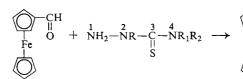
Synthesis and properties of some formylferrocene thiosemicarbazones¹

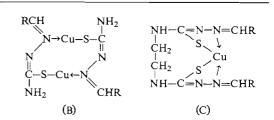
D. M. WILES AND T. SUPRUNCHUK


Division of Applied Chemistry, National Research Council of Canada, Ottawa, Canada Received February 13, 1968

Twelve new substituted thiosemicarbazones have been prepared from formylferrocene and 2- and 4-monosubstituted and 4,4-disubstituted thiosemicarbazides. The infrared spectra of these compounds are discussed in some detail. Copper complexes of three of them were synthesized and their structures established. They were found to be strongly paramagnetic. The electronic absorption spectra of the thiosemicarbazones and the copper complexes are reported.

Canadian Journal of Chemistry, 46, 1865 (1968)

Introduction


There have been numerous publications, in recent years, dealing with the chemistry of ferrocene and with the many derivatives which can be prepared from it (e.g. ref. 1). Considerable interest has been shown in the reactions of formylferrocene. It is easy to synthesize and many additional ferrocenes may be derived from it. Both the semicarbazone (1) and the simple thiosemicarbazone (2) of formylferrocene have been synthesized. In the present work, the preparation and some properties of formylferrocene thiosemicarbazones are described. The syntheses involved the reaction of formylferrocene with thiosemicarbazide and substituted thiosemicarbazides. This method produced a set of compounds which have not been reported previously, except for formylferrocene thiosemicarbazone (A; $R = R_1 = R_2 = H$), mentioned by Boichard *et al.* (2). The structure of A was deduced from infrared spectra and from analytical data.

Some benzoylferrocenes have been shown (3) to retard the actinic degradation of polymer films and the photodecomposition of ferrocenes in hydroxylic (4) and alkyl halide (5) solvents has been reported. However, very little use has been made of particular ferrocene derivatives as protective ultraviolet absorbers in spite of the fact that ferrocenes absorb strongly in the important, near-ultraviolet region. The electronic absorption spectra of the new compounds reported here were measured in order to indicate the potential effectiveness of them as photoprotective agents.

It is known that copper will form 1:1 complexes (B) with thiosemicarbazones (6) and a different type of 1:1 complex (C) with dithiosemicarbazones (7). Copper complexes of three of the ferrocene thiosemicarbazones reported here

Can. J. Chem. Downloaded from www.nrcresearchpress.com by CLEMSON UNIVERSITY on 11/13/14 For personal use only.

were prepared using cupric acetate. These are interesting organometallic – metal – chelate compounds, somewhat analogous to the copper complexes of diacylferrocenes reported previously (8).

Experimental

Methods and Materials

Formylferrocene was prepared by the method of Broadhead and co-workers (9), and was purified by recrystallizing from aqueous ethanol.

2-Methylthiosemicarbazide was prepared by the method of Greer and Smith (10) and was recrystallized from water.

¹Issued as NRCC No. 10084.

4,4-Dimethylthiosemicarbazide was prepared by the method of Jensen (11) and was purified by recrystallizing from water.

Thiosemicarbazide was purchased from commercial sources and purified by recrystallizing from water.

All the alkyl and aryl isothiocyanates were obtained from commercial sources and were used as received.

A series of 4-substituted thiosemicarbazides was synthesized by the following method. Hydrazine hydrate (0.022 mole, 99%) in ethanol (25 ml) was added dropwise to a solution of the required isothiocyanate (0.022 mole) in diethyl ether (50 ml). The resulting mixture was stirred for 1 h with gentle heating and reduced to $\frac{1}{3}$ of the original volume. The precipitate, which formed when the mixture was cooled, was removed by filtration, washed with cold ether, dried, and recrystallized. The compounds listed below were made by this method, and were purified by recrystallization from aqueous ethanol unless otherwise stated.

