

Available online at www.sciencedirect.com

Tetrahedron Letters 46 (2005) 923-926

Tetrahedron Letters

Synthesis of 8-(S)-methoxy-11-desmethyl laulimalide: a novel laulimalide analogue

Brian M. Gallagher, Jr.,* Hongjuan Zhao, Marc Pesant and Francis G. Fang

Eisai Research Institute, 100 Research Drive, Wilmington, MA 01887, USA and 4 Corporate Drive, Andover, MA 01810, USA

Received 30 November 2004; revised 8 December 2004; accepted 13 December 2004 Available online 29 December 2004

Abstract—A strategy is outlined which enables preparation of novel laulimalide analogues at C.8 and C.11. A representative analogue, 8-(S)-methoxy-11-desmethyl laulimalide, was synthesized via this route. © 2004 Elsevier Ltd. All rights reserved.

The marine natural product (-)-laulimalide (1, Fig. 1)was first isolated in 1988 from several sources of marine sponge and shown to be highly cytotoxic in a number of human cancer cell lines.¹ Later it was reported that 1 induces microtubule polymerization and stabilization similar to paclitaxel, but retains activity in a P-glycoprotein (PgP) over-expressing multidrug resistant cell line.² It was recently reported that laulimalide binds to a different site of the tubulin polymer than most other microtubule stabilizers and retains activity against cell lines containing mutations in the β -tubulin gene.³ These reports have generated an enormous amount of excitement about the therapeutic potential of this natural product and as a result, there has been a surge of synthetic efforts toward 1 resulting in a number of total syntheses.^{4,5} Despite these synthetic efforts, there have been few reports of biological evaluation of laulimalide analogues to date.^{3,5,6}

Figure 2. Strategy to access analogues at C.8 and C.11.

Figure 1. The marine natural product (-)-laulimalide with carbon numbering.

0040-4039/\$ - see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.12.056

We recently reported a total synthesis of laulimalide and a series of analogues modified at C.2–C.3, C.15–C.17, and C.20.⁵ In order to further probe the SAR of 1, we wanted to explore changes in the C.8–C.11 region (Fig. 2). Paterson et al. recently reported the molecular modeling studies and syntheses of C.11 desmethyl laulimalide analogues.^{6c} Modeling predicted little perturbation to the conformations of the C.1–C.4 and

Keywords: Laulimalide; Analogue.

^{*} Corresponding author. Tel.: +1 978 661 7264; fax: +1 978 657 7715; e-mail: brian_gallagher@eri.eisai.com

C.15–C.20 regions by removal of the C.11 stereocenter. We wished to extend this concept by rigidifying the conformation of the C.5–C.9 dihydropyran. Examination of the crystal structure of 1,^{1d} indicates the 2,6-*trans* substituents of the lower dihydropyran ring adopt a pseudo-axial and pseudo-equatorial relationship for C.4 and C.10, respectively. It was hypothesized that a α -substituent at C.8 would reinforce the conformation of the lower pyran and consequently the macrocycle. Thus a C.8 (*S*)-methoxy C.11 desmethyl analogue was targeted.

The requisite C.2–C.14 fragment was synthesized as outlined in Scheme 1. Triacetyl glucal underwent a carbon Ferrier reaction with allyltrimethylsilane to produce the allyl addition product with the 2,6 substituents exclusively *trans.*⁷ The allyl addition product was converted to the crystalline dioxolane intermediate (**4**) in 50% overall yield through a standard sequence of dihydroxylation, diol cleavage,⁸ and protection of the resultant aldehyde. Hydrolysis of the acetates, monoprotection of the primary alcohol as a TBS ether, and methylation of the secondary alcohol provided **5** follow-

