67 ion-155 

Page 7 of 32

ACS Paragon Plus Environment

Journal of Agricultural and Food Chemistry



8 

 

8 

 

exchange resin column (Rohm and Haas, Philadelphia, PA). The H2O eluent was repeatedly 156 

evaporated until the liquid was completely removed, then was analyzed using TLC over silica 157 

gel (CHCl3/MeOH/H2O, 8:5:1), loaded with authentic sugar [TLC Rf (glucose) = 0.30] for the 158 

comparison. The sugar residue and L-cysteine methyl ester hydrochloride (1.0 mg) were 159 

dissolved in 0.1 mL of anhydrous pyridine, and the resultant mixture was gently stirred at 160 

60 °C for 2 h. The mixture was then evaporated under vacuum, and the reaction mixture was 161 

trimethylsilylated using 0.3 mL of hexamethyldisilazane (HMDS, Sigma-Aldrich, St. Louis, 162 

MO)/trimethychlorosilane (TMCS, Sigma-Aldrich)/pyridine (3:1:9) at 60 °C for another 1.5 163 

h. It was then concentrated and was solvent-partitioned using n-hexane, to yield n-hexane-164 

soluble and H2O-soluble layers. The n-hexane layer was examined using gas chromatography 165 

(GC).14,15 The tR value of the standard D-glucose (D-Glc) derivative prepared in the same way 166 

was 18.58 min. D-Glc was detected from compound 1 by co-injection of hydrolysate with 167 

standard silylated sample, giving a single peak at 18.59 min. 168 

Determination Determination Determination Determination ofofofof    the the the the AAAAbsolute bsolute bsolute bsolute ConConConConfiguratifiguratifiguratifiguration on on on forforforfor    CCCCompound 1.ompound 1.ompound 1.ompound 1.    (S)-1-169 

Phenylethylamine (1.9 µL, 15.0 µmol), Et3N (3.2 µL, 22.5 µmol), (Benzotriazol-1-170 

yloxy)tripyrrolidinophosphonium hexafluorophosphate (PyBOP, Sigma-Aldrich) (5.8 mg, 171 

11.5 µmol), and hydroxybenzotriazole (HOBt, Sigma-Aldrich) (2.0 mg, 15.0 µmol) were 172 

added to the solution containing compound 1 (4.9 mg, 7.5 µmol) and 0.3 mL of DMF under 173 

ice-cooling, and the resultant mixture was stirred at 25 °C for 9 h.16 The reaction was 174 

quenched with dilute aqueous HCl, and a yellowish residue was obtained after drying under 175 

vacuum. The residue was separated on Sephadex LH-20 column chromatography using 50% 176 

MeOH to furnish amide 1a (4.2 mg). Compound 1a was identified by LC-MS analysis, where 177 

a molecular ion peak at m/z 756.2 [M + H]+ was observed. LiBH4 (2.6 mg, 79.5 µmol) was 178 

added to the solution containing 1a (4.0 mg, 5.3 µmol) and THF (0.3 mL) under ice-cooling. 179 
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The solution was stirred for 24 h at 25 °C, then the reaction was quenched with dilute 180 

aqueous HCl and the resultant mixture was extracted with EtOAc. The resulting extract was 181 

separated using a silica gel Waters Sep-Pak Vac 6 cc (CHCl3-MeOH, 3:1) and a colorless oil 182 

was obtained, which was then acetylated with Ac2O (2.5 µL, 26.5 µmol) in pyridine (30 µL). 183 

The reaction mixture was stirred for 24 h at 25 °C, diluted with H2O, extracted with EtOAc, 184 

and concentrated to yield 1b (4.5 mg) as a colorless oil. The 1H NMR spectrum of 1b was 185 

found to be consistent with that of (3R)-5-O-acetyl-1-[(S)-phenylethyl]-mevalonamide when 186 

compared, rather than the (3S) isomer previously reported.17,18 187 

(3(3(3(3RRRR))))----5555----OOOO----AcetylAcetylAcetylAcetyl----1111----[([([([(SSSS))))----phenylethyl]phenylethyl]phenylethyl]phenylethyl]----mevalonamide (1mevalonamide (1mevalonamide (1mevalonamide (1bbbb).).).). Colorless oil. 1H NMR 188 

