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ABSTRACT

Chiral 2-piperidinone compounds with various C-6 substituents were successfully synthesized via a Pd-catalyzed asymmetric 6-endo cyclization
of dienamides, which were evidently activated by both N-p-toluenesulfonyl and C-3 ester substituents.

Nitrogen-containing six-membered heterocycles, such
as pyridine, piperidine, and piperidinone, are often found
as the core structuralmotif in naturally occurring bioactive
compounds and synthetic drugs.1 Among them, 2-piper-
idinone (δ-lactam) has especially attracted much attention
in the synthetic community, because it can be a versatile
precursor of highly functionalized piperidines.2 Various
synthetic approaches to 2-piperidinones have currently been
developed,3 for example, through the aza-Diels�Alder

reaction,3c,d ring closing metathesis,3e,f and metal-catalyzed
C�H bond amination.3g,h However, the cyclization of
activated C�C bonds with a tethered amide,3a,b which
seems to be the most conventional route, has not been well
documented probably due to the lower nucleophilicity of
the amide nitrogen compared to amines.4 Herein, we report
aPd-catalyzed 6-endo type cyclizationof the dienamidewith
the appropriate substituents at the nitrogen atom and the
C-3 position to obtain 2-piperidinones with various C-6
substituents. Moreover, we present its enantioselective var-
iants using the BINAP-Pd complex catalyst, which must
provide a valuable synthon for the multisubstituted chiral
piperidinone and piperidine compounds.
Over the past 10 years, we have developed efficient

synthetic methods for 2,4-disubstituted pyridine and chiral
piperidine compounds based on rapid 6π-azaelectrocycliza-
tion from 1-azatrienes (Scheme 1).5 This rapid cyclization
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was realized by the remarkable substituent effect due to the
enhancement of the HOMO�LUMO interaction in the
6π-electron system mainly derived from the C-4 ester
substituent,5e and the additional electron withdrawing
group at the nitrogen.5a,c,e

In order to further develop our synthetic methodology
using this “substituent-driven activation”, we next
focused on the more challenging variant, catalytic
6π-azaelectrocyclization.6 Because the difficulty of the
catalytic activation of a simple triene system has already
been known,6c,d we carefully designed and devised the
substrate (Scheme 2). Thus, we expected that the addition
of a catalyst to the dienamide compoundwith the C-3 ester
and N-p-Ts groups would lead to generation of the acti-
vated 1-azatriene form followed by an immediate aza-
electrocyclization to give the 2-piperidinone compound.
Hence, we envisioned that we could not only realize the
catalytic cyclization with substituent-driven activation but
also develop the novel synthetic strategy for substituted
2-piperidinones.Moreover, utilizing a chiral catalystmight
lead to the promising enantioselective conversion.

We first chose 3-ethoxycarbonyl-5-phenyl-N-p-toluene-
sulfonyldienamide 1 as a substrate for the cyclization
(Table1).7Asacatalyst,we selected tris(dibenzylideneacetone)-
dipalladium [Pd2(dba)3] which seemed to have a favorable
affinity to 1-azatriene.5b,d The dienamide 1 and a catalytic
amount of Pd2(dba)3 were stirred at 70 �C in dioxane for
6 h only to give the starting material (entry 1). Next,

although trifurylphosphine or triphenylphosphine was
added as an additive, the desired piperidinone 1P was
not obtained (entries 2 and 3). However, after changing
dioxanetotoluene,surprisingly, thecyclizationpartlyproceeded
to afford the expected 2-piperidinone 1P in 38% yield
(entry 4). Encouraged by this result, we finally foundwhen
the bidentate phosphine ligands {1,2-bis(diphenylphosphino)-
ethane (DPPE), 1,3-bis(diphenylphosphino)propane (DPPP),
or 1,4-bis(diphenylphosphino)butane (DPPB)} wereused, the
reaction smoothly proceeded to produce the desired piper-
idinone in 85%, 85%, and 75% yields, respectively (entries
5 to 7). Meanwhile, utilizing other catalysts, such as
palladium(II) chloride (entry 8), Lewis acid [Sc(OTf)3,
entry 9] ,or base (1,8-diazabicyclo[5.4.0]undec-7-ene: DBU,
entry 10) induced no cyclization. These results obviously
showed that the combination of Pd2(dba)3 with the biden-
tate phosphine ligands was the best for this cyclization
reaction.
To broaden the utility of this reaction, we next examined

the cyclization with dienamide substrates having various
C-5 substituents (Table 2). As shown in entries 1 to 6, the
established set of conditions in Table 1 was successfully
applied to the substrates with some aryl and heteroaro-
matic substituents to afford the corresponding 2-piperidi-
nones in good yields. Moreover, in the case of acyclic
substituents, such as the methoxymethyl and siloxymethyl
derivatives 7 and 8, cyclic products 7P and 8P were found
to occur in significant yields (entries 7 and 8). These results
have shown that this reaction has a high generality for the
C-5-substituents and is a novel approach for the 2-piper-
idinones with various C-6 substituents. Furthermore, re-
garding this reaction as an amide cyclization, it is, to the
best of our knowledge, an unprecedented example of the
Pd-catalyzed intramolecular 1,6-addition of an amide.8