4(1-Naphthyl)thiosemicarbazide, m.p. 139.5 °C (lit. value (12) 139 °C).

4-Phenethylthiosemicarbazide, m.p. 119 °C (no lit. value).

4(m-Nitrophenyl)thiosemicarbazide, m.p. 175.5 °C (lit. value (13) 175 °C).

4(p-Nitrophenyl)thiosemicarbazide, m.p. 191 °C (lit. value (14) 190 °C).

4-Phenylthiosemicarbazide, m.p. 141 °C (lit. value (15) 141 °C); recrystallized from water.

4-Methylthiosemicarbazide, m.p. 136 °C (lit. value (16) 137 °C).

4-Ethylthiosemicarbazide, m.p. 84 °C (lit. value (16) 84 °C).

4-Heptylthiosemicarbazide, m.p. 54 °C (lit. value (16) 54 °C).

4-Allylthiosemicarbazide, m.p. 95 °C (lit. value (16) 97 °C).

Preparation of Formylferrocene Thiosemicarbazone

Formylferrocene (0.0047 mole) in ethanol (25 ml) was added dropwise to a solution of thiosemicarbazide (0.0047 mole) in water (40 ml). Glacial acetic acid (1 ml) was then added and the resulting mixture was heated on the steam bath for 15 min. The dark-red precipitate which formed when the mixture cooled was collected, washed with aqueous ethanol, dried, and recrystallized repeatedly from ethanol, until pure, m.p. 183 °C (lit. value (2) 190 °C; an incomplete analysis and no infrared spectrum were reported); yield 71 %.

Anal. Calcd. for C12H13N3SFe: C, 50.17; H, 4.53; N, 14.63; S, 11.15; Fe, 19.51. Found: C, 49.60; H, 4.54; N, 14.30; S, 11.03; Fe, 20.0.

Preparation of Formylferrocene-substituted Thiosemicarbazones

A solution of formylferrocene (0.0047 mole) in ethanol (25 ml) was added dropwise to a solution of a substituted thiosemicarbazide (0.0047 mole) in ethanol (40 ml). The mixture was heated for 15 min, and then cooled. Water was added until the onset of precipitation and the precipitate which formed was collected, washed with 50% aqueous ethanol solution, dried, and recrystallized until pure. The compounds prepared in this way are listed in Table I.

Preparation of Ethylene Di(formylferrocene

Thiosemicarbazone)

A solution of formylferrocene (0.0047 mole) in ethanol

(25 ml) was added dropwise to a solution of ethylene dithiosemicarbazide (7) (0.00235 mole) in dimethylformamide (25 ml). The method was the same as described for the above synthesis and the product was recrystallized repeatedly from dimethylformamide - water mixture, until pure, m.p. 223 °C.

Anal. Calcd. for C26H28N6S2Fe2: C, 52.00; H, 4.67; N, 14.00; S, 10.67; Fe, 18.67. Found: C, 51.97; H, 4.63; N, 13.50; S, 10.50; Fe, 19.01.

Preparation of the Copper Complexes of Formylferrocenesubstituted Thiosemicarbazones

The general procedure involved the addition of cupric acetate (0.00243 mole) in 25 ml of ethanol, to a warm solution of a formylferrocene-substituted thiosemicarbazone (0.00485 mole) in 30 ml of ethanol. The resulting mixture was refluxed gently for 15 min. The precipitate, which formed after cooling, was removed by filtration, and washed with 3 % aqueous hydrochloric acid solution, water, and cold ethanol. The product was dried and recrystallized repeatedly from benzene.

Formylferrocene 4(1-naphthyl)thiosemicarbazone-Cu; m.p. 205 °C.

Anal. Calcd. for C44H36N6S2CuFe2: C, 59.49; H, 4.06; N, 9.46; S, 7.22; Cu, 7.21; Fe, 12.53. Found: C, 60.61; H, 4.49; N, 8.96; S, 6.78; Cu, 6.95; Fe, 12.29.