Scheme 1. Reagents and conditions: (a) TFA, TMS allyl silane, CH₃CN, 0 °C; (b) K₂OsO₄, NMO, THF/H₂O (2/1); (c) NaIO₄, CH₂Cl₂, aq NaHCO₃; (d) *p*-TsOH, (CH₂OH)₂, PhH, reflux, -H₂O (50%); (e) K₂CO₃, MeOH; (f) TBSCl, imidazole, DMF, 10 °C; (g) NaH, MeI, DMF; (h) TBAF, THF (75%); (i) Tf₂O, 2,6-di-*t*butylpyridine, CH₂Cl₂, -50 °C; (j) TMSCCLi, HMPA, THF, -78 °C (80%); (k) Cs₂CO₃, MeOH; (l) AgNO₃, NIS, acetone (70%); (m) 0.1% NiCl₂/CrCl₂, **10**, THF; (n) TPAP, NMO, CH₂Cl₂ (80%); (o) [(Ph₃P)CuH]₆ (0.6 M equiv), PhCH₃, trace H₂O (65%); (p) Ph₃PCH₃Br, *n*-BuLi, THF, 0 °C (90%); (q) 80% aq HOAc, 60 °C (50%); (r) CBr₄, Ph₃P, CH₂Cl₂, -78 °C; *n*-BuLi, THF, -78 °C; (s) TBAF, THF; (t) Ph₃P, NBS, CH₂Cl₂, 0 °C (70%).

ing fluoride removal of the TBS.⁹ The primary alcohol of **5** was homologated to the alkynyl iodide **6** via displacement of the corresponding triflate under carefully controlled conditions.¹⁰ Alkynyl iodide **6** underwent efficient coupling with aldehyde **10**¹¹ to produce the ynone (7) after oxidation. The ynone 7 cleanly underwent a double Stryker-type reduction¹² to produce the corresponding ketone, which was methylenated under typical conditions. Selective removal of the dioxolane in the presence of the TBDPS ether was accomplished using 80% aqueous HOAc to produce aldehyde **8**. Corey– Fuchs protocol of aldehyde **8** produced the terminal alkyne. Removal of the silyl ether and conversion to the allylic bromide produced the C.2–C.14 fragment **9**.

The C.15-C.27 fragment was prepared as outlined in Scheme 2. The known aldehyde $\mathbf{\hat{11}}$,¹³ available in six steps from D-arabinose, underwent Horner-Wadsworth–Emmons reaction to produce the α , β -unsaturated ester in a \sim 4:1 mixture of *E*:*Z* stereoisomers. During the course of this work, we found a convenient procedure for improving the ratio to almost exclusively E by treating crude 12 with catalytic Bu₃P in CH₃CN at 60 °C overnight.¹⁴ Removal of the acetonide and periodate cleavage of the resultant diol produced the aldehyde 13. The aldehyde was efficiently coupled with the known¹⁵ vinyl iodide **16** under NiCl₂/CrCl₂ mediated conditions to give a $\sim 1:2 \alpha:\beta$ -mixture of diastereomers. Oxidation followed by reduction with L-Selectride^{®16} produced the desired stereoisomer,17 which was protected as the TBS ether 14. DIBAL-H reduction of the methyl ester followed by Swern oxidation produced the enal coupling partner 15.

Indium mediated coupling of 9 and 15 produced a \sim 1:1 mixture of diastereomeric alcohols at C.15 which were

Scheme 2. Reagents and conditions: (a) (i) $(MeO)_2POCH_2CO_2Me$, NaH, THF, 0 °C, (ii) Bu₃P (cat.), CH₃CN, 60 °C (85%); (b) 1 M HCl/ THF (1/1); (c) NaIO₄, THF/H₂O (1/1), 0 °C (70%); (d) 0.1% NiCl₂/ CrCl₂, 16, DMSO (60%); (e) Dess-Martin periodane, CH₂Cl₂; (f) L-Selectride[®], THF, -78 °C (50%); (g) TBSOTf, imidazole, DMF (90%); (h) DIBAL, CH₂Cl₂, -78 °C (80%); (i) (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C (85%).

Scheme 3. Reagents and conditions: (a) indium, THF/H₂O (3/1), HCl (cat.) (65%); (b) TBSOTf, DMAP, pyridine (80%); (c) (i) *n*-BuLi, THF, -78 °C, (ii) CO₂ (gas); (d) DDQ, CH₂Cl₂/H₂O (2/1) (70%); (e) 2,4,6-trichlorobenzoyl chloride, DMAP, toluene (45%); (f) H₂, Lindlar cat., quinoline, hexane/CH₂Cl₂ (3/1) (80%); (g) HPLC; (h) H₂SiF₆, CH₃CN; (i) (+)-DIPT, Ti(O*i*Pr)₄, *t*-BuOOH, CH₂Cl₂, -15 °C (50%).

