# Copper-Catalyzed Three-Component Carboamination of Arynes: Expeditious Synthesis of *o*-Alkynyl Anilines and *o*-Benzoxazolyl Anilines

Sheng-Li Niu, Jiangtao Hu, Kuicheng He, Ying-Chun Chen,\*<sup>®</sup> and Qing Xiao\*<sup>®</sup>

College of Pharmacy, Third Military Medical University, Chongqing 400038, China

**Supporting Information** 



**ABSTRACT:** A copper-catalyzed three-component reaction of in situ formed arynes, terminal alkynes, and *O*-benzoylhydroxylamines has been developed. By adjusting reaction conditions, the nucleophiles in this transformation can be extended from terminal alkynes to benzoxazoles. These procedures provide a modular and facile approach to *o*-alkynyl anilines and *o*-benzoxazolyl anilines from easily available substrates in only one step.

nilines exist widely in biologically active natural products, **A**valuable pharmaceuticals, and significant synthetic building blocks.<sup>1,2</sup> Although numerous powerful methodologies toward formation of  $C(sp^2)$ -N bonds have been developed recently,<sup>3-5</sup> the general and practical routes to access ortho-substituted anilines have still been limited. Traditional methods usually make use of coupling reactions of 1,2-dihaloarenes or o-iodoanilines to achieve this goal. However, it is not easy to regulate the stepwise coupling reactions and the approaches are restricted to the availability of the starting materials. As an umpolung strategy of traditional cross-couplings, electrophilic amination has been a significant tool for constructing C-N bonds.<sup>6</sup> By merging the electrophilic amination and Catellani reaction, o-alkynyl anilines can be easily prepared via the Pd-catalyzed multicomponent reaction of ortho-substituted aryl iodides, electrophilic aminating agents, and alkyne precursors (Figure 1A). Nevertheless, when aryl iodides bearing no ortho substituent were used, two amino groups were introduced at the adjacent positions to iodine through C-H bond activation. And terminal alkynes cannot be directly used in this reaction.

Simultaneously, transition-metal-catalyzed aryne chemistry has become a powerful platform for 1,2-difunctionalization of arenes.<sup>8–10</sup> In this field, Greaney et al. developed a Cucatalyzed one-pot reaction of arynes, heteronucleophiles, and *O*-benzoylhydroxylamines affording 1,2-dihetero-functionalized arenes in high yields (Figure 1B).<sup>10t</sup> Xu et al. reported a Cu-catalyzed multicomponent reaction of arynes, terminal alkynes, and electrophilic sulfenylating reagents to synthesize *o*-alkynyl arylsulfides (Figure 1C).<sup>10v</sup> From the perspective of mechanism, the fundamental mode of these reactions can be described as nucleophilic addition to arynes and successive electrophilic trap tandem reactions. In contrast with the strategy of precious-metal-catalyzed C–H activation, these Palladium-catalyzed Catellani-type reaction of ortho-substituted iodobenzenes

```
A) o-alkynyl anilines from alkynyl precursors: propiolic acids (Gu's work) & propargyl alcohols (Wu's work)
```

$$\begin{array}{c} \begin{array}{c} R^{1} \\ R \end{array} + \begin{array}{c} NR^{2}R^{3} \\ OBz \end{array} + \begin{array}{c} R^{4} \\ ODz \end{array}$$

Copper-catalyzed three-componet reaction of arynes

B) 1,2-diheterofunctionalized arenes: two C-X bonds formation (Greaney's work)

