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Abstract: The stereoselective synthesis of anti β-hydroxy α-amino
esters by iridium–SYNPHOS-catalyzed asymmetric hydrogenation
of α-amino β-keto ester hydrochlorides is reported. The reaction
proceeded through dynamic kinetic resolution to afford a variety of
β-hydroxy α-amino ester derivatives with good yields and high
level of diastereo- and enantioselectivities (de up to 99%, ee up to
92%).
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Dynamic kinetic resolution (DKR)1 is a useful and highly
efficient tool to access enantiomerically enriched com-
pounds starting from racemic substrates bearing a labile
stereocenter. Catalytic asymmetric hydrogenation of
α-substituted β-keto esters via DKR in particular, pro-
vides a broad range of functionalized molecules in a high
diastereo- and enantioselective fashion. In this field, the
use of chiral ruthenium complexes for the hydrogenation
of β-keto-α-amino esters via DKR was first reported by
Noyori2 and one of our laboratories3 for the syn-selective
formation of β-hydroxy-α-amino esters. The anti-selec-
tive Ru-mediated asymmetric hydrogenation of α-amino-
β-keto esters via DKR was later described by Hamada,4
Zhang5 and one of our groups.6 As part of our ongoing
studies toward the development of practical and efficient
catalysts for asymmetric hydrogenation of unsaturated
compounds, we have previously reported a convenient
one-pot synthesis of cationic triply halogen-bridged dinu-
clear iridium(III) complexes of general formula
[{Ir(H)[(S)-diphosphine]}2(μ-X)3]X (X = Cl, Br and I).7
These complexes were successfully used for the asym-
metric hydrogenation of quinolines8a,b and quinoxalines
derivatives,8c,d and allowed for the synthesis of the corre-
sponding tetrahydroquinolines and tetrahydroquinoxal-
ines with a high level of enantioselectivity. As an
extension of our previous work on the dynamic kinetic
resolution9 of α-amino-β-keto ester hydrochlorides
through asymmetric hydrogenation, and in an effort to ex-

pand the scope of the [{Ir(H)[(S)-diphosphine]}2(μ-X)3]X
complexes, we report herein an application of these Ir(III)
complexes bearing SYNPHOS,10 an atropisomeric ligand
developed by one of us, for the synthesis of anti β-hy-
droxy-α-amino esters.
The first example of DKR of α-amino-β-keto ester cata-
lyzed by an in situ generated Ir axially chiral phosphine
complex was reported by Hamada et al.11 who showed
that the method was effective for the preparation of aro-
matic anti-β-hydroxy-α-amino acids. The authors used ei-
ther an Ir-(S)-MeOBIPHEP complex (prepared from
[IrCl(cod)]2, (S)-MeOBIPHEP, and NaI prior to the hy-
drogenation) with NaOAc in AcOH under high hydrogen
pressure,11a or the Ir-(S)-MeO-BIPHEP-BARF complex
prepared from [IrCl(cod)]2, (S)-MeOBIPHEP, and
NaBARF in the presence of sodium acetate in acetic acid
under low hydrogen pressure.11b In both cases, the chiral
iridium complex was prepared in situ and the hydrogena-
tion proceeded in good yields and with high levels of
diastereo- and enantioselectivities. In connection with the
work disclosed by the group of Hamada, we describe
herein the results obtained for the hydrogenation of
α-amino β-keto ester hydrochlorides using the cationic
dinuclear iridium(III) catalysts [{Ir(H)[(S)-
SYNPHOS]}2(μ-X)3]X7 1a–c (Figure 1). These complex-
es are conveniently prepared from [IrCl(coe)2]2 by adding
(S)-SYNPHOS10 and an excess of aqueous HX in toluene
at room temperature, and the isolated catalysts are easy to
handle and can be stored.

Figure 1  Structures of cationic dinuclear triply halogen-bridged irid-
ium complexes 1a–c
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The DKR was first performed with 2a as the standard sub-
strate using 1.5 mol% of [{Ir(H)[(S)-SYNPHOS]}2(μ-Cl)3]Cl
(1a) and NaOAc in acetic acid at 40 °C under 100 bar of
hydrogen pressure (Table 1). After 24 hours of reaction
time, complete conversion of 2a was observed and the re-
sulting substituted β-hydroxy-α-amino ester 3a (prepared
by protection of the corresponding ammonium with ben-
zoyl chloride) was obtained in good yield with an excel-
lent anti diastereoselectivity (dr >99:1) and with a high
er (90:10; Table 1, entry 1). Similar results were
observed under these reaction conditions with
[{Ir(H)[(S)-SYNPHOS]}2(μ-Br)3]Br (1b; Table 1, entry
2).