protected as the TBS ethers (Scheme 3). Carboxylation of the alkyne of 17 and removal of the MPM group allowed for macrolactonization under Yamaguchi-type conditions^{4b} to produce 18. Lindlar reduction and chiral HPLC (Chiralpak[®] AD) separation of the C.15 diastereomers produced the Z enoate 19. Deprotection and Sharpless epoxidation produced the 8-(S)-methoxy-11desmethyl laulimalide (20).¹⁸

The route outlined above contains sufficient flexibility to provide additional analogues at C.8 and C.11 to further probe the structure–activity relationships of laulimalide analogues. For example, cuprate additions to the ynone 7 (Scheme 1) should provide access to various substituents at C.11 such as *gem* di-methyl analogues.¹⁹

In summary, the total synthesis of a novel analogue, 8-(S)-methoxy-11desmethyl laulimalide, has been accomplished. The key C.2–C.14 fragment is readily prepared from triacetyl glucal. The strategy provides the flexibility to access additional analogues modified in the C.8 and C.11 regions of laulimalide to further probe the SAR. Efforts in this area will be reported in due course.

References and notes

- (a) Quinoa, E.; Kakou, Y.; Crews, P. J. Org. Chem. 1988, 53, 3642–3644; (b) Corley, D. G.; Herb, R.; Moore, R. E.; Scheuer, P. J.; Paul, V. J. J. Org. Chem. 1988, 53, 3644; (c) Tanaka, J.-I.; Higa, T.; Bernardinelli, G.; Jefford, C. W. Chem. Lett. 1996, 255–256; (d) Jefford, C. W.; Bernardinelli, G.; Tanaka, J.-I.; Higa, T. Tetrahedron Lett. 1996, 37, 159–162.
- (a) Mooberry, S. L.; Tien, G.; Hernandez, A. H.; Plubrukarn, A.; Davidson, B. S. *Cancer Res.* 1999, *59*, 653–660; (b) Mooberry, S. L.; Davidson, B. S. WO 0154689, 2001.
- (a) Pryor, D. E.; O'Brate, A.; Bilcer, G.; Diaz, J. F.; Wang, Y.; Wang, Y.; Kabaki, M.; Jung, M. K.; Andreu, J. M.; Ghosh, A. K.; Giannakakou, P.; Hamel, E. *Biochemistry* **2002**, *41*, 9109–9115; (b) Gapud, E. J.; Bai, R.; Ghosh, A. K.; Hamel, E. *Mol. Pharmacol.* **2004**, *66*, 113–121; For related references, see: Gaitanos, T. N.; Buey, R. M.; Diaz, J. F.; Northcote, P. T.; Teesdale-Spittle, P.; Andreu, J. M.; Miller, J. H. *Cancer Res.* **2004**, *64*, 5063–5067, and; Pineda, O.; Farras, J.; Maccari, L.; Manetti, F.; Botta, M.; Vilarrasa, J. *Biorg. Med. Chem. Lett.* **2004**, *14*, 4825– 4829.
- 4. (a) Ghosh, A. K.; Wang, Y. J. Am. Chem. Soc. 2000, 122, 11027-11028; (b) Ghosh, A. K.; Wang, Y. Tetrahedron Lett. 2001, 42, 3399-3401; (c) Ghosh, A. K.; Wang, Y.; Kim, J. T. J. Org. Chem. 2001, 66, 8973-8982; (d) Paterson, I.; De Savi, C.; Tudge, M. Org. Lett. 2001, 3, 3149-3152; (e) Mulzer, J.; Ohler, E. Angew. Chem., Int. Ed. 2001, 40, 3842-3846; (f) Enev, V. E.; Kahlig, H.; Mulzer, J. J. Am. Chem. Soc. 2001, 123, 10764-10765; (g) Mulzer, J.; Hanbauer, M. Tetrahedron Lett. 2002, 43, 3381-3383; (h) Wender, P. A.; Hegde, S. G.; Hubbard, R. D.; Zhang, L. J. Am. Chem. Soc. 2002, 124, 4956-4957; (i) Crimmins, M. T.; Stanton, M. G.; Allwein, S. P. J. Am. Chem. Soc. 2002, 124, 5958-5959; (j) Williams, D. R.; Mi, L.; Mullins, R. J.; Stites, R. E. Tetrahedron Lett. 2002, 43, 4841-4844; (k) Nelson, S. G.; Cheung, W. S.; Kassick, A. J.; Hilfiker, M. A. J. Am. Chem. Soc. 2002, 124, 13654-13655; See also: Mulzer, J.; Enev, V. S. EP 1295886, 2003; Ashley, G.; Metcalf, B. WO 02064589, 2002; Ghosh, A. K. WO 03076445, 2003, Ref. 6b. For recent reviews, see: Crimmins, M. T. Curr. Opin. Drug Disc. Dev. 2002, 5, 944-959, and; Mulzer, J.; Ohler, E. Chem. Rev. 2003, 103, 3753-3786.
- Gallagher, B. M., Jr.; Fang, F. G.; Johannes, C. W.; Pesant, M.; Tremblay, M. R.; Zhao, H.; Akasaka, K.; Li, X.; Liu, J.; Littlefield, B. A. *Biorg. Med. Chem. Lett.* 2004, 14, 575–579.
- (a) Wender, P. A.; Hegde, S. G.; Hubbard, R. D.; Zhang, L.; Mooberry, S. L. Org. Lett. 2003, 5, 3507–3509; (b) Ahmed, A.; Hoegenauer, E. K.; Enev, V. S.; Hanbauer, M.; Kaehlig, H.; Ohler, E.; Mulzer, J. J. Org. Chem. 2003, 68, 3026–3042; (c) Paterson, I.; Bergmann, H.; Menche, D.; Berkessel, A. Org. Lett. 2004, 6, 1293–1295; (d) Mooberry, S. L.; Randall-Hlubek, D. A.; Leal, R. M.; Hegde, S. G.; Hubbard, R. D.; Zhang, L.; Wender, P. A. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 8803–8808.
- Danishefsky, S.; Kerwin, J. F., Jr. J. Org. Chem. 1982, 47, 3803–3805.
- Schmid, C. R.; Bryant, J. D.; Dowlatzedah, M.; Phillips, J. L.; Prather, D. E.; Schantz, R. D.; Sear, N. L.; Vianco, C. S. J. Org. Chem. **1991**, *56*, 4056–4058.