$$\begin{array}{c} \mathsf{R}^{\mathsf{Y}}\mathsf{H} & \stackrel{\mathsf{i}_{\mathsf{P}}\mathsf{M}\mathsf{gCl}}{\longrightarrow} \mathsf{T}^{\mathsf{3}} \overset{\mathsf{r}_{\mathsf{C}}}{\xrightarrow} \mathsf{then}} \\ \mathsf{R}^{\mathsf{I}}_{\mathsf{I}} & \stackrel{\mathsf{-}_{\mathsf{7}} \mathsf{S}^{\mathsf{*}}\mathsf{C}}{\longrightarrow} \mathsf{fhen}} \\ \mathsf{R}^{\mathsf{I}}_{\mathsf{I}} & \stackrel{\mathsf{Y}}{\longrightarrow} \mathsf{M}^{\mathsf{Y}}\mathsf{Gl}} & \\ \mathsf{R}^{\mathsf{I}}_{\mathsf{I}} & \stackrel{\mathsf{Y}}{\longrightarrow} \mathsf{M}^{\mathsf{Y}}\mathsf{Gl}} \\ \mathsf{R}^{\mathsf{I}}_{\mathsf{I}} & \stackrel{\mathsf{Y}}{\longrightarrow} \mathsf{M}^{\mathsf{Y}}\mathsf{Gl} \\ \mathsf{R}^{\mathsf{I}}_{\mathsf{I}} & \stackrel{\mathsf{Y}}{\longrightarrow} \mathsf{M}^{\mathsf{Y}}\mathsf{Gl}} \\ \mathsf{R}^{\mathsf{I}}_{\mathsf{I}} & \stackrel{\mathsf{Y}}{\longrightarrow} \mathsf{M}^{\mathsf{Y}}\mathsf{Gl} \\ \mathsf{K}^{\mathsf{Y}} \\ \mathsf{K}^{\mathsf{Y}}$$

C) o-alkynyl arylsulfides: C-S bond and C-C bond formation (Xu's work)



Figure 1. Strategies to synthesize *ortho*-substituted anilines using electrophilic aminating reagents.

transformations can be realized with non-noble copper catalysts.

In this context, we conceived that the copper-catalyzed three-component reaction of in situ formed benzynes, carbon nucleophiles, and electrophilic aminating reagents would provide a modular and facile synthetic approach to *ortho*-substituted anilines (Figure 2). Although the design of this reaction is relatively mature, there are still several challenges to overcome: (1) the direct amination of *int*-I to generate byproduct 5 through *path*  $A_i^{11}$  (2) the direct protonation of

Received: April 24, 2019



Figure 2. Proposed mechanism of the copper-catalyzed carboamination of benzynes to *ortho*-substituted anilines.

*int-* II to generate byproduct **6** through *path* B;<sup>10e</sup> (3) the insertion of another benzyne into the C–Cu bond of *int-*II and sequential protonation to generate byproduct 7 through *Path* C.<sup>10f,g</sup> To avoid these undesirable side reactions in our transformation, it is essential to select reactivity-matched carbon nucleophiles, seek appropriate catalysts and ligands, and control the benzyne formation rate by using suitable fluorides and bases. In continuation of our interest in transition-metal-catalyzed benzyne chemistry,<sup>12</sup> we herein report our preliminary results in this issue: a copper(I)-catalyzed multi component reaction of Kobayashi reagents, terminal alkynes/benzoxazoles, and *O*-benzoylhydroxylamines to afford *ortho*-substituted anilines (Figure 1D).

First, we optimized the conditions of the model reaction of *Kobayashi* reagent 1a, alkyne 2a, and O-benzoylhydroxylamine 3a (Table 1). The 5 mol % CuI catalyzed process at 60 °C in tetrahydrofuran (THF) in the presence of KF,  $Cs_2CO_3$ , and 18-crown-6 furnished *o*-alkynyl aniline 4a in 82% isolated yield (entry 1). Control experiments established the importance of