Formylferrocene 4-phenethylthiosemicarbazone-Cu, m.p. 175 °C.

Anal. Calcd. for C40H40N6S2CuFe2: C, 56.91; H, 4.74; N, 9.95; S, 7.59; Cu, 7.52; Fe, 13.28. Found: C, 57.03; H, 5.07; N, 10.01; S, 7.43; Cu, 7.36; Fe, 13.78.

Formylferrocene 4-phenylthiosemicarbazone-Cu, m.p.

185 °C Anal. Calcd. for C36H32N6S2CuFe2: C, 48.58; H, 4.63; N, 12.15; S, 9.26; Cu, 9.20; Fe, 16.19. Found: C,

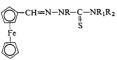
48.01; H, 3.95; N, 12.26; S, 8.20; Cu, 8.82; Fe, 17.0. The difficulty experienced in recrystallizing the copper

complexes because of their lower solubilities resulted in less satisfactory analyses than were obtained for the parent thiosemicarbazones. Nevertheless, it was felt that these complexes were pure enough for the structural identification purposes for which they were intended.

The infrared spectra of the compounds described in this work were obtained from KBr pellets with a model 21 Perkin-Elmer double-beam spectrophotometer (NaCl prism) over the frequency range 3500 to 700 cm⁻¹. The ultraviolet spectra of the compounds were obtained with either a Cary model 14 or a Beckman DK-1 recording spectrophotometer. All melting points were measured with a Fisher-Johns apparatus and have been corrected. Elemental analyses were performed at the microanalytical laboratory of Drs. Weiler and Strauss in Oxford. The new ferrocene derivatives reported here and the copper complexes of three of them were tested for antifungal activity by a tube dilution method (17). The microorganisms used for this purpose were Chaetomium globosum, Strain USDA 1042.4 and Aspergillus niger, Strain USDA 215-5373.16.

Results and Discussion

Eleven new formylferrocene-substituted thiosemicarbazones which were prepared in this work are listed in Table I. The general structural formula proposed for this series of compounds (A) represents the accepted structure for


Can. J. Chem. Downloaded from www.nrcresearchpress.com by CLEMSON UNIVERSITY on 11/13/14 For personal use only.