(CDCl3, 700 MHz): δ 7.27–7.37 (5H, m, Ph), 6.11 (1H, br s, NH), 5.14 (1H, m, H-1'), 4.23 189 

(2H, t, J = 6.5 Hz, H-5), 2.41, 2.28 (each 1H, d, J = 14.5 Hz, H-2), 2.04, (3H, s, Ac), 1.85-190 

1.83 (2H, m, H-4), 1.50 (3H, d, J = 6.5 Hz, H-2'), 1.23 (3H, s, H-6); ESIMS m/z 294.1 [M + 191 

H]+. 192 

Chemicals and Chemicals and Chemicals and Chemicals and RRRReagents.eagents.eagents.eagents.    Cisplatin and LPS were obtained from Sigma-Aldrich (Seoul, 193 

South Korea). The cell viability assay kit (Ez-Cytox) was obtained from Dail Lab Service Co. 194 

(Seoul, Korea). Fetal bovine serum (FBS) and Dulbecco’s modified Eagle’s medium 195 

(DMEM) were obtained from Invitrogen Co. (Grand Island, NY).  196 

Inhibitory Inhibitory Inhibitory Inhibitory AAAActivity towards NO ctivity towards NO ctivity towards NO ctivity towards NO PPPProduction by LPSroduction by LPSroduction by LPSroduction by LPS----inducedinducedinducedinduced    MMMMacrophages.acrophages.acrophages.acrophages.    RAW 197 

264.7 cells were purchased from the American Type Culture Collection (Rockville, MD) and 198 

cultured in DMEM (Cellgro, Manassas, VA) supplemented with 10% FBS, 1% penicillin and 199 

streptomycin (Invitrogen Co.) and 4 mM L-glutamine in an atmosphere of 5% CO2 at 37 °C. 200 

When the cells were approximately 80% confluent, they were seeded in 96-well culture plates 201 

at 1×105 cells per well and incubated for 24 h for adhesion. The cells were then treated with 202 
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control (0.5% DMSO) or with the indicated concentrations of the isolates 1-9 or 1 µg/mL of 203 

LPS. After incubation for 24 h, 80 µL of cell culture medium was mixed with 80 µL of Griess 204 

reagent and the mixture was incubated for 10 min. The absorbance was measured at 540 nm 205 

using a microplate reader. The quantity of nitrite was determined from a sodium nitrite 206 

standard curve. After the nitric oxide assay, cell viability was determined. When the cells 207 

were approximately 80% confluent, they were seeded in 96-well culture plates at 5×105 cells 208 

per well and incubated for 24 h for adhesion. The cells were treated with control (0.5% 209 

DMSO), with the indicated concentrations of isolates 1-9, or with 1 µg/mL of LPS. After 210 

incubation for 24 h, 10 µL of Ez-Cytox reagent was added to each well, and the cells were 211 

incubated for 2 h. Quercetin was used as a positive control. Cell viability was measured by 212 

absorbance at 450 nm using a microplate reader. 213 

Protective Protective Protective Protective EEEEffect against ffect against ffect against ffect against CCCCisplatinisplatinisplatinisplatin----induced induced induced induced DDDDamage in LLCamage in LLCamage in LLCamage in LLC----PK1 PK1 PK1 PK1 RRRRenal enal enal enal CCCCells.ells.ells.ells.    Pig 214 

kidney epithelium LLC-PK1 cells were purchased from the American Type Culture 215 

Collection (Rockville) and cultured in DMEM (Cellgro), supplemented with 10% FBS, 1% 216 

penicillin and streptomycin (Invitrogen Co.), and 4 mM L-glutamine in an atmosphere of 5% 217 