|            | _                                                                                                                                                                                               |                                                |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| $\bigcirc$ | TMS + Ph + N = 5 mol% Cul, Cs <sub>2</sub> CO <sub>3</sub><br>OTf + N = 4 O = 5 mol% Cul, Cs <sub>2</sub> CO <sub>3</sub><br>KF, 18-crown-6<br>THF, 60 °C, Ar, 10 h<br>standard conditions / 4a | Ph Ph Ph<br>Ph Ph 4a' Ph 4a''                  |
| entry      | variation of the standard conditions I                                                                                                                                                          | isolated yield (%) <sup>b</sup><br>4a/4a'/4a'' |
| 1          | none <sup>a</sup>                                                                                                                                                                               | 82/<5/<5                                       |
| 2          | CsF instead of KF                                                                                                                                                                               | 60/11/16                                       |
| 3          | without 18-crown-6, CsF instead of KF                                                                                                                                                           | 44/9/31                                        |
| 4          | K <sub>2</sub> CO <sub>3</sub> instead of Cs <sub>2</sub> CO <sub>3</sub>                                                                                                                       | 66/11/21                                       |
| 5          | DBU instead of Cs <sub>2</sub> CO <sub>3</sub>                                                                                                                                                  | trace/47/19                                    |
| 6          | DIPEA instead of Cs <sub>2</sub> CO <sub>3</sub>                                                                                                                                                | 67/9/19                                        |
| 7          | toluene instead of THF                                                                                                                                                                          | 24/8/17 <sup>c</sup>                           |
| 8          | Cl <sub>2</sub> CHCHCl <sub>2</sub> instead of THF                                                                                                                                              | 18/10/11 <sup>d</sup>                          |
| 9          | room temperature instead of 60 $^\circ\mathrm{C}$                                                                                                                                               | 58/9/11 <sup>e</sup>                           |
| 10         | volume of THF was changed to 4.0 mL                                                                                                                                                             | 65/11/16                                       |
| 11         | volume of THF was changed to 2.0 mL                                                                                                                                                             | 61/5/5                                         |

Table 1. Reaction Condition Optimization I

<sup>*a*</sup>0.26 mmol of 1a, 0.26 mmol of 2a and 0.20 mmol of 3a in 2.5 mL of THF in the presence of 0.40 mmol of  $Cs_2CO_3$ , 0.40 mmol of KF, 0.40 mmol of 18-crown-6, and 0.01 mmol of CuI. <sup>*b*</sup>The yield of 4a was calculated on the basis of 3a. The yields of 4a' and 4a'' were calculated on the basis of 2a. <sup>*c*</sup>37% 3a was recovered. <sup>*d*</sup>51% 3a was recovered. <sup>*e*</sup>19% 3a was recovered.

the fluorine resource and base in our reaction (entries 2-6). The solvent, temperature, and concentration of substrates also have significant impact to this transformation. When the THF was replaced with toluene or 1,2-dichloroethane, the yield of 4a decreased greatly (entries 7, 8). The reaction was also enabled at room temperature, but in a low yield (entry 9). A specific substrate concentration is necessary for the reaction (entries 10, 11). We believe that all these factors affect the formation rate of benzyne and the concentration of various active intermediates, thus affecting the efficiency and selectivity of the reaction. The unexpected byproduct 4a'' might be produced from the attack of terminal alkynes on *int*-III. In this side reaction, electrophilic amination reagents only act as oxidants.

Then, we proceeded to study the scope of the substrates (Figure 3). Substituent phenyl alkynes with either an electrondonating or electron-withdrawing group on the *ortho-, meta-,* and *para*-position of the benzene ring were able to undergo the three-component reaction to generate the corresponding products in good to excellent yields (4b-4i). Vinyl and alkyl alkynes have also proven to be useful starting materials for the efficient construction of *o*-alkynyl anilines (4j-4o). Besides,



**Figure 3.** Scope of the three-component reaction of benzyne precursors, terminal alkynes, and *O*-benzoylhydroxylamines. Unless otherwise noted, all the reactions were carried out under the *standard conditions I* in Table 1. <sup>*a*</sup> 5 mol % CuI/dppb was used as catalyst. <sup>*b*</sup> 10 mol % CuI/dppb was used as catalyst. <sup>*c*</sup> 0.52 mmol of **1a**, 0.52 mmol of **2a**, and 0.20 mmol of **3l** in 8 mL of THF.

