## 1983

## **Efficient Synthesis of Primary Selenocarboxylic Amides by Reaction of Nitriles with Phosphorous(V) Selenide**

Karlheinz Geisler,\* Anke Jacobs, Andreas Künzler, Manuela Mathes, Ilona Girrleit, Birgit Zimmermann, Ehrenfried Bulka, Wolf-Diethard Pfeiffer, Peter Langer\*

Institut für Chemie und Biochemie der Ernst-Moritz-Arndt-Universität Greifswald, Soldmannstr. 16, 17487 Greifswald, Germany Received 25 September 2002

**Abstract:** The reaction of nitriles with  $P_2Se_5$  in the presence of EtOH/H<sub>2</sub>O afforded a variety of primary selenocarboxylic amides. **Key words:** cyclizations, heterocycles, nitriles, selenium, synthetic methodology

Selenium containing heterocycles are of considerable current interest, due to their pharmacological activity. A prominent example is the antitumor and antiviral active Cglycosyl selenazole selenazofurin.<sup>1</sup> In contrast to their sulfur analogues, there exist only limited methods for the synthesis of N,Se-heterocycles, e. g. 1,3-selenazoles.<sup>2</sup> Many syntheses rely on the use of primary seleno-ureas and selenocarboxylic amides. However, these important building blocks are not readily available and there are many drawbacks of known synthetic procedures. Selenocarboxylic amides have been prepared by reaction of nitriles with H<sub>2</sub>Se, NaSeH,<sup>3a</sup> generated by NaBH<sub>4</sub>/Se,<sup>3</sup> by use of Se/CO,<sup>4</sup> and tris(trimethylsilyl)-monoselenophosphate.<sup>5</sup> These methods are restricted mainly to aryl substituted derivatives or require toxic or not readily available reagents. An alternative synthesis of selenocarboxylic amides relies on the reaction of nitriles with Al<sub>2</sub>Se<sub>3</sub> in the presence of Et<sub>3</sub>N/pyridine/H<sub>2</sub>O.<sup>6</sup> Unfortunately, many yields given in this paper could not be reproduced in our hands (vide infra).<sup>7</sup>

Herein, we wish to report a new method for the synthesis of primary selenocarboxylic amides by reaction of nitriles with  $P_2Se_5$  in the presence of EtOH/H<sub>2</sub>O (Scheme 1). From a preparative viewpoint, our methodology is more convenient and reliable than the use of Al<sub>2</sub>Se<sub>3</sub> and is less toxic than CO, NaSeH or H<sub>2</sub>Se. In addition, P<sub>2</sub>Se<sub>5</sub> is much easier and more reliably available in pure form and is less prone to hydrolysis than Al<sub>2</sub>Se<sub>3</sub>. It can be handled in presence of air and stored for a long time under inert atmosphere.<sup>7</sup> Our methodology allows the preparation of a great variety of selenocarboxylic amides. The yields obtained for known products are in many cases better than those reported for other methods. In addition, a number of novel functionalized derivatives were prepared with good chemoselectivity. The selenocarboxylic amides prepared represent versatile synthetic building blocks and were

Synlett 2002, No. 12, Print: 02 12 2002. Art Id.1437-2096,E;2002,0,12,1983,1986,ftx,en;D18602ST.pdf. © Georg Thieme Verlag Stuttgart · New York ISSN 0936-5214



 $\label{eq:scheme1} \begin{array}{ll} Synthesis \mbox{ of selenocarboxylic amides by reaction of nitriles with $P_2Se_5$} \end{array}$ 

transformed into 1,3-selenazoles by reaction with  $\alpha$ -bro-moketones.

Our initial attempts to prepare primary selenocarboxylic amides by reaction of carboxylic amides with P2Se5 were unsuccessful under a variety of conditions (variation of the stoichiometry, solvent, temperature, reaction time and additives such as HCl, NaOH, Ph<sub>3</sub>P or PCl<sub>3</sub>).<sup>8,9</sup> We have eventually found that primary selenocarboxylic amides can be prepared in good yields by reaction of nitriles with P<sub>2</sub>Se<sub>5</sub>.<sup>10</sup> Slow addition of water to the reaction mixture resulted in formation of small amounts of hydrogen selenide in situ which subsequently added to the nitrile. During the optimization of the reaction the following parameters proved important (Table 1): a) use of 0.4 equivalents of  $P_2Se_5$  (corresponding to 2.0 equiv of selenium), b) *slow* addition of water or  $P_2Se_5$  to the reaction mixture, c) use of EtOH/H<sub>2</sub>O, d) reaction time and temperature, e) crystallization solvent (Table 2). An attempt to directly use a mixture of the elements (P/Se = 2:5) rather than  $P_2Se_5$ proved unsuccessful. The cyclization of 2a with  $\alpha$ -bromoacetophenone afforded 1,3-selenazole 3a in 87% yield.11