WILES AND SUPRUNCHUK: SYNTHESIS AND PROPERTIES

TABLE I Formylferrocene thiosemicarbazones*

		Malting	Viala		Analy	sis (%)
Compound	Substituents	Melting point (°C)	Yield (%)	Formula	Calculated	Found
1	$R = CH_3$ $R_1 = R_2 = H$	185	52†	$C_{13}H_{15}N_3SFe$	C, 51.82 H, 4.98 N, 13.95 S, 10.63	C, 52.19 H, 4.98 N, 13.75 S, 10.62
2	$\begin{array}{l} R = H \\ R_1 = R_2 = CH_3 \end{array}$	150	49‡	C ₁₄ H ₁₇ N ₃ SFe	Fe, 18.61 C, 53.33 H, 5.39 N, 13.33 S, 10.16	Fe, 19.1 C, 53.91 H, 5.38 N, 13.20 S, 9.94
3	$\begin{aligned} R &= R_1 = H \\ R_2 &= C_6 H_5 \end{aligned}$	197	79‡	C ₁₈ H ₁₇ N ₃ SFe	Fe, 17.78 C, 59.50 H, 4.68 N, 11.57	Fe, 18.1 C, 59.59 H, 4.80 N, 11.41
4	$\begin{array}{l} R = R_1 = H \\ R_2 = 1 - C_{10}H_7 \end{array}$	184	81‡	C ₂₂ H ₁₉ N ₃ SFe	S, 8.82 Fe, 15.42 C, 63.92 H, 4.60 N, 10.17	S, 8.52 Fe, 16.0 C, 63.66 H, 4.60 N, 9.90 S, 7.80
5	$\begin{aligned} \mathbf{R} &= \mathbf{R}_1 = \mathbf{H} \\ \mathbf{R}_2 &= (\mathbf{C}\mathbf{H}_2)_2\mathbf{C}_6\mathbf{H}_5 \end{aligned}$	135	76‡	$C_{20}H_{21}N_3SFe$	S, 7.74 Fe, 13.56 C, 61.38 H, 5.37 N, 10.74	Fe, 13.7 C, 61.09 H, 5.38 N, 10.69
6	$\begin{aligned} \mathbf{R} &= \mathbf{R}_1 = \mathbf{H} \\ \mathbf{R}_2 &= p\text{-NO}_2\mathbf{C}_6\mathbf{H}_5 \end{aligned}$	200	81§	C ₁₈ H ₁₆ N ₄ O ₂ SFe	S, 8.18 Fe, 14.32 C, 52.94 H, 3.92 N, 13.73	S, 8.05 Fe, 14.7 C, 52.77 H, 3.98 N, 13.80
7	$\begin{aligned} \mathbf{R} &= \mathbf{R}_1 = \mathbf{H} \\ \mathbf{R}_2 &= m\text{-NO}_2\mathbf{C}_6\mathbf{H}_5 \end{aligned}$	115	53§	$C_{18}H_{16}N_4O_2SFe$	S, 7.84 Fe, 13.73 C, 52.94 H, 3.92 N, 13.73	S, 8.02 Fe, 14.3 C, 52.25 H, 4.07 N, 13.95
8	$R = R_1 = H$ $R_2 = CH_3$	138	71†	$C_{13}H_{15}N_3SFe$	S, 7.84 Fe, 13.73 C, 51.82 H, 4.98 N, 13.95	S, 7.99 Fe, 14.0 C, 52.16 H, 5.05 N, 14.05
9	$\begin{array}{l} R = R_1 = H \\ R_2 = C_2 H_5 \end{array}$	146	73	$C_{14}H_{17}N_3SFe$	S, 10.63 Fe, 18.61 C, 53.33 H, 5.39 N, 13.33	S, 10.38 Fe, 18.3 C, 53.38 H, 5.51 N, 12.94
10	$R = R_1 = H$ $R_2 = CH_2 = CHCH_2$	158	51	C15H17N3SFe	S, 10.16 Fe 17.78 C, 55.05 H, 5.19 N, 12.84	S, 9.95 Fe, 18.3 C, 55.53 H, 5.43 N, 13.00
11	$\begin{array}{l} R = R_1 = H \\ R_2 = CH_3(CH_2)_6 \end{array}$	73	75	$C_{19}H_{27}N_3SFe$	S, 9.78 Fe, 17.13 C, 59.22 H, 7.01 N, 10.91 S, 8.31	S, 9.74 Fe, 17.6 C, 58.88 H, 7.09 N, 10.85 S, 8.55

*The structural formula may be represented by:

38 11

Can. J. Chem. Downloaded from www.nrcresearchpress.com by CLEMSON UNIVERSITY on 11/13/14. For personal use only.

Recrystallized from ethanol-water. Recrystallized from ethanol. SRecrystallized from chloroform-hexane. Recrystallized from isooctane. 1867

	
8	
6	
ō	

CANADIAN JOURNAL OF CHEMISTRY. VOL. 46, 1968

•

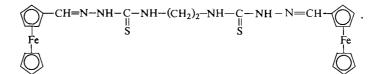
TABLE II
Infrared absorption bands for formylferrocene thiosemicarbazones

