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The synthesis of 4x4 series of novel quindoline derivatives 

with or without boronic acid modifications and their 

cytotoxicities, cellular localizations, and implications on 10 

cancer cells are presented and discussed. 

Chemically synthesized boronic acid derivatives[1] have been 

developed into drugs[2] or biomarker identification reagents[3] that 

either work inside of cells or at cell surface due to unique 

carbohydrate interactions[4] and Lewis acidity[2] of the boronic 15 

acid moiety at physiological conditions. However, it is unknown 

if boronic acid modification has any impact on the cellular 

localizations and biological activities of its parental compounds. 

Quindoline has intrinsic fluorescence, penetrates cells, interacts 

with DNAs, and kills cancer cells by three established 20 

mechanisms[5]. Thus, we designed and synthesized 4x4 series of 

novel quindoline derivatives without (2a-2d and 3a-3d) or with 

boronic acid modifications (4a-4d and 4e-4h) as shown in 

Scheme 1. These derivatives were then used to evaluate the 

impact of boronic acid modifications on the cellular localizations 25 

and cancer cell killing properties by taking advantage of the 

unique physical and biological activities of the quindoline. 

To make the quindoline derivatives, the key intermediate of 11-

chloroquindoline (1) was prepared following the procedure 

reported by Bierer[6]. The substitution reaction of compound (1) 30 

with the commercial aliphatic diamines produced the quindoline 

derivatives containing 4 different types of alkylamine side-chains 

at the C-11 position (2a-2d). The benzoic acid (3a-3d) as well as 

boronic acid modified benzoic acid derivatives (4a-4d and 4e-4h) 

were obtained by amidation of 11-animo-10H-indolo[3,2-35 

b]quinoline (2a-2d) with benzoic acid or 4-carboxyphenylboronic 

acid, or 3-carboxyphenylboronic acid, respectively. The reagents, 

conditions, and yield are shown in Scheme 1.  

 

Scheme 1. Reagents, conditions and yields: (a) RNH(CH2)nNH2, 40 

CH3CH2OCH2CH2OH, reflux, 17h; (b) benzoic acid, DMT-MM, 

CH3CH2OCH2CH2OH, r.t., 17h; (c) 4-Carboxyphenylboronic acid or 3-

Carboxyphenylboronic acid, DMT-MM, CH3CH2OCH2CH2OH, r.t., 17h; 

 

Since cell surfaces are covered by a variety of carbohydrates, we 45 

hypothesized that introducing boronic acid modification to 

quindoline derivatives might reduce the number of the derivatives 

entering the cell due to increased interactions between boronic 

acid and cell surface carbohydrates based on boronolectin 

studies[1] . As fewer boronic acid modified quindoline derivatives 50 

get inside the cells, less cell killing should be observed. Thus, we 

used two human colon cancer cell lines (HT29 and HCT116) and 

two human lung cancer cell lines (H1299 and A549) to test the 

hypothesis. 

We first measured the percentage of viable cancer cells after 48 h 55 

exposure to the 16 quindoline derivatives (2a-2d, 3a-3d, 4a-4d, 

and 4e-4h) at a concentration of 10 µM as compared to the 

compound-free control (100% viability) (Fig. 1). The results 

supported our hypothesis in that all boronic acid modified 

quindoline derivatives (4a-4d and 4e-4h) were less toxic to 60 

cancer cells than the boronic acid-free quindoline derivatives (2a-

2d and 3a-3d) in all cancer cell lines tested.  
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Fig.1. Percentage of viable cancer cells after 48h exposure to the quindoline 

derivatives 2a-2d, 3a-3d, 4a-4d and 4e-4h at a concentration of 10 µM 65 

compared to the compound-free control (100% viability). The derivatives were 

formulated initially in DMSO and then diluted in complete growth media 
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(A) Effect on lung cancer cells, H1299 and A549. (B) Effect on colon cancer 

cells, HT29 and HCT116 

 

To confirm this observation, each compound was tested in a 5 

series of concentrations to calculate the IC50 values in each of the 

four cell lines (Table 1). Interestingly, all aliphatic diamine-

modified (2a-2d) plus benzoic acid modified (3a-3d) quindoline 

derivatives showed almost the same cytotoxicities in each cell 

line tested, indicating that different aliphatic chain length (2a, 2b, 10 

and 2d) and structure (2c) plus benzoic acid modifications to 

quindoline had almost no impact towards observed cytotoxicities. 