In order to study the preparative scope of our methodology, the substituents of the nitrile were systematically varied (Scheme 2, Table 2). The reaction of benzonitrile and 2-tolylnitrile with  $P_2Se_5$  afforded selenocarboxylic amides **2a** and **2b**, respectively. Starting with acetonitrile

Table 1 Optimization of the Synthesis of 2a

| Entry | Educt      | Reagent                         | Equiv | Additive                                    | <i>t</i> (h) | Temp.  | (%) <sup>a</sup> |  |
|-------|------------|---------------------------------|-------|---------------------------------------------|--------------|--------|------------------|--|
| 1     | <b>1</b> a | Al <sub>2</sub> Se <sub>3</sub> | 1.4   | NEt <sub>3</sub> /pyridine/H <sub>2</sub> O | 2            | reflux | 49               |  |
| 2     | <b>1</b> a | $P_2Se_5$                       | 0.4   | NEt <sub>3</sub> /pyridine/H <sub>2</sub> O | 2            | reflux | 72               |  |
| 3     | <b>1</b> a | $P_2Se_5$                       | 0.4   | EtOH/H <sub>2</sub> O                       | 2            | reflux | 84               |  |
| 4     | <b>1</b> a | $P_2Se_5$                       | 0.2   | EtOH/H <sub>2</sub> O                       | 2            | reflux | 55               |  |
| 5     | 4          | $P_2Se_5$                       | 0.4   | b                                           | 2            | reflux | 0                |  |
| 6     | 5          | $P_2Se_5$                       | 0.4   | b                                           | 2            | reflux | 0                |  |
| 7     | <b>1</b> a | P/Se <sup>c</sup>               | 0.4   | EtOH/H <sub>2</sub> O                       | 2            | reflux | 9                |  |
| 8     | <b>1</b> a | $P_2Se_5$                       | 0.4   | EtOH/H <sub>2</sub> O                       | 0.5          | reflux | 34               |  |
| 9     | <b>1</b> a | $P_2Se_5$                       | 0.4   | EtOH/H <sub>2</sub> O                       | 12           | reflux | 27               |  |
| 10    | 1a         | $P_2Se_5$                       | 0.4   | EtOH/H <sub>2</sub> O                       | 12           | 20 °C  | 0                |  |

<sup>a</sup> Isolated yields.

<sup>b</sup> Various conditions, see text.

<sup>c</sup> Mixture P/Se = 2:5



Scheme 2 Synthesis of selenocarboxylic amides and 1,3-selenazoles

and propionitrile, selenocarboxylic amides 2c and 2d were prepared, respectively. Alkyl-substituted derivatives are generally rather unstable and difficult to prepare. Selenocarboxylic amide 2e was prepared from phenylacetonitrile. The use of Al<sub>2</sub>Se<sub>3</sub>, following the protocol reported by Cohen,<sup>6</sup> proved unsatisfactory in our hands: selenocarboxylic amides 2a-e were isolated in only 49%, 14%, 7%, 3% and 21% yields, respectively. The reaction of P<sub>2</sub>Se<sub>5</sub> with dibenzylacetonitrile afforded selenocarboxylic amide 2f. Products 2g-i were prepared from pyridyl substituted nitriles. The novel functionalized selenocarboxylic amides 2j-m, containing a nitrile, carboxylic acid, ester and guanidine moiety, were prepared from 1j-m with very good chemoselectivity. A protection of the functional groups was not required. Selenation of malonic dinitrile afforded the novel difunctional derivative 2n. Phenylethenyl-, tert-butyl- and naphthyl-substituted selenocarboxylic amides 20-q could be prepared from the corresponding nitriles **10–q**. The reaction of  $P_2Se_5$  with functionalized aromatic nitriles afforded products **2r–v** with very good chemoselectivity. Seleno-urea (**2x**) and selenoglycin amide (**2y**), which represents to our knowledge the first amino acid derived selenocarboxylic amide, were successfully prepared from cyanamide and aminoacetonitrile, respectively. The cyclization of selenocarboxylic amides **2** with  $\alpha$ -bromoketones afforded a variety of 1,3-selenazoles **3** (Scheme 2, Table 2).<sup>11</sup>

We have reported a chemoselective, convenient and reliable synthesis of a variety of selenocarboxylic amides including a number of novel functionalized derivatives. The yields obtained for known products compare well to those reported for other methods. Selenocarboxylic amides represent useful building blocks for the synthesis of 1,3-selenazoles and other pharmacologically relevant *N/Se*heterocycles.