Compound number*															
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
3270m	3330w†	3340w	3360m†	3360w	3340m	3340m		3380w	3380w 3220vw†	3350m	3280w		3400m	3410m	3410m
3130w 2930w	3120w 2960w	3140w 2930w	3160m 2990w	3160m 2990w	3160m 2990w	2960w	3170m 2980m	3160m 2980w	3140m 2990w	3150m 2940s† 2860w	3160m 2980w	3100m 2960w		2940w	2940w
1610m 1585s	1610m	1600m	1605m	1610m	1600m	1615m 1595w	161 0 m	1610m	1645w 1610m	1610m	1600s	1660w 1615m	1600s	1595s	1600s
10000	1535s	1545s 1510m	1550s 1500s	1550s 1500w	1550s 1510s	1535s 1510s	1555s	1550s	1545s	1550s	1540s	1540s	1515s	1510s	1505s
1480s 1455w	1470m	1455m	1470sh†	1475w 1460w	1470sh	1445m	1475w	1460sh	1475w	1470m	1465m	1475w	1485s 1450m	1450m	1440m
1440w 1420w	1400w	1405w	1440w 1400m	1415w	1415w 1400vw	1400m	1415w 1395w	1415w	1415br	1445w 1410w	1420w 1400w 1390w	1440w 1415w	1400br†	1435w 1400w 1385w	1385w
1385w 1360s 1325w	1375w	1365br 1320w	1375w 1355w		1340s 1310sh	1355s 1310w	1365w 1310w	1380w 1310m	1375vw 1355vw 1335w	1375w 1355w 1315w	1375w 1335m	1365br	1350m 1330w	1360w 1325w	1305W
1525W	1300m	1275m	1280m		1275s	1510₩	1510%	1510111	1280br	1300w 1280w	1290m	1300m	1270w	15254	1313W
1255w	1260w 1230w	1275111	1260m 1225m	1255m	12/03	1265m	1265m	1260m 1240m	1255br 1225s	1265m 1240w	1255w	1255w	1250m 1225m	1245m	1250m
1215w 1190w	1210w	1200m	1170m	1185w	1200s	1210s	1210w 1160w	1165w	1190vw	1215m 1190w	1210w	1215m	1200w 1170m	1200m	1210w
1 110m	1110m	1110m 1065br	1110w 1060w	1110m 1060w	1110s 1060br	1110m 1060w	1110w 1085m	1110w 1085w	1110m 1055m	1110m 1050w	1110m 1065w	11 10 m	1110m 1070w	1110w 1090w	1110w 1085w
1045w 1000s 940w	1030w 1005m 945m	1030w 1005m 955w	1030w 1005w 945m	1030w 1005w 945m	1030w 1000w 950m	1030m 1010m 945m 890w	1035w 1005w 940m	1030w 1010m 935m	1030w 1005m 940m	1035w 1005w 935w	1030w 1005w 940m	1030w 1005m 935m 900w	1030w 1005w 945w 890w	1045w 1005w	1050w 1005m 940vw
900w 820s	865w 820m	820m	820m 800w	820m	850s 820m	845m 825m 795w	815m	820s	820m	865w 820s 780w	820m	820m	850m 850m 825vw 780m	855m 820vw	870vw 820vw
	725w	735m	775s	750m	745m	760w 740m	745w	775m	760w	775w 725w	770w	750w	725w	750w	750m
		,		700m	700m									700m	690m

*The numbers 1 to 16 at the head of this table refer to the compounds having the same numbers in Table III. †The letters following the wave number in the table refer to the band intensity or shape: w, weak; m, medium; vw, very weak; s, strong; sh, shoulder; br, broad.

substituted thiosemicarbazones. Evidence that this structure does, in fact, represent the products reported here, was obtained from the infrared absorption spectra of these compounds. The bands observed in the 3500 to 700 cm⁻¹ frequency region are listed in Table II.