CO2 at 37 °C. Cell viability was determined using the Ez-Cytox cell viability detection kit. 218 

Pig kidney epithelium LLC-PK1 cells were used to evaluate renoprotective activity against 219 

cisplatin-induced cytotoxicity. When the cells were approximately 80% confluent, they were 220 

seeded in 96-well culture plates at 1×104 cells per well and incubated for 24 h for adhesion. 221 

Then cells were treated with control (0.5% DMSO) or the indicated concentrations of isolates 222 

1-9. After incubation for 2 h, 30 µM of cisplatin was added to each well, and incubated for 223 

another 24 h. After incubation, 10 µL of Ez-Cytox reagent was added to each well, and the 224 

cells were incubated for 2 h. N-acetyl cysteine (NAC) was used as a positive control. Cell 225 

viability was measured by absorbance at 450 nm using a microplate reader. 226 
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Western Western Western Western BBBBlotting lotting lotting lotting AAAAnalysisnalysisnalysisnalysis.... LLC-PK1 cells cultured in 6-well plates were treated with 227 

250 µM of 5 and 8 for 24 h, and cells were lysed with radioimmunoprecipitation assay 228 

(RIPA) buffer supplemented with 1 mM phenylmethylsulfonyl fluoride (PMSF) immediately 229 

before use. Concentration of protein was determined using the Protein Assay Kit (Thermo 230 

Fisher Scientific,  Waltham, MA). Equal amounts (20 µg/lane) of protein (whole-cell extracts) 231 

were separated by electrophoresis and transferred onto PVDF transfer membranes. Specific 232 

proteins were analyzed using epitope-specific primary antibodies to phospho-JNK, p53, 233 

cleaved caspase-3, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and horseradish 234 

peroxidase (HRP) conjugated anti-rabbit antibodies (Cell Signaling Technology). Bound 235 

antibodies were detected using ECL Advance Western Blotting Detection Reagents (GE 236 

Healthcare, Little Chalfont, UK) and visualized with a FUSION Solo Chemiluminescence 237 

System (PEQLAB Biotechnologie GmbH, Erlangen, Germany). 238 

Statistical Statistical Statistical Statistical AAAAnalysisnalysisnalysisnalysis. . . . One-way analysis of variance (ANOVA) followed by a multiple 239 

comparison test with Bonferroni adjustment was used for statistical analysis using SPSS ver. 240 

19.0 (SPSS Inc., Chicago, IL). P values of less than 0.05 were considered statistically 241 

significant. 242 

 243 

■■■■RESULTSRESULTSRESULTSRESULTS    AND DISCUSSIONAND DISCUSSIONAND DISCUSSIONAND DISCUSSION 244 

 245 

Isolation and Isolation and Isolation and Isolation and SSSStructural tructural tructural tructural EEEElucidation of lucidation of lucidation of lucidation of CCCCompoundsompoundsompoundsompounds....    Whole C. unshiu fruits were 246 

extracted with 100% EtOH to give crude EtOH extracts (89.0 g) which were solvent-247 

partitioned using hexane, EtOAc, and n-BuOH. Chemical investigation of the two fractions, 248 
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EtOAc-soluble and n-BuOH-soluble fractions, using repeated column chromatography and 249 

HPLC purification resulted in isolation and identification of a novel flavonoid glycoside, 250 

limocitrunshin 1, along with seven other flavonoids 2–8 and a limonoid 9 (Figure 1).  251 

Compound 1 was isolated as an amorphous, yellowish powder; its molecular formula, 252 

C29H32O17 was established by HR-ESIMS in negative ion mode at m/z 651.1547 [M – H]- 253 