## Acknowledgment

Financial support from the Fonds der Chemischen Industrie e. V. (Liebig-scholarship and funds for P. L.) and from the Deutsche Forschungsgemeinschaft (Heisenberg-scholarship and funds for P. L.) is gratefully acknowledged.

## References

- (1) Goldstein, B. M.; Kennedy, S. D.; Hennen, W. J. J. Am. Chem. Soc. **1990**, 112, 8265; and references cited therein.
- (2) (a) Larsen, R. In *Comprehensive Heterocyclic Chemistry II*, Vol. 3; Shinkai, I., Ed.; Elsevier Science: Oxford, **1996**, Chap. 8. (b) Wirth, T. *Organoselenium Chemistry, Modern Developments in Organic Synthesis*; Springer: Berlin, **2000**.
  (c) Koketsu, M.; Nada, F.; Ishihara, H. *Synthesis* **2002**, 195; and references cited therein.

| 2/3 | R <sup>1</sup>                                    | Appearance (Crystallization solvent)                  | Mp (°C) | % ( <b>2</b> ) <sup>a</sup> | R <sup>2</sup>   | % ( <b>3</b> ) <sup>a</sup> |
|-----|---------------------------------------------------|-------------------------------------------------------|---------|-----------------------------|------------------|-----------------------------|
| a   | Ph                                                | Golden needles ( $C_6H_6/PE$ )                        | 125–126 | 84                          | Ph               | 87                          |
| b   | 2-(H <sub>3</sub> C)C <sub>6</sub> H <sub>4</sub> | Yellow needles (C <sub>6</sub> H <sub>6</sub> /PE)    | 109–111 | 30                          | Ph               | 93                          |
| c   | Me                                                | Colorless prisms (C <sub>6</sub> H <sub>6</sub> )     | 125–126 | 27                          | $4-BrC_6H_4$     | 53                          |
| d   | Et                                                | Colorless prisms (C <sub>6</sub> H <sub>6</sub> )     | 56–57   | 20                          | Me               | 61                          |
| e   | PhCH <sub>2</sub>                                 | Colorless needles (C <sub>6</sub> H <sub>6</sub> /PE) | 92–93   | 40                          | Ph               | 100                         |
| f   | Ph <sub>2</sub> CH                                | Yellow prisms (C <sub>6</sub> H <sub>6</sub> /PE)     | 148–150 | 81                          | Н                | 61                          |
| g   | 2-Pyridyl                                         | Colorless needles (C <sub>6</sub> H <sub>6</sub> /PE) | 143–144 | 37                          | Ph               | 93                          |
| h   | 3-Pyridyl                                         | Golden needles (EtOH)                                 | 146–147 | 18                          | $4-BrC_6H_4$     | 61                          |
| i   | 4-Pyridyl                                         | Orange lamella (DMF/H <sub>2</sub> O)                 | 142–143 | 36                          | $4-BrC_6H_4$     | 81                          |
| j   | (NC)CH <sub>2</sub>                               | Brown needles (EtOH)                                  | 108–109 | 41                          | _                | -                           |
| k   | H <sub>2</sub> NC(=O)CH <sub>2</sub>              | Yellow prisms (EtOH)                                  | 120–122 | 47                          | Ph               | 95                          |
| 1   | (EtO <sub>2</sub> C)CH <sub>2</sub>               | Colorless liquid                                      | Dec.    | 33                          | $4-(O_2N)C_6H_4$ | 74                          |
| m   | H <sub>2</sub> NC(=NH)NH                          | Grey prisms (EtOH)                                    | 162–164 | 55                          | -                | -                           |
| n   | H <sub>2</sub> NC(=Se)CH <sub>2</sub>             | Yellow needles (DMF/CHCl <sub>3</sub> )               | Dec.    | 52                          | -                | _                           |
| 0   | PhCH=CH                                           | Colorless liquid                                      | Dec.    | 42                          | Me               | 61                          |
| р   | <i>t</i> Bu                                       | Colorless needles (C <sub>6</sub> H <sub>6</sub> )    | 132–133 | 58                          | -                | -                           |
| q   | 1-Naphthyl                                        | Yellow prisms (EtOH)                                  | 130–132 | 35                          | Ph               | 80                          |
| r   | $4-(H_2N)C_6H_4$                                  | Yellow prisms (EtOH)                                  | 127–128 | 22                          | Ph               | 87                          |
| s   | 2-(HO)C <sub>6</sub> H <sub>4</sub>               | Yellow lamella (toluene/PE)                           | 106–108 | 48                          | Н                | 29                          |
| t   | 4-(HO)C <sub>6</sub> H <sub>4</sub>               | Yellow needles (H <sub>2</sub> O)                     | 175–176 | 57                          | Н                | 25                          |
| u   | $4\text{-}ClC_6H_4CH_2$                           | Colorless needles (C <sub>6</sub> H <sub>6</sub> )    | 94–96   | 73                          | $4-BrC_6H_4$     | 73                          |
| v   | $4\text{-}(O_2N)C_6H_4CH_2$                       | Yellow needles (EtOH)                                 | 219–221 | 70                          | $4-(H_3C)C_6H_4$ | 86                          |
| w   | Cyclohexyl                                        | Colorless needles (C <sub>6</sub> H <sub>6</sub> )    | 130–133 | 26                          | $4-BrC_6H_4$     | 54                          |
| x   | $H_2N$                                            | Colorless needles (H <sub>2</sub> O)                  | 204–206 | 37                          | Ph               | 87                          |
| у   | (H <sub>2</sub> N)CH <sub>2</sub> <sup>b</sup>    | Colorless needles (EtOH)                              | 195–197 | 59                          | _                | _                           |