In contrast, introducing a single boronic acid at either 3 (4e-4h) 

or 4 (4a-4d) position of the benzoic acid of the derivatives 3a-3d 

resulted in greatly reduced cytotoxicities reflecting 3 to 10-fold 15 

higher IC50 values (4a-4d and 4e-4h)  in all four cancer cell lines 

tested. Furthermore, the quindoline derivatives with 4-boronic 

acid modification (4a-4d) had lower IC50 values than that of the 

derivatives with 3-boronic acid modification (4e-4h), suggesting 

that the location of boronic acid in the quindoline derivatives 20 

played a role in the observed cytotoxicities as well (Fig. 1 and 

Table 1). 

 

Table 1. IC50 of quindoline derivatives (2a-2d, 3a-3d, 4a-4h) in cancer cells 

HT29, HCT116, A549 and H299 after 48 h exposure to the derivatives. 25 

 

Comp. 

IC50 (µm)a. 

HT29 HCT116 A549 H1299 

2a 0.7±0.14 0.6±0.14 2.1±0.26 1.3±0.66 

2b 0.3±0.07 0.3±0.09 1.6±0.89 1.0±0.19 

2c 0.4±0.15 0.3±0.11 1.0±0.16 0.62±0.24 

2d 1.0±0.40 0.9±0.36 2.1±0.55 0.90±0.06 

3a 0.3±0.06 0.8±0.32 1.3±0.24 0.8±0.30 

3b 1.3±0.23 1.0±0.32 2.3±0.4 2.1±0.08 

3c 0.8±0.24 0.9±0.17 2.4±0.23 2.8±0.15 

3d 0.9±0.31 1.2±0.38 3.5±0.48 2.9±0.12 

4a 3.7±0.83 2.6±0.56 17.2±2.05 14.1±3.08 

4b 2.0±0.01 1.3±0.18 7.8±1.33 6.6±2.26 

4c 3.3±0.25 2.1±0.31 14.2±1.18 6.8±1.16 

4d 1.6±0.53 1.2±0.30 16.7±6.63 4.2±1.44 

4e 5.1±0.36 3.9±0.30 29.1±1.59 12.2±3.56 

4f 2.5±0.82 2.0±0.85 14.8±1.49 11.0±3.62 

4g 11.9± 4.0 15.7±0.75 23.8±3.43 17.1±3.45 

4h 1.7±0.58 1.3±0.74 18.6±5.44 3.4±1.26 

a. Each IC50 value was calculated from 3 independent experiments performed 

in triplicate. 

 

Data in Fig. 1 and Table 1 showed that all quindoline derivatives 

(2a-2d, 3a-3d, 4a-4d, and 4e-4h) were more toxic to the two 30 

colon cancer cell lines (HT29 and HCT116) than to the two lung 

cancer cell lines (A549 and H1299), suggesting that more 

quindoline derivatives might be associated with colon cancer 

cells than with lung cancer cells due to different genetic 

background, such as P-glycoprotein expressing levels[7]. To test 35 

this idea, we employed flow cytometry analysis. The logic of this 

assay is that cancer cells do not have any fluorescence; only cell-

associated quindoline derivatives produce fluorescence and the 

intensity of fluorescence might be in proportion to the amount of 

quindoline derivatives associated with the cancer cells. 40 

To test this idea, we incubated the same numbers of colon cancer 

cells (HT29) and lung cancer cells (A549) without (quindoline 

derivative-free) or with the same amount of the derivatives 2a, 4a 

and 4e (10 µM) at identical cell culture conditions (24 h at 37 ºC). 

The cells were then washed three times with PBS followed by 45 

flow cytometry analysis. As shown in Fig. 2A, the quindoline 

derivative-free cancer cells indeed showed low auto-fluorescent 

background (HT29:12.58 ± 0.82 au vs. A549:7.02±2.93 au). In 

both HT29 and A549 cells, the fluorescent intensity was 

decreased in the order of the derivatives: 2a (HT29: 45.82 ± 5.91 50 

au vs. A549: 30.11±7.63 au) > 4a (HT29: 23.695±1.85 au vs. 

A549: 11.27±2.68au) > 4e (HT29: 21.195±1.69au vs. A549: 

8.995±4.79au) > the quindoline derivative-free control (HT29: 

12.58 ± 0.82 au vs. A549:7.02±2.93 au).  After subtracting the 

auto-fluorescent background, the fluorescent intensities in 2a, 4a 55 

and 4e treated HT29 cells were consistently higher than that in 2a, 

4a and 4e treated A549 cells. The higher fluorescent intensities 

correlated perfectly with the higher cytotoxicities (Fig. 1 and 

Table 1). These results indicate that the amount of the derivatives 

associated with the cancer cells was the key to explain the 60 

cytotoxicities of the quindoline derivatives. 