(calcd for C29H31O17, 651.1561). The absorption bands for OH (3326 cm-1), carbonyl (1714 254 

cm-1), conjugated carbonyl (1672 cm-1), and benzyl groups (1590 and 1455 cm-1) were 255 

observed in the IR spectrum. In the UV spectrum, absorption bands that appeared at 260, 272, 256 

and 358 nm suggested that compound 1 possesses a flavonol skeleton. The 1H and 13C NMR 257 

data consisted of signals that are similar to that of 5,7,8,3',4'-pentasubstituted flavonol 258 

glycoside19 with two methoxy groups [δH 3.98 (s); δC 55.8 and δH 3.94 (s); δC 61.2] and one 259 

sugar unit as shown by signals of an anomeric proton at δH 5.36 (d, J = 7.5 Hz, H-1'') and its 260 

corresponding anomeric carbon at δC 103.0 (C-1''). The heteronuclear multiple bond 261 

correlations (HMBC) between δH 3.98 (OCH3) and δC 147.5 (C-3') and between δH 3.94 262 

(OCH3) and δC 128.2 (C-8) was observed and thus confirmed the locations of methoxy 263 

groups at C-3' and C-8 of the aglycone, respectively (Figure 2). Acid hydrolysis of 1 yielded 264 

a sugar and limocitrin, 3,4',5,7-tetrahydroxy-3',8-dimethoxyflavone, which was verified 265 

through comparison with reported NMR data.13 The sugar was identified as D-glucose using 266 

GC analysis, where the retention time of the derivative of the sugar residue and the standard 267 

sugar were compared. The position of glycosidic linkage was determined by the correlation 268 

between δH 5.36 (H-1'') and δC 134.4 (C-3) in HMBC experiment, indicating the glucose unit 269 

to be located at C-3 of the aglycone. The remaining signals in the 1H and 13C NMR spectra of 270 

1 were identified as a 3-hydroxy-3-methylglutaryl (HMG)-moiety by the HMBC correlations 271 

of H-2''' (δH 2.52)/C-1''' (δC 171.3), H-4''' (δH 2.52)/C-5''' (δC 171.5), and H-6''' (δH 1.23)/C-2''' 272 
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(δC 45.2), C-3''' (δC 69.7), and C-4''' (δC 45.1). On the basis of the HMBC correlations 273 

between δH 4.25 and 4.14 (H-6'') and δC 171.3 (C-1'''), the HMG substituent was established 274 

to be located at C-6 of the glucose moiety (Figure 2). The absolute configuration of the HMG 275 

unit was determined by the refined method using the steps of amination and reduction.16 276 

Amination with (S)-1-phenylethylamine gave compound 1a (Figure 3). Reduction of 1a with 277 

LiBH4 followed by acetylation with Ac2O yielded 5-O-acetyl-1-[(S)-phenylethyl]-278 

mevalonamide (1b): the 1H NMR data of 1b were identical to those of (3R)-5-O-acetyl-1-279 

[(S)-phenylethyl]-mevalonamide, instead of (3S) isomer.17,18 Thus, with the above evidences, 280 

compound 1 was unambiguously identified as limocitrin-3-O-[(S)-3-hydroxy-3-281 

methylglutaryl-(1→6)]-β-D-glucopyranoside, and was named limocitrunshin. Previously, the 282 

gross structure of 1 was identified from C. unshiu without verifying the absolute 283 

configuration,20,21 but the complete structure of 1 including the identification of the (3S)-284 

HMG-moiety were established for the first time in this study. The previously reported NMR 285 

data in the literature were very similar to those of compound 1, but they had apparent 286 

differences in the 13C NMR data of the HMG unit [particularly, δC 69.7 (C-3''') in 1 and δC 287 