The absorptions characteristic of the expected functional entities for the eleven substituted thiosemicarbazones (Table I), for formylferrocene thiosemicarbazone, and for ethylene di(formylferrocene thiosemicarbazone), are as follows. The bands arising from NH stretching vibrations occur in the 3380 to 3120 cm⁻¹ region for all of these compounds. In the 1600 to 1615 cm^{-1} region, the medium to strong band arising from $\gamma(C=N)$ is observed in all cases. Strong absorption occurs in the 1535 to 1550 cm^{-1} region for compounds 2 to 13 and may be related to the fact that these are N-substituted thioamides. The CNH vibration, involving NH bending and C-N stretching (18), gives rise to strong absorption in this region; this has been observed previously in the case of some dithiosemicarbazones of aliphatic and aromatic aldehydes (7). In the spectrum of compound 1, formylferrocene-2-methylthiosemicarbazone, a strong band appears at 1585 cm^{-1} . This shift to higher frequency has been observed before (19) in a comparison of 2- and 4-substituted thiosemicarbazones. The band which is observed at 1510 or 1500 cm^{-1} in the spectra of compounds 3 to 7 may be attributed to aromatic ring absorptions (see, for example, ref. (20)).


Can. J. Chem. Downloaded from www.nrcresearchpress.com by CLEMSON UNIVERSITY on 11/13/14 For personal use only.

Several absorption bands were observed, in

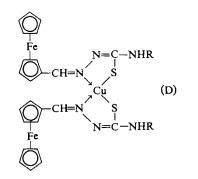
all the spectra shown in Table II, which are characteristic of formylferrocene or other substituted ferrocenes. Peaks in the vicinity of 1460 (\pm 20) cm⁻¹ and 1410 (\pm 10) cm⁻¹ presumably correspond to the transitions in the ferrocene part of formylferrocene, at 1456 and 1412 cm⁻¹, as described by Rubalcava and Thomson (21). The bands at 1110 cm⁻¹ and at 1005 cm⁻¹ are also reported for formylferrocene (21) and are described by Rosenblum (22) as characteristic of "ferrocene derivatives possessing an unsubstituted [cyclopentadienyl] ring".

Some of the bands which are observed for the various compounds in the 1030 to 1090 cm⁻¹ region presumably represent a contribution from N—C—N stretching vibrations which may be coupled with a small amount of γ (C—S) (23). However, the largest contribution from C—S stretching vibrations gives rise to a band in 830 to 805 cm⁻¹ region of the spectra of thiosemicarbazones (23, 24) and presumably accounts for an appreciable proportion of the peaks at 825 to 815 cm⁻¹ in the spectra of compounds 1 to 13 (Table II). Superimposed on this in all cases is a contribution from the ferrocene moiety (21).

Collectively, the absorption band assignments described above provide strong evidence that the compounds prepared in this work are indeed the thiosemicarbazones that the analytical data have suggested, and that A represents the correct structure for compounds 1 to 12. It follows that compound 13, ethylene di(formylferrocene thiosemicarbazone) could be depicted as

Additional evidence is obtained from the experiments to form copper complexes of some of the thiosemicarbazones. Attempts to prepare copper complexes with 2-substituted thiosemicarbazones failed; only starting materials were recovered from the reaction mixtures. This is in agreement with previous work on copper complex formation with a variety of substituted thiosemicarbazones (19). Copper complexes (2:1) were prepared from compounds **3**, **4**, and **5** (4-substituted compounds) and the infrared spectra of these complexes are given in Table II

(spectra 14 to 16). Comparison with the spectra of the uncomplexed, parent compounds leads to the following observations. The two bands in NH region of the spectrum have been replaced by a single band in the vicinity of 3410 cm^{-1} , on copper complex formation. In addition, the intensity of the C=N band at about 1600 cm⁻¹ has increased, whereas the CNH band at 1550 cm⁻¹ has disappeared. Finally, the absorption at 820 cm⁻¹ has an appreciably lower intensity. It is reasonable to conclude that complex formation is associated with a reduction in the number