 Intermediate 4 could be deacetoxylated to the laulimalide dihydropyran under standard conditions (Pd₂dba₃, Bu₃P, Hco₂H−NEt₃), albeit as a ~2:1 mixture favoring the desired isomer.

- Shen, Q.; Sloss, D. G.; Berkowitz, D. B. Synth. Commun. 1994, 24, 1519–1530.
- Choi, W.-B.; Wilson, L. J.; Yeola, S.; Liotta, D. C.; Schinazi, R. F. J. Am. Chem. Soc. 1991, 113, 9377–9379.
- 12. To the best of our knowledge, a double Stryker-type reduction of an ynone to the saturated ketone appears to be unprecedented.

- 13. Motoyoshi, H.; Ishigami, K.; Kitahara, T. *Tetrahedron* 2001, *57*, 3899–3908.
- 14. We have found this reaction may also be run in DMF or THF and at rt, but CH_3CN at 60 °C provided the shortest reaction times.
- (a) Messenger, B. T.; Davidson, B. S. *Tetrahedron Lett.* 2001, 42, 401–403; (b) ref. 4k.
- 16. Shimizu, A.; Nishiyama, S. Synlett 1998, 1209-1210.
- The stereochemistry of the newly formed center was confirmed by analysis of the *R*- and *S*-Mosher's esters. See: (a) Dale, J. A.; Mosher, H. S. *J. Am. Chem. Soc.* 1973, 95, 512–519; (b) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. *J. Am. Chem. Soc.* 1991, 113, 4092–4096.
- 18. Preliminary biological evaluation of this analogue indicates it retains sub-micromolar growth inhibition potency in the MDA-MB-435 human breast cancer cell line. For assay conditions, see Ref. 5. Investigations of this analogue for activity against multidrug resistant cell lines will be reported in due course.
- A gem di-methyl strategy was undertaken in the cryptophycins to stabilize the macrolactone and faciliate process scale-up by eliminiating a sterocenter, but was also found to increase potency. See: Eggen, M.; Georg, G. I. Med. Res. Rev. 2002, 22, 85–101.