 Table 2
 Yields of Selenocarboxylic Amides 2 and 1,3-Selenazoles 3

<sup>a</sup> Isolated yields of free amide.

<sup>b</sup> Isolated yield of hydrobromide.

- (3) (a) Lai, L.-L.; Reid, D. H. Synthesis 1993, 870.
  (b) Klayman, D. L.; Griffins, T. S. J. Am. Chem. Soc. 1973, 95, 197. (c) For the use of LiAlH<sub>4</sub>/Se, see: Ishihara, H.; Koketsu, M.; Fukuta, Y.; Nada, F. J. Am. Chem. Soc. 2001, 123, 8408. (d) Also see: Koketsu, M.; Fukuta, Y.; Ishihara, H. Tetrahedron Lett. 2001, 42, 6333.
- (4) Ogawa, A.; Miyaka, J.; Karasaki, Y.; Murai, S.; Sonoda, N. J. Org. Chem. 1985, 50, 384.
- (5) Kaminski, R.; Glass, R. S.; Skowronska, A. Synthesis 2001, 1308.
- (6) Cohen, V. J. Synthesis 1978, 668.
- (7) This can have several reasons: (a) We have found that the aluminothermic formation of Al<sub>2</sub>Se<sub>3</sub> from the elements is

often not complete and strongly depends on the particle size of aluminum and on many other parameters: Brauer, B. *Handbuch der präparativen anorganischen Chemie*; Ferd. Enke Verlag: Stuttgart, **1960**, 732. (b) It is necessary, but extremely difficult to remove remaining aluminum. In addition,  $Al_2Se_3$  is very prone to hydrolysis and has to be handled with great care (glove box). Since it has to be used as a powder, substantial decomposition readily occurs and impurities cannot be separated.

(8) For the synthesis of thioamides from amides, see: Raucher, S.; Klein, P. J. Org. Chem. 1981, 46, 3558.