1869

CANADIAN JOURNAL OF CHEMISTRY. VOL. 46, 1968 TABLE III

Electronic spectra of formylferrocene thiosemicarbazones								
Compound*	Absor (molar e	Solvent						
1 2 3 4 5 6 7 8 9 10 11 12 13	270 (9.6) 259 (13.9) 272 (15.1) 272 (14.5) 265 (15.1) 273 (21.1) 267 (11.4) 258 (11.8) 262 (13.8) 262 (11.4) 255 (13.4) 270 (11.7) 253 (22.1)	312 (30.5) 303 (15.7) 314 (27.8) 313 (29.9) 311 (30.9) 319 (50.6) 316 (40.8) 303 (42.0) 317 (39.1) 316 (41.8) 308 (48.4) 308 (41.9) 313 (35.0)	$\begin{array}{c} 400 \ (0.8) \\ \hline \\ 390 \ (1.1) \\ 390 \ (1.1) \\ 390 \ (1.0) \\ 462 \ (1.3) \\ 400 \ (1.9) \\ 448 \ (1.1) \\ 455 \ (0.9) \\ 456 \ (1.6) \\ 445 \ (1.1) \\ 390 \ (1.1) \\ 390 \ (1.1) \\ 400 \ (1.1) \end{array}$	Acetonitrile Acetonitrile Acetonitrile Acetonitrile Acetonitrile Acetonitrile Acetonitrile Isooctane Isooctane Isooctane Acetonitrile p-Dioxane				
14 15	$\begin{array}{c} 270 \\ 255 \end{array} \begin{array}{c} 26.3 \end{array}$	350 (27.2) 300 (25.3)	444 sh (5.0) 440 sh (3.8)	<i>p</i> -Dioxane <i>p</i> -Dioxane				

*(1) Formylferrocene-2-methylthiosemicarbazone; (2) formylferrocene-4,4-dimethylthiosemicarbazone; (3) formylferrocene-4-phenylthiosemicarbazone; (4) formylferrocene-4(1-naphthylthiosemicarbazone; (5) formylferrocene-4-phenethylthiosemicarbazone; (6) formylferrocene-4(P-nitrophenylthiosemicarbazone; (7) formylferrocene-4-mitrophenylthiosemicarbazone; (8) formylferrocene-4-methylthiosemicarbazone; (9) formylferrocene-4-methylthiosemicarbazone; (10) formylferrocene-4-allylthiosemicarbazone; (11) formylferrocene-4-betylthiosemicarbazone; (12) formylferrocene-4-allylthiosemicarbazone; (13) ethylene di(formylferrocene thiosemicarbazone; (14) copper complex of compound 4; (15) copper complex of compound 5; (16) copper complex of compound 3.

of NH groups, an increase in the number of C=N groups and elimination of the C=S group. On the basis of this evidence, and in the context of previously proposed structures for copper complexes of analogous compounds (6, 7), it is reasonable to suggest the following general structure for compounds 14, 15, and 16.

In such a 2:1 complex, copper would be paramagnetic. The copper complexes prepared in this work are all strongly paramagnetic, having an electron spin resonance signal intensity of the same order of magnitude as that from an equimolar quantity of $CuSO_4 \cdot 5H_2O$. The *g* value for compound 15, for example, is 2.066. Thus, there is good reason to believe that the Structure D proposed for the copper complexes, and the Structure A proposed for the thiosemicarbazones, are valid. The important bands in the electronic absorption spectra of most of the compounds prepared in this work are listed in Table III, together with the relevant molar extinction coefficients. The compounds are all colored and many of them absorb strongly in the important, near-ultraviolet region. However, the requirements for a useful ultraviolet protective substance include, in in addition to a high molar extinction coefficient, such considerations as inherent stability, a relatively low volatility and minimal absorption of visible wavelengths. On this simplified basis, it may be suggested that compounds 13, 6, and 3 (in that order) could be useful as retarders of the photooxidation of polymeric materials.

Since some organometallic and many thiocarbonyl-containing compounds have antifungal properties, the formylferrocene thiosemicarbazones and the three copper complexes were evaluated as potential fungicides. Below 1000 p.p.m. none was found effective, in tube dilution tests.