the reaction conditions were compatible with alkyl, bromide, chloride, fluoride, methoxy, ester, and trifluoromethyl groups. Further exploration demonstrated that the reaction proceeded successfully with a variety of N,N-disubstituted O-benzoylhydroxylamines (4p-4z). Remarkably, the allyl or benzyl substituted amine products (4w-4y) can be easily converted to corresponding primary or secondary amines. Gratifyingly, the electrophilic aminating reagent with two active sites prepared from piperazine can also participate in this reaction smoothly, producing highly symmetrical o-alkynyl aniline (4z). Various aryne precursors can also be effectively used in this reaction (4aa-4ae). Only one regioisomer (4aa) could be efficiently generated from 3-methoxyl substituted silylphenyl triflate.<sup>13</sup> Additionally, *o*-alkynyl naphthylamine 4ab or 4ac could be obtained from the corresponding silylnaphthyl triflate in a moderate yield. The 4-methyl substituted silylphenyl triflate gave a 1.3:1 mixture of inseparable 4ad and 4ad' in a 68% overall isolated yield. When 3-methyl substituted silylphenyl triflate was used, 4ae and 4ae' were isolated in 50% and 19% yields, respectively.

Encouraged by these results, we were devoted to searching for other carbon nucleophiles to further expand the range of substrates for the transformation. As already known, the acidity of the active hydrogen of benzoxazole is slightly weaker than that of the terminal alkyne. Therefore, electron-deficient heterocyclic arenes such as benzoxazoles are carbon nucleophiles similar to terminal alkynes under alkaline conditions in the precence of a transition-metal catalyst. Based on this inference, we designed a copper-catalyzed model reaction of benzyne precursor 1a, O-benzoylhydroxylamine 3a, and benzoxazole 5a and optimized the reaction conditions (Table 2). We found the ligand used in this reaction was critical. When other ligands were utilized instead of Brettphos, the yield of 9a was greatly reduced (entries 3-12). Different from the common practice, this reaction did not need a fluoride source<sup>14</sup> and the phase transfer regent was tetrabutyl ammonium tetrafluoroborate (entries 13-15). Next, the substrate range for the three-component reactions involving benzoxazoles was investigated (Figure 4). A series of obenzoxazolyl anilines which are difficult to prepare by other means were efficiently produced in satisfactory yields from the combinations of various benzoxazoles, electrophilic aminating reagents, and benzyne precursors. It is worth noting that the 9m and 9n are both unique isomers in their reactions. Besides, the structure of **9p** (CCDC 1906945) was confirmed by X-ray crystallography. Although the yield was low, oxazole can also participate in this reaction to afford product 9i. We also tried benzothiazoles, but no corresponding product was obtained under the reaction conditions. It may be due to the relatively weak nucleophilicity of benzothiazoles compared with benzoxazoles.

Finally, further transformations of the generated *o*-alkynyl aniline **4a** were investigated (Figure 5). 3-Aroyl oxazino[4,3-*a*]indole **10** could be achieved from **4a** through an efficient Cu(I)-catalyzed oxidative reaction.<sup>15a</sup> And in the presence of iodine, **4a** could be converted into 3-iodo indole **11** in an excellent yield.<sup>15b</sup>

In summary, based on the understanding of the benzyne difunctionalization mechanism, we have developed a coppercatalyzed three-component reaction of aryne precursors, terminal alkynes/benzoxazoles, and electrophilic aminating reagents. It provides an efficient and modular approach to *o*alkynyl anilines and *o*-benzoxazolyl anilines which are





<sup>*a*</sup>0. 60 mmol of **1a**, 0.20 mmol of **3a**, and 0.26 mmol of **8a** in 3.0 mL of THF in the presence of 0.80 mmol of  $Cs_2CO_3$ , 0.80 mmol of TBABF<sub>4</sub>, 0.04 mmol of Brettphos, and 0.02 mmol of Cul. <sup>*b*</sup>The yield of **9a** was calculated on the basis of **3a**. The yields of **9a'** and **9a''** were based on **8a**. <sup>*c*</sup>Complex mixtures. <sup>*d*</sup>95% **8a** was recovered.



**Figure 4.** Scope of the three-component reaction of benzyne precursors, benzoxazoles, and *O*-benzoylhydroxylamines. Unless otherwise noted, all the reactions were carried out under the *standard conditions II* in Table 2.

otherwise difficult to prepare. These reactions show excellent functional group compatibility and can be realized from readily available starting materials in only one step. We believed that



Figure 5. Further transformations of o-alkynyl aniline 4a.

the scope of carbon nucleophiles used in this transformation can be continuously enlarged in future research.