Since promising results of the catalytic cyclization were
obtained, we next focused on the enantioselective conver-
sion (Scheme 3). Taking into consideration the results
above, chiral bidentate phosphine ligands, such as
(R,R)-1,2-bis[(2-methoxyphenyl)phenylphosphino]ethane
(DIPAMP), (�)-1,2-bis[(2R,5R)-2,5-dimethylphospholano]-
benzene (Me-DUPHOS), (4R,5R)-trans-4,5-bis[(diphenyl-
phosphino)methyl]-2,2-dimethyl-1,3-dioxalane (DIOP),
(R)-[(5,6),(50,60)-bis(ethylenedioxy)biphenyl-2,20-diyl]bis-
(diphenylphosphine) (SYNPHOS), and (S)-2,20-bis-
(diphenylphosphino)-1,10-binaphthyl (BINAP) were
examined (Scheme 3A). Among them, gratifyingly, all
ligands showed certain enantioselectivities, and especially
thosewith an axial chirality produced a significant increase
in the enantiomeric excess; SYNPHOS was 68% ee and
BINAP was 76% ee, along with 68% and 78% chemical
yields, respectively. In addition, the enantioselective cycliza-
tion usingBINAP exhibited generality at theC5-substituents

Scheme 1. Synthetic Methods for 2,4-Disubstituted Pyridines
and Chiral Piperidines via the Rapid 6π-Azaelectrocyclization

Scheme 2. Strategy for 2-Piperidinone Synthesis via the Cata-
lyzed 6π-Azaelectrocyclization
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to some extent as shown in Scheme 3B (60�81% ee for six
examples), which suggested that this 6-endo asymmetric
cyclization could be applied for the multisubstituted chiral
piperidinone synthesis. On the other hand, we confirmed the
substituent effect at the nitrogen atom and the C-3 position
(Scheme 4). As presumed, both theN-benzyl substrate 9 and
the compound 11 having a 4-tert-butyldiphenylsiloxymethyl

at the C-3 position led to no reaction under the established
conditions. These results showed that both the N-p-Ts and
C-3 ester groups would be essential for the cyclization.
Two pathways would be possible, when considering the

mechanism of this reaction. One is the catalytic 6π-aza-
electrocyclization as we have described in Scheme 2.6

Although there is no evidence for the formation of the

Table 1. Screening of Reaction Conditions for Cyclization Using 3-Ethoxycarbonyl-5-phenyl-N-p-toluenesulfonyldienamide 1

entry

catalyst

(equiv) additive solvent

temp

(�C)
time

(h) result

1 Pd2(dba)3 (0.3) � dioxane 70 6 no reaction

2 Pd2(dba)3 (0.3) P(2-furyl)3 (1.2) dioxane 100 7 no reaction

3 Pd2(dba)3 (0.2) Ph3P (0.8) dioxane 100 7 no reaction

4 Pd2(dba)3 (0.2) Ph3P (0.8) toluene 100 1 38

5 Pd2(dba)3 (0.2) DPPE (0.4) toluene 100 1 85

6 Pd2(dba)3 (0.2) DPPP (0.4) toluene 100 1 85

7 Pd2(dba)3 (0.2) DPPB (0.4) toluene 100 1 75

8 PdCl2 (0.2) � toluene 100 1 no reaction

9 Sc(OTf)3 (0.5) � toluene 100 1 no reactiona

10 DBU (2.0) � toluene 100 1 no reaction

aPartly decomposed.

Table 2. Cyclization Using 3-Ethoxycarbonyl-N-p-toluene-
sulfonyldienamides with Various C5-Substituents

aPd2(dba)3 0.15 equiv, additive 0.3 equiv. bPd2(dba)3 0.2 equiv,
additive 0.4 equiv.

Scheme 3. (A) Screening of Chiral Ligands for Enantioselective
Cyclization; (B) Generality at the C5-Substituents for the En-
antioselective Cyclization

aThe reaction condition was moderately optimized {Pd2(dba)3 0.05
equiv, BINAP 0.1 equiv}.
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azatriene intermediate, the substituent effects described
abovemay support thismechanism.10Theother possibility
is the Pd(0)-catalyzed intramolecular amidation.11 There
are some reports concerning the amide cyclization to the
unsaturatedC�Cbondusing a transitionmetal catalyst.3a,b,4

However, in almost all the reports, even containing the

broadly investigated intramolecular amination,12 the cy-
clization preferentially proceeds in an exomode. Based on
these results, the formal Pd(0) catalyzed 6-endo cyclization
must be unique. It is difficult to judge which mechanism is
reasonable; however, we believe that this reaction has a
promising perspective.
In summary, we realized a Pd-catalyzed 6-endo type

cyclization of the dienamide with a bidentate phosphine
ligand. The reaction was clearly accelerated by both N-p-
toluenesulfonyl and C-3 ester substituents, which has been
one of the most notable examples of our “substituent-
driven activation”.13 Moreover, by using the BINAP-Pd
catalyst system, we successfully applied this reaction to the
synthesis of chiral 2-piperidinone compounds with various
C-6 substituents. Further extension of the substrate scope,
improvement of the enantiomeric excess, and mechanistic
investigations are currently ongoing in our laboratory.
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Scheme 4. Substituent Effect at the Nitrogen Atom and the C-3
Position
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