68.8 (C-3''') in the reported data],21 which suggested that compound 1 is not identical to the 288 

previously reported one. Compound 1 is the first example of the limocitrin 3-β-D-289 

glucopyranoside possessing the (3S)-HMG-moiety.  290 

The naturally occurring products conjugated with HMG group are seldom present in various 291 

types of natural products including sesquiterpenoids,18,22 diterpenoids,23 triterpenoids,24-27 292 

steroids,28 and flavonoids.29-33 The majority of compounds with the HMG moiety belong to 293 

flavonoid glycosides, and the HMG moiety tends to be attached at C-6 of sugar such as 294 

glucose or galactose.29-33 Citrus fruits have been reported to contain the flavonoid glycosides 295 

carrying the HMG unit,20,21,30,31 but this study is the first report of the verification of 3S-296 
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configuration for the HMG group using the refined method in the flavonoid glycosides of C. 297 

unshiu. An extensive literature survey showed that the HMG group does not seem to have 298 

significance in biological activities. Several HMG-conjugated flavonoid glycosides did not 299 

have inhibitory effects on NO production in lipopolysaccharide (LPS)-induced RAW 264.7 300 

cells33 nor antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) 301 

and Helicobacter pylori (H. pylori), although the other related flavonoids without the HMG 302 

group showed the antimicrobial activity.30 In addition, the presence of the HMG group in 303 

triterpenoids did not affect cytotoxic activities against several cancer cell lines25,26 nor 304 

inhibitory effects on LPS-induced NO production in murine microglia BV-2 cells.26 However, 305 

there was an interesting report for the HMG group that the linkage of the HMG group at C-3 306 

in triterpenoids markedly increased the selective inhibition of COX-1 activity when 307 

compared to the related triterpenoids without the HMG group, which were selective 308 

inhibitors of COX-2.27 309 

The known compounds were identified as nobiletin (3',4',5,6,7,8-hexamethoxyflavone) (2),34 310 

kaempferol 3-O-rutinoside (3),35 limocitrin 3-glucoside (4),19 kaempferol 3-(2G-311 

rhamnosylrutinoside) (5),35 didymin (4'-methoxyl naringenin 7-O-rutinoside) (6),36 (2S)-312 

narirutin 4'-O-glucoside (4'-β-D-glucosyl naringenin 7-O-rutinoside) (7),37 naringenin 7-O-313 

rutinoside (8),38 and methyl nomilinate (9)39 respectively, by comparing their spectroscopic 314 

and physical data with those in the literature as well as by measurement of their specific 315 

rotations. Compounds 3, 5, and 9 were reported from C. unshiu for the first time. 316 

Evaluation of Evaluation of Evaluation of Evaluation of BBBBiological iological iological iological AAAActivity of ctivity of ctivity of ctivity of CCCCompounds 1ompounds 1ompounds 1ompounds 1––––9999. . . . Compounds 1–9 were evaluated for 317 

inhibitory effects on inflammation and nephrotoxicity to verify their potential health benefits. 318 

Murine macrophage RAW 264.7 cells were used for evaluating inhibitory activity towards 319 

NO production by LPS-activated macrophages.40,41 Treatment of RAW 264.7 cells with up to 320 
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200 µM of compounds 1-9 did not show any cytotoxic effects (Figure 4A). Conversely, all of 321 

the compounds significantly inhibited NO production (Figure 4B), which is involved in 322 

inflammatory processes.42 Particularly, compound 9 (IC50 = 65 µM) was the strongest 323 

inhibitor as compared to the positive control used in this study [IC50 (quercetin): 150 324 

µM].43,44 The other compounds also showed inhibitory activity on NO with IC50 values in the 325 

range 70-110 µM [IC50 (1): 75 µM, IC50 (2): 95 µM, IC50 (3): 110 µM, IC50 (4): 75 µM, IC50 326 

(5): 70 µM, IC50 (6): 85 µM, IC50 (7): 70 µM, and IC50 (8): 70 µM]. The most potent inhibitor, 327 

methyl nomilinate (9) is a class of limonoids which are highly oxygenated nortriterpenoids 328 

with a prototypical structure and a β-substituted furan ring. Its occurrence is abundant in 329 

citrus fruits and other plants of the families Rutaceae and Meliaceae. There has been only 330 

limited work that focused on the anti-inflammatory effects of limonoids, but recently many 331 

limonoids were reported to inhibit NO production in RAW 264.7 macrophage cells induced 332 

by LPS,45-48 which suggests the potential of limonoids for the development of anti-333 

inflammatory agents. The other active compounds were all flavonoids and their inhibitory 334 

effects on NO production have been extensively studied.49 In the structure-activity 335 

relationships, it has been reported that a C-2,3 double bond in the flavonoid skeleton is 336 

essential for the activity and that the efficacy of activity was dependent upon the substitution 337 

patterns within the flavonoids.49 338 

Next, the kidney protective effects of compounds 1-9 were assessed in LLC-PK1 cells using 339 

a WST assay.50 The kidney protection effects of isolates 1-9 are shown in Figure 5A. 340 