# ASSOCIATED CONTENT

# **Supporting Information**

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.9b01427.

Detailed experimental procedures, characterization data, and copies of the <sup>1</sup>H and <sup>13</sup>C NMR spectra for all previously unknown products (PDF)

#### Accession Codes

CCDC 1906945 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data\_request/cif, or by emailing data\_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

#### AUTHOR INFORMATION

#### **Corresponding Authors**

\*E-mail: xiaoqing@tmmu.edu.cn (Q.X.). \*E-mail: ycchen@scu.edu.cn (Y.-C.C.). ORCID <sup>©</sup>

Ying-Chun Chen: 0000-0003-1902-0979 Qing Xiao: 0000-0002-9019-937X

# Notes

The authors declare no competing financial interest.

#### ACKNOWLEDGMENTS

This work was supported financially by the NSFC (Grant No. 21602251) and the Foundation for Transformation of Sci-tech Achievements (Grant No. 2016XZH02) of Third Military Medical University.

#### REFERENCES

(1) (a) Hili, R.; Yudin, A. K. Nat. Chem. Biol. 2006, 2, 284–287.
(b) Ricci, A. Amino Group Chemistry: From Synthesis to the Life Sciences; Wiley-VCH: Weinheim, 2008. (c) ElSohly, A. M.; Francis, M. B. Acc. Chem. Res. 2015, 48, 1971–1978.

(2) (a) Humphrey, G. R.; Kuethe, J. T. Chem. Rev. 2006, 106, 2875–2911. (b) Jaymand, M. Prog. Polym. Sci. 2013, 38, 1287–1306.
(c) Wu, W.-T.; Zhang, L.; You, S.-L. Chem. Soc. Rev. 2016, 45, 1570–1580. (d) Mo, F.; Qiu, D.; Zhang, Y.; Wang, J. Acc. Chem. Res. 2018, 51, 496–506.

(3) Reviews on Buchwald-Hartwig reaction: (a) Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2046–2067. (b) Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Acc. Chem. Res. 1998, 31, 805–818. (c) Hartwig, J. F. Acc. Chem. Res. 1998, 31, 852–860. (d) Muci, A. R.; Buchwald, S. L. Top. Curr. Chem. 2002, 219, 131–209. (e) Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 6338–6361. (f) Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534–1544. (g) Surry, D. S.; Buchwald, S. L. Chemical Science 2011, 2, 27–50. (h) Ruiz-Castillo, P.; Buchwald, S. L. Chem. Rev. 2016, 116, 12564–12649. (i) Schranck, J.; Tili, A. ACS Catal. 2018, 8, 405–418.

(4) Reviews on Ullmann-Goldberg reaction: (a) Ullmann, F. Ber. Dtsch. Chem. Ges. 1903, 36, 2382-2384. (b) Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem. Rev. 2004, 248, 2337-2364. (c) Ma, D.; Cai, Q. Acc. Chem. Res. 2008, 41, 1450-1460. (d) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 48, 6954-6971. (e) Sambiagio, C.; Marsden, S. P.; Blacker, A. J.; McGowan, P. C. Chem. Soc. Rev. 2014, 43, 3525-3550. (f) Bhunia, S.; Pawar, G. G.; Kumar, S. V.; Jiang, Y.; Ma, D. Angew. Chem., Int. Ed. 2017, 56, 16136-16179.

(5) Reviews on C-H amination: (a) Louillat, M.-L.; Patureau, F. W. Chem. Soc. Rev. 2014, 43, 901–910. (b) Shin, K.; Kim, H.; Chang, S. Acc. Chem. Res. 2015, 48, 1040–1052. (c) Jiao, J.; Murakami, K.; Itami, K. ACS Catal. 2016, 6, 610–633. (d) Zhou, Y.; Yuan, J.; Yang, Q.; Xiao, Q.; Peng, Y. ChemCatChem 2016, 8, 2178–2192. (e) Kim, H.; Chang, S. Acc. Chem. Res. 2017, 50, 482–486. (f) Park, Y.; Kim, Y.; Chang, S. Chem. Rev. 2017, 117, 9247–9301. (g) Zhao, Y.; Xia, W. Chem. Soc. Rev. 2018, 47, 2591–2608.

