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Stereoselective synthesis of the C1-C12 

subunit of (-)-callystatin A 

Sadagopan Raghavan and Sheelamanthula Rajendar 
A stereoselective synthesis of the C1-C12 subunit of callystatin A is described. 
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 (–)-Callystatin A 1, was isolated by Kobayashi and co-
workers from a marine sponge, Callyspongia truncata.

1
 

Callystatin exhibits remarkable cytotoxicity against KB (IC50 = 
10 pg mL

-1
) and L1210 (IC50 = 20 pg mL

-1
) cell lines which is 

attributed to its inhibition of CRM1 (chromosome region 
maintenance 1) protein.

2
 The structure of callystatin consists of 

an unsaturated δ-lactone, two (Z, E)- and (E, E)-1,3-diene units, a 
stereogenic center at C10 and a polypropionate subunit 
incorporating four chiral centers. 

 Its potent cytotoxicity combined with its complex 
structure has stimulated much attention leading to several total 
syntheses.

3 
We disclose herein, our efforts toward the 

stereoselective synthesis of the C1-C12 subunit of callystatin. By 
a retrosynthetic disconnection, callystatin was envisioned to be 
synthesized by the union of the sulfone derived from 2 and 
aldehyde 3, employing the Julia-olefination, Scheme 1. The 
stereoselective synthesis of aldehyde 3 by a non-aldol approach 
was recently described.

4
 The sulfide 2 was envisaged to be 

obtained by a Wittig olefination between aldehyde 4 and the 
phosphonium salt derived from bromide 5. The aldehyde 4 can 
be obtained from homoallyl alcohol 6 and bromide 5 was 
envisioned to be obtained from alkyne 7 which inturn can be 
traced to sulfide 8. 

 The synthesis began from commercially available 4-

pentenal 9 which was subjected to L-proline catalyzed 
aminooxylation using nitrosobenzene

5
 and reduction using 

sodium borohydride in the same pot to afford alcohol 10 (99% 
ee). Protection of the carbinol under standard conditions as its 

silyl ether 11 followed by cleavage of the O-N bond
6
 furnished 

alcohol 6. The acrylate ester 12 obtained from 6 was subjected to 

ring-closing metathesis reaction using Grubbs' first generation 
catalyst 13 to furnish lactone 14.7 Reduction to lactal using 

DIBAL-H and acetal formation using isopropanol and catalytic 

quantity of PPTS delivered compound 15 (dr >95:<5). 

Deprotection of the silyl ether using TBAF yielded alcohol 16 
which on oxidation using TEMPO and PhI(OAc)

8
 yielded 

aldehyde 4, Scheme 2. 

 

 The alcohol 8 was synthesized by a diastereoselective 
alkylation. In the initial attempt, imide 19,

9
 prepared by the 

reaction of oxazolidine 17 with the mixed anhydride prepared 
from carboxylic acid 18,

10
 was subjected to methylation to 

furnish compound 20 (dr >95:<5). Reductive cleavage using 
LAH yielded alcohol 8 and 17. In another approach, 

propionamide derivative 21, prepared using Myer's auxiliary,
11

 
was subjected to alkylation with 2-thiophenyl iodoethane 22, to 

yield compound 23. Reductive cleavage of the auxiliary
12

 using 

LiNH2.BH3 furnished alcohol 8. While the temperature had to be 

maintained around -78 
o
C using imide 19, the alkylation could be 

carried out at 0 
o
C using amide 21. Oxidation of the carbinol 

using Swern prootocol
13

 afforded aldehyde 24. Homologation 

using Corey-Fuchs protocol
14

 furnished dibromoalkene 25. 
Alkyne formation using n-BuLi in the presence of an excess of 

paraformaldehyde yielded propargylic alcohol 7 (99% ee), 
Scheme 3. A highly regio- and stereoselective hydrostannylation 

of alkyne was exploited for the creation of the (Z)-trisubstituted 
alkene. Thus treatment of 7 with tributyltin hydride in the 

presence of Pd(II)
15

 followed by iodine quench yielded allyl 
alcohol 26 (regioisomer ratio 16:1). Negishi coupling16 of  26 and 

diethylzinc using Pd(0) furnished alkene 27 in good yield. The 
alcohol 27 was transformed to bromide 5 under Mitsunobu 

conditions using CBr4.
17

 Further phosphonium salt formation by 

reaction of 5 with tributylphosphine and reaction of the 

corresponding ylide generated following a reported procedure,
3b

 
with aldehyde 4 furnished diene sulfide 2 (E:Z = >95:<5), 

corresponding to the C1-C12 subunit of callystatin A. 
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A stereoselective synthesis of the C1-C12 fragment of callystatin A is disclosed. The two 

stereocenters at C5 and C10 were created by an organocatalytic reaction and a diasteroselective 

alkylation respectively. The trisubstituted double bond was introduced by a hydroxy directed 

hydrostannylation followed by Negishi reaction. The lactone ring resulted from a ring-closing 

metathesis reaction. 
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Scheme 1. Retrosynthetic disconnection of callystatin A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 2. Synthesis of aldehyde 4. 
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Scheme 3. Synthesis of sulfide 2. 

 In conclusion, we have devised a stereoselective route 

to the C1-C12 fragment of callystatin A employing 

organocatalytic reaction to introduce the C5 stereocenter, a 

diastereoselective auxiliary controlled alkylation to introduce the 
C10 stereocenter. Ring-closing metathesis, hydroxy directed 

regio- and stereoselective hydrostannylation and Negishi 
coupling are other metal catalyzed/promoted reactions that have 

been used to advantage. The C6-C7 double bond was introduced 
by a Wittig olefination. Efforts are in progress to complete the 

synthesis of callystatin A. 
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