Pleasingly, the use of [{Ir(H)[(S)-SYNPHOS]}2(μ-I)3]I
complex 1c allowed a higher enantiomeric ratio (94:6)
whereas the dr remained excellent (Table 1, entry 3). In
contrast with the result reported by Hamada et al. with a
mononuclear Ir-(S)-MeOBIPHEP complex, in our case,
no reaction was observed in the absence of sodium acetate
(Table 1, entry 4). Replacing (S)-SYNPHOS by the elec-
tron-deficient (S)-DIFLUORPHOS12 ligand resulted in

incomplete conversion after 24 hours with a slightly lower
er (Table 1, entry 5). When the hydrogenation was carried
out in trifluoroacetic acid instead of acetic acid, poor con-
version was observed (Table 1, entry 6). Lowering the cat-
alyst loading to 1 mol% had no influence on either the
conversion or the diastereo- and enantioselectivities (Ta-
ble 1, entry 7). Finally, when the reduction was performed
under 70 bar of hydrogen pressure instead of 100 bar, a
decrease of the diastereomeric ratio was observed (93:7 vs
>99:1, Table 1, entries 8 and 3).
In an attempt to establish the scope of the Ir–(S)-
SYNPHOS-promoted hydrogenation, a series of α-amino-
β-keto ester hydrochlorides 2a–k13 bearing various substi-
tution patterns were subjected to catalytic asymmetric hy-
drogenation under the optimized reaction conditions
(Table 2).

Table 1  Optimization of the Reaction Conditionsa

Entry Ir complex Convb (%) Yield (%) drc anti/syn erd

1 1a 100 80 >99:1 90:10

2 1b 100 79 >99:1 90:10

3 1c 100 72 >99:1 –4:6

4e 1c 0 – – –

5f 1c 76 67 99:1 84:16

6g 1c 13 –h –h –h

7i 1c 100 72 >99:1 92:8

8j 1c 100 68 93:7 94:6
a Reaction conditions: 2 (0.44 mmol), catalyst (1.5 mol%), NaOAc 
(0.44 mmol) in AcOH (2 mL) at 40 °C for 24 h under 100 bar of 
hydrogen pressure.
b Conversions were determined after the hydrogenation reaction by 1H 
NMR spectroscopy of the crude product.
c The dr value was determined by 1H NMR spectroscopy of the crude 
product 3a.
d The er value was determined by SFC or HPLC analysis of 3a.
e The reaction was run in the absence of NaOAc.
f (S)-DIFLUORPHOS ligand was used instead of (S)-SYNPHOS.
g CF3CO2H was used as a solvent instead of AcOH.
h Not determined.
i The reaction was carried out with 1 mol% of the Ir complex.
j The reaction was conducted under 70 bar of H2.
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Table 2  DKR of Various α-Amino-β-Keto Ester Hydrochlorides 
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Thus, the hydrogenation of 2a–k was carried out by using
1.5 mol% of [{Ir(H)[(S)-SYNPHOS]}2(μ-I)3]I 1c and
NaOAc in acetic acid at 40 °C under 100 bar of hydrogen
pressure for 24 hours, affording mainly excellent diaste-
reomeric ratios as high as >99:1 with er ranging from
81:19 to 96:4. The introduction of a methyl group at the
para, meta or ortho positions on the phenyl ring of the
corresponding α-amino-β-keto ester hydrochlorides 2b,
2c and 2d had no influence on either the yield or the dias-
tereo- and enantioselectivities (Table 2, entries 1–4). Sub-

strate 2e bearing a methoxy group at the 4-position of the
phenyl ring provided high diastereo- and enantioselectiv-
ities (Table 2, entry 5). The introduction at the para posi-
tion on the phenyl ring of electron-withdrawing
substituents such as fluorine, as in 2f, a chlorine as in 2g
or a bromine as in 2h, resulted in a slight decrease of the
enantioselectivity, from 92:8 er for the fluorinated com-
pound 3f to 86:14 for the brominated compound 3h (Table
2, entries 6–8). The DKR of 2i bearing a thiophenyl sub-
stituent afforded the anti-substituted β-hydroxy-α-amino
ester 3i with high enantiomeric ratio and excellent diaste-
reoselectivity as high as >99:1 (Table 2, entry 9). α-Ami-
no β-keto ester hydrochlorides 2j and 2k having alkyl
substituents were also investigated. In the case of com-
pound 2j bearing a sterically demanding cyclohexyl
group, the corresponding anti product 3j was obtained
with high diastereoselectivity (dr 95:5, Table 2, entry 10)
whereas a lower dr of 83:17 was obtained for the hydro-
genation reaction of α-amino-β-keto ester hydrochloride
2k having a linear alkyl chain (Table 2, entry 11).
In summary, we have shown that a cationic dinuclear irid-
ium(III) iodide complex bearing the in-house developed
SYNPHOS ligand is efficient for the hydrogenation reac-
tions of a variety of α-amino-β-keto ester hydrochlorides
via a dynamic kinetic resolution process. The efficiency
of our catalyst system was demonstrated through the sub-
strate scope of the reaction. Indeed, a series of anti-β-hy-
droxy-α-amino ester derivatives was synthesized in good
chemical yields and with high levels of asymmetric induc-
tion. In addition, these compounds are key intermediates
for the synthesis of targets of medicinal interest.
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