(6) Reviews on electrophilic amination: (a) Corpet, M.; Gosmini, C. *Synthesis* **2014**, *46*, 2258–2271. (b) Dong, X.; Liu, Q.; Dong, Y.; Liu, H. *Chem. - Eur. J.* **2017**, *23*, 2481–2511.

(7) (a) Sun, F.; Gu, Z. Org. Lett. 2015, 17, 2222–2225. (b) Pan, S.; Ma, X.; Zhong, D.; Chen, W.; Liu, M.; Wu, H. Adv. Synth. Catal. 2015, 357, 3052–3056.

(8) Recent reviews on aryne chemistry: (a) Tadross, P. M.; Stoltz, B. M. Chem. Rev. 2012, 112, 3550–3577. (b) Gampe, C. M.; Carreira, E. M. Angew. Chem., Int. Ed. 2012, 51, 3766–3778. (c) Bhunia, A.; Yetra, S. R.; Biju, A. T. Chem. Soc. Rev. 2012, 41, 3140–3152. (d) Bhunia, A.; Biju, A. T. Synlett 2014, 25, 608–614. (e) Goetz, E.; Shah, T. K.; Garg, N. K. Chem. Commun. 2015, 51, 34–45. (f) Bhojgude, S. S.; Bhunia, A.; Biju, A. T. Acc. Chem. Res. 2016, 49, 1658–1670. (g) Garcia-Lopez, J.-A.; Greaney, M. F. Chem. Soc. Rev. 2016, 45, 6766–6798. (h) Asamdi, M.; Chikhalia, K. H. Asian J. Org. Chem. 2017, 6, 1331–1348. (i) Shi, J.; Li, Y.; Li, Y. Chem. Soc. Rev. 2017, 46, 1707–1719. (j) Roy, T.; Biju, A. T. Chem. Commun. 2018, 54, 2580–2594. (k) Takikawa, H.; Nishii, A.; Sakai, T.; Suzuki, K. Chem. Soc. Rev. 2018, 47, 8030–8056. A recent example on synthesis of o-aminophenols via transition-metal-free aryne chemistry: (l) Chen, Z.; Wang, Q. Org. Lett. 2015, 17, 6130–6133.

(9) Recent reviews on aryne chemistry involving metal catalysis:
(a) Karmakar, R.; Lee, D. Chem. Soc. Rev. 2016, 45, 4459-4470.
(b) Diamond, O. J.; Marder, T. B. Org. Chem. Front. 2017, 4, 891-910.
(c) Feng, M.; Jiang, X. Synthesis 2017, 28, 4414-4433.
(d) Dhokale, R. A.; Mhaske, S. B. Synthesis 2018, 50, 1-16.