Acknowledgments

The authors wish to thank Mr. R. Ironside for measuring the infrared spectra, Miss G. Colin for carrying out the microbiological tests, and Dr. A. M. Tarr and Mr. J. D. Cooney for helpful discussions. Thanks are due Drs. J. R. Morton and L. E. Vannotti for making the electron spin resonance measurements.

Can. J. Chem. Downloaded from www.nrcresearchpress.com by CLEMSON UNIVERSITY on 11/13/14 For personal use only.

WILES AND SUPRUNCHUK: SYNTHESIS AND PROPERTIES

M. ROSENBLUM. Chemistry of the iron group metallocenes. Interscience Publishers, Inc., New York. 1965. pp. 91–100, 153–191, and 219–232.
 J. BOICHARD, J. P. MONIN, and J. TIROUFLET. Bull.

350 2

- Soc. Chim. France, 851 (1963). 3. R. G. SCHMITT and R. C. HIRT. J. Polymer Sci. 7, 1565 (1963).
- M. RAUSCH, M. VOGEL, and H. ROSENBURG. J. Org. Chem. 22, 903 (1957).
- 5. J. C. BRAND and W. SNEDDEN. Trans. Faraday Soc. 53, 894 (1957).
- 6. B. A. GINGRAS and A. F. SIRIANNI. Can. J. Chem.
 42, 17 (1964).
 7. D. M. WILES, B. A. GINGRAS, and T. SUPRUNCHUK. Can. J. Chem. 45, 1735 (1967).
 8. C. R. HAUSER and C. E. CAIN. J. Org. Chem. 23, 1142 (1988).
- C. K. HAUSER and C. E. CAIN. J. Org. Chem. 25, 1142 (1958).
 G. D. BROADHEAD, J. M. OSGERBY, and P. L. PAUSON. J. Chem. Soc. 650 (1958).
 A. H. GREER and G. B. L. SMITH. J. Am. Chem. Soc. 72 (2014) (1950). 9.
- 10. Soc. 72, 874 (1950). 11. K. A. JENSEN, J. Prakt. Chem. 159, 189 (1941). 12. M. BUSCH and TH. ULMER. Ber. 35, 1710 (1902).

- 13. M. TIŠLER. Croat. Chem. Acta, 28, 147 (1956).

Can. J. Chem. Downloaded from www.nrcresearchpress.com by CLEMSON.UNIVERSITY on 11/13/14 For personal use only.

- 14. E. LIEBER and J. RAMACHANDRAN. Can. J. Chem. 37, 101 (1959).
- 15. A.G. BAYER. Farbenfabriken. German pat. 832,891 (1952).

- (1952).
 E. LIEBER, C. N. PILLAI, and R. D. HITES. Can. J. Chem. 35, 832 (1957).
 B. G. BENNS, B. A. GINGRAS, and C. H. BAYLEY. Appl. Microbiol. 8, 353 (1960).
 N. B. COLTHUP, L. H. DALY, and S. E. WIBERLEY. Introduction to infrared and raman spectroscopy. Academic Press Line, New York, 1964
- Academic Press, Inc., New York. 1964.
 B. A. GINGRAS, R. L. SOMORIAI, and C. H. BAYLEY. Can. J. Chem. 39, 973 (1961).
 L. J. BELLAMY. The infrared spectra of complex molecules. 2nd ed. Methuen and Co. Ltd., London. 1050 1958.
- H. E. RUBALCAVA and J. B. THOMSON. Spectrochim. Acta, 18, 449 (1962).
 M. ROSENBLUM. Chem. and Ind. London, 953
- M. ROSENBLUM. Chem. and Ind. London, 953 (1958).
 D. M. WILES, B. A. GINGRAS, and T. SUPRUNCHUK. Can. J. Chem. 45, 469 (1967).
 D. M. WILES and T. SUPRUNCHUK. Can. J. Chem. 457 (2017).
- 45, 2258 (1967).