Pretreatment of LLC-PK1 cells with compounds 1, 2, 5, 8 and 9 at concentrations of 125 and 341 

250 µM significantly abrogated cisplatin-induced nephrotoxicity (Figure 5A). Of these, 342 

compounds 5 and 8 were selected for further mechanistic studies because of their 343 

ameliorating effects on cell viability damage, leading to recovery of more than 90% at the 344 
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250 µM concentration (Figure 5A).  345 

Western blotting was performed in order to investigate the protective mechanism of 346 

compounds 5 and 8 on the expression of proteins involved in the apoptotic response. Results 347 

from Western blot analysis are shown in Figure 5B. We determined that cisplatin promoted 348 

high levels of phosphorylated JNK (phospho-JNK), p53 and cleavage of caspase-3, which 349 

triggered apoptosis of LLC-PK1 cells, while pretreatment with compounds 5 and 8 decreased 350 

levels of phospho-JNK, p53, and cleaved caspase-3 protein (Figure 5B). Therefore, the 351 

kidney cell protective effects of compounds 5 and 8 are shown to involve the inhibition of 352 

pathways of apoptosis through the JNK-p53-caspase apoptotic cascade.  353 

Recently, it was reported that several flavonoids isolated from peat moss Sphagnum palustre 354 

showed the protective effects against kidney damage induced by cisplatin51 and that 355 

flavonoids in a multi-herbal decoction, known as Chungsimyeonja-tang, possessed protective 356 

effects against cisplatin-induced nephrotoxicity.52 Unfortunately, it was difficult to find any 357 

significant relevance between structure and activity of the flavonoid molecules in this kidney 358 

protection assay.   359 

 In conclusion, chemical investigation of the EtOH extract of C. unshiu fruit led to the 360 

isolation and identification of a total of 9 components including a new flavonoid glycoside, 361 

which may be at least partially responsible for the health benefits of C. unshiu fruit. Among 362 

the isolates, compound 9 inhibited potent NO production in LPS-stimulated macrophages, 363 

and compounds 5 and 8 showed the most potent inhibition of renal cell damage. Thus, this 364 

study revealed the possible application of the fruits of C. unshiu as a beneficial natural source 365 

of bioactive metabolites with health benefits in functional foods.  366 
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 561 

Figure Figure Figure Figure captionscaptionscaptionscaptions    562 

Figure 1. Chemical structures of compounds 1-9. 563 

 564 

Figure 2. Key 1H-1H COSY ( ) and HMBC ( ) correlations of 1. 565 

 566 

Figure 3. Determination of the absolute configuration of HMG group of compound 1. 567 

 568 

Figure 4. (A) Comparison of the cell viability of compounds 1-9 in RAW 264.7 cells. (B) 569 

Nitric oxide inhibition of compounds 1-9 in LPS-activated macrophage RAW 264.7 cells. 570 

*p<0.05 means compared to the LPS-treated value. 571 

 572 

Figure 5. (A) Comparison of the protective effects of compounds 1-9 against cisplatin-573 

induced nephrotoxicity in LLC-PK1 cells. (B) Effects of compounds 5 and 8 on phospho-574 

JNK, JNK, phospho-p53, p53, and cleaved caspase-3 expression on cisplatin-induced 575 

nephrotoxicity in LLC-PK1 cells. *p<0.05 means compared to the cisplatin-treated value.576 
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Figure 4.  
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