(10) Recent examples of transition-metal-catalyzed/-mediated difunctionalization of arynes: (a) Henderson, J. L.; Edwards, A. S.; Greaney, M. F. J. Am. Chem. Soc. 2006, 128, 7426-7427. (b) Liu, Z.; Larock, R. C. Angew. Chem., Int. Ed. 2007, 46, 2535-2538. (c) Jayanth, T. T.; Cheng, C.-H. Angew. Chem., Int. Ed. 2007, 46, 5921-5924. (d) Bhuvaneswari, S.; Jeganmohan, M.; Yang, M.-C.; Cheng, C.-H. Chem. Commun. 2008, 44, 2158-2160. (e) Xie, C.; Liu, L.; Zhang, Y.; Xu, P. Org. Lett. 2008, 10, 2393-2396. (f) Xie, C.; Zhang, Y.; Yang, Y. Chem. Commun. 2008, 44, 4810-4812. (g) Yoshida, H.; Morishita, T.; Nakata, H.; Ohshita, J. Org. Lett. 2009, 11, 373-376. (h) Jeganmohan, M.; Bhuvaneswari, S.; Cheng, C.-H. Angew. Chem., Int. Ed. 2009, 48, 391-394. (i) Gerfaud, T.; Neuville, L.; Zhu, J. Angew. Chem., Int. Ed. 2009, 48, 572-577. (j) Qiu, Z.; Xie, Z. Angew. Chem., Int. Ed. 2009, 48, 5729-5732. (k) Huang, X.; Sha, F.; Tong, J. Adv. Synth. Catal. 2010, 352, 379-385. (1) Parthasarathy, K.; Han, H.; Prakash, C.; Cheng, C.-H. Chem. Commun. 2012, 48, 6580-6582. (m) Zeng, Y.; Zhang, L.; Zhao, Y.; Ni, C.; Zhao, J.; Hu, J. J. Am. Chem. Soc. 2013, 135, 2955-2958. (n) Peng, X.; Wang, W.; Jiang, C.; Sun, D.; Xu, Z.; Tung, C.-H. Org. Lett. 2014, 16, 5354-5357. (o) Zeng, Y.; Hu, J. Chem. - Eur. J. 2014, 20, 6866-6870. (p) Wang, W.; Peng, X.; Qin, X.; Zhao, X.; Ma, C.; Tung, C.-H.; Xu, Z. J. J. Org. Chem. 2015, 80, 2835-2841. (q) Yoo, W.-J.; Nguyen, T. V. Q.; Kobayashi, S. Angew. Chem., Int. Ed. 2014, 53, 10213-10217. (r) Garve, L. K. B.; Werz, D. B. Org. Lett. 2015, 17, 596-599. (s) Pareek, M.; Fallon, T.; Oestreich, M. Org. Lett. 2015, 17, 2082-2085. (t) García-López, J.-A.; Çetin, M.; Greaney, M. F.

### **Organic Letters**

Angew. Chem., Int. Ed. 2015, 54, 2156–2159. (u) Feng, M.; Tang, B.; Wang, N.; Xu, H.-X.; Jiang, X. Angew. Chem., Int. Ed. 2015, 54, 14960–14964. (v) Peng, X.; Ma, C.; Tung, C.-H.; Xu, Z. Org. Lett. 2016, 18, 4154–4157. (w) Zhang, T.-Y.; Liu, C.; Chen, C.; Liu, J.-X.; Xiang, H.-Y.; Jiang, W.; Ding, T.-M.; Zhang, S.-Y. Org. Lett. 2018, 20, 220–223. (x) Yang, X.; Tsui, G. C. Org. Lett. 2018, 20, 1179–1182. (y) Jia, H.; Guo, Z.; Liu, H.; Mao, B.; Shi, X.; Guo, H. Chem. Commun. 2018, 54, 7050–7053. (z) Zuo, Z.; Wang, H.; Diao, Y.; Ge, Y.; Liu, J.; Luan, X. ACS Catal. 2018, 8, 11029–11034.

(11) (a) Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2011, 13, 2860–2863. (b) McDonald, S. L.; Hendrick, C. E.; Wang, Q. Angew. Chem., Int. Ed. 2014, 53, 4667–4670. (c) Yotphan, S.; Beukeaw, D.; Reutrakul, V. Tetrahedron 2013, 69, 6627–6633.

(12) Hu, J.-T.; Zheng, B.; Chen, Y.-C.; Xiao, Q. Org. Chem. Front. 2018, 5, 2045–2050.

(13) The regioselectivity of our reaction is just the opposite of the Catellani reaction; see: Dong, Z.; Lu, G.; Wang, J.; Liu, P.; Dong, G. J. Am. Chem. Soc. **2018**, 140, 8551–8562.

(14) Idiris, F. I. M.; Jones, C. R. Org. Biomol. Chem. 2017, 15, 9044–9056.

(15) (a) Gogoi, A.; Guin, S.; Rout, S. K.; Patel, B. K. Org. Lett. 2013, 15, 1802–1805. (b) Yue, D.; Larock, R. C. Org. Lett. 2004, 6, 1037–1040.