 
Fig.2. The amount of the derivatives 2a, 4a and 4e associated with the cancer 

cells. HT29 (A) or A549 (B) cells were incubated with or without the 

derivatives 2a, 4a or 4e at a concentration of 10 µM. After incubation for 24h 65 

at 37ºC, the cells were harvested, washed and then analyzed by flow cytometry. 

Ten thousand events were counted for each sample. The result shown is a 

representative of three independent experiments. Control: cells cultured in 

complete growth medium; 2: 2a treated cells; 3: 4a treated cells; 4: 4e treated 

cells. 70 

 

The results in Fig. 2 showed that the derivatives 2a, 4a and 4e 

were associated with HT29 and A549 cells. However, flow 

cytometry analysis could not precisely determine the location of 

the derivatives associated with the cancer cells. Therefore, we 75 

used confocal imaging analysis to further explore the issue. To 

Page 2 of 3ChemComm

C
h

em
ic

al
 C

o
m

m
u

n
ic

at
io

n
s 

A
cc

ep
te

d
 M

an
u

sc
ri

p
t

Pu
bl

is
he

d 
on

 2
5 

Ju
ly

 2
01

3.
 D

ow
nl

oa
de

d 
by

 S
t. 

Jo
se

ph
s 

U
ni

ve
rs

ity
 o

n 
29

/0
7/

20
13

 0
5:

43
:0

4.
 

View Article Online
DOI: 10.1039/C3CC45203D

http://dx.doi.org/10.1039/c3cc45203d


 

This journal is © The Royal Society of Chemistry [year] Journal Name, [year], [vol], 00–00  |3 

this end, HT29 and A549 cells were incubated with the 

derivatives 2a, 3a, 4a and 4e for 24 h at 37 ºC. The cancer cells 

were then washed three times before confocal imaging. As shown 

in Fig. 3A, high levels of green fluorescence were detected in the 

2a and 3a treated HT29 cells, and the fluorescence was mostly 5 

found around or in the cell nucleus. In contrast, the 4a and 4e 

treated HT29 cells exhibited less fluorescent intensities than that 

in the 2a and 3a treated HT29 cells, and the observed 

fluorescence was closer to the cell membranes (Fig. 3A). 

We also investigated the localization of the derivatives 2a, 3a, 4a 10 

and 4e in A549 cells. The data in Fig. 3B showed that the 

derivative 2a and 3a was mostly found around or in the cell 

nucleus of the A549 cells, but the nuclear localization of 2a and 

3a in the A549 cells was less than that in the HT29 cells (Fig. 

3A), which was consistent with the reduced cytotoxicities and 15 

cell association of 2a and 3a in the A549 cells than in the HT29 

cells (Fig. 1, Table 1, and Fig. 2). In agreement with the 

cytotoxicities and cell association data shown in Fig. 1, Table 1 

and Fig. 2, the fluorescence observed in the 4a and 4e treated 

A549 cells was less than that in the 2a and 3a treated A549 cells, 20 

which was consistent with the decreased cytotoxicities in the 

order of 2a, 3a, 4a and 4e shown in Fig. 1, Table 1, and Fig. 2. 

Again, the observed fluorescence of the 4a and 4e in the A549 

cell was closer to the membrane (Fig. 3B).  

3a                   Dic Merge 

A

3a                     Dic Merge

B

 25 

Fig. 3. Distribution of the derivatives 2a, 3a, 4a and 4e in HT29 and A549 

cells. Cells were incubated with or without the derivatives 2a, 3a, 4a or 4e at a 

concentration of 10 µM for 24h at 37ºC. After which, the cells were washed 

three times with PBS before confocal imaging. (A) HT29 cells, (B) A549 cells. 

Scale bar represents 10 µm. Control: non-derivative treated cells. 30 

Conclusions 

In summary, boronic acid modifications reduced quindoline’s 

cytotoxicities mainly through decreased cell penetration and 

nuclear localization that we attributed to the increased cell surface 

carbohydrate interactions and/or increased difficulties in 35 

penetrating cell membranes due to the presence of boronic acid 

modification in the quindoline derivatives. This study provides 

useful information about the influence of boronic acid on the 

cytotoxicities and cellular localizations of the quindoline 

derivatives, which has important implications in research and 40 

development of boronic acid modified drugs. 
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