- (9) For the synthesis of *N*,*N*-disubstituted selenocarboxylic amides, see: (a) Collhard-Charon, C.; Renson, M. *Bull. Soc. Chim. Belg.* **1963**, *72*, 304. (b) Jensen, K. A.; Nielsen, P. H. *Acta Chim. Scand.* **1966**, *20*, 597. (c) See also: Sukhai, R. S.; de Jong, R.; Brandsma, L. *Synthesis* **1977**, 888.
- (10) General procedure for the preparation of selenocarboxylic amides: Method A (for 2a-2t): An ethanol solution (15-30 mL) of the nitrile (50 mmol) and of freshly prepared  $P_2Se_5$ (9.1 g, 20 mmol) was refluxed. Subsequently, water (3-6 mL) was added dropwise during 2-3 h. After cooling, the solution was filtered and water was added to the filtrate which resulted in precipitation of the selenocarboxylic amide 2. In some cases, the aqueous layer was extracted with ether or benzene. The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered and concentrated. Cooling (dry ice) or addition of petroleum ether resulted in crystallization of the product. The crude product was dried (desiccator, P2O5) and crystallized from the solvent indicated (Table 2). Method B (for 2u–2y): The nitrile (50 mmol) was dissolved in ethanol (15-30 mL) and water (3-6 mL). To the refluxing solution was added freshly prepared P<sub>2</sub>Se<sub>5</sub> (9.1 g, 20 mmol) in small portions during 2-3 h. The solution was cooled and filtered. Water was added to the filtrate which resulted in precipitation of the selenocarboxylic amide 2. In some cases, the aqueous layer was extracted with benzene. The combined organic layers were dried (Na2SO4), filtered and concentrated. Cooling (dry ice) or addition of petroleum ether resulted in crystallization of the product. The crude product was dried (exsiccator, P2O5) and crystallized from the solvent indicated (Table 2). For 2x, only water was used as the solvent. In case of 2x and 2y, the hot solution was filtered without prior cooling. Concentration of the filtrate resulted in precipitation of the pure product. Spectroscopic data of 2-methyl-selenobenzamide (2b): <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 300 MHz): δ 2.15 (s, 3 H, CH<sub>3</sub>), 5.90 (br, 1 H,

NH), 6.78–7.22 (m, 4 H, Ar), 8.20 (br, 1 H, NH). <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>, 75 MHz):  $\delta_c$  19.67 (CH<sub>3</sub>), 125.67, 125.68, 126.22, 126.24, 128.99, 130.70 (Ar), 210.46 (C=Se). IR (KBr, cm<sup>-1</sup>): 1620 (s), 1420 (s), 1290 (m), 1265 (w), 1230 (w), 1155 (w), 1130 (w), 1045 (w), 855 (m). MS (70 eV): m/z (%): 199 (100, M<sup>+</sup>). Anal. calcd. for C<sub>8</sub>H<sub>9</sub>NSe (198.13): C 48.50, H 4.58, N 7.07, Se 38.86; found C 48.50, H 4.30, N 7.10, Se 39.50. All new compounds gave satisfactory analytical or high resolution mass data. Synthesis of P<sub>2</sub>Se<sub>5</sub>: A mixture of red phosphorous and grey

Synthesis of  $P_2Se_5$ : A mixture of red phosphorous and grey selenium powder was heated in a tube with minor Bunsen burner flame until the reaction was complete. The reaction mixture was grounded and powdered to give  $P_2Se_5$  as a grey solid. For comparison, see: Kudchadker, M. V.; Zingaro, R. A.; Irgolic, K. J. *Can. J. Chem.* **1968**, *46*, 1415.

(11) Typical procedure for the preparation of 1,3-selenazoles: An EtOH solution (20 mL) of selenobenzamide (1.84 g, 10 mmol) and  $\alpha$ -bromoacetophenone (1.99 g, 10 mmol) was stirred under evolution of heat. After cooling, the mixture was poured into H<sub>2</sub>O. The precipitated product was filtered off and recrystallized from EtOH to give **3a** as colorless lamella (2.47 g, 87%).

Spectroscopic data of 2,4-diphenyl-1,3-selenazole (**3a**): mp: 99 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz):  $\delta$  7.38–8.01 (m, 10 H, Ar), 8.06 (s, 1 H, 5-H). <sup>2</sup>J (SeH) = 58.3 Hz. <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz):  $\delta_c$  118.26, 126.72, 127.08, 127.91, 128.70, 128.97, 130.21, 135.42, 136.41, 156.93, 173.87. <sup>77</sup>Se NMR (CDCl<sub>3</sub>, 100% Me<sub>2</sub>Se):  $\delta$  712.69 (<sup>2</sup>J<sub>Se-H</sub> = 58.3 Hz). IR (KBr, cm<sup>-1</sup>): 3114 (m), 1598 (s), 1509 (s), 1481 (s), 1442 (s), 1279 (m), 1152 (m), 1071 (m), 1043 (s), 1027 (m), 952 (s). MS (70 eV): m/z (%): 285 (59, M<sup>+</sup>), 182 (100), 102 (86). Anal. calcd. for C<sub>15</sub>H<sub>11</sub>NSe (284.22): C 63.39, H 3.90, N 4.93; found C 63.45, H 3.92, N 4.91. All new compounds gave satisfactory analytical or high resolution mass data.