Fullerene Derivatives Substituted with Differently Branched Phenyleneethynylene Dendrons: Synthesis, Electronic and Excited State Properties

John N. Clifford,^[a] Aline Gégout,^[b] Sheng Zhang,^[b] Rossimiriam Pereira de Freitas,^[b,c] Maxence Urbani,^[b] Michel Holler,^[d] Paola Ceroni,^{*[e]} Jean-François Nierengarten,^{*[b]} and Nicola Armaroli^{*[a]}

Keywords: Conjugated systems / Dendrimers / Electrochemistry / Energy transfer / Fullerene / Photophysical properties

Fullerene derivatives functionalized with isomeric phenyleneethynylene-based dendrons possessing either 1,3,5-triethynylbenzene or 1,2,4-triethynylbenzene branching units have been prepared. The electrochemical properties of these compounds are not strongly dependent on the branching patterns since the corresponding redox processes are localized either on the C₆₀ cage (acceptor unit) or on the dialkyloxybenzene moieties (donor units) at the dendron periphery. The photophysical investigations performed in CH₂Cl₂ have revealed an ultrafast dendron \rightarrow C₆₀ energy transfer in all these

Introduction

The past several years have seen a growing interest in the synthesis and the study of dendrimers with a π -conjugated backbone.^[1] Interestingly, their electronic properties can be easily tailored by either introducing various substituents,^[2] changing the conjugation lengths of the different fragments within the dendritic shell,^[3] or modulating the substitution pattern of the branching aromatic units.^[4,5] The characteristic features of these compounds, such as large molar extinction coefficients and sometimes high fluorescence efficiencies, make them attractive photoactive components for the

- [a] Molecular Photoscience Group, Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale della Ricerche, Via Gobetti 101, 40129 Bologna, Italy E-mail: armaroli@isof.cnr.it
- [b] Groupe de Chimie des Fullerènes et des Systèmes Conjugués, Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France E-mail: jfnierengarten@lcc-toulouse.fr
- [c] Universidade Federal de Minas Gerais, Departamento de Química, Av. Antônio Carlos 6627, 31270901 Belo Horizonte, MG, Brazil
- Av. Antonio Carlos 6627, 51270901 Belo Horizonte, MG, Brazil E-mail: rossipdf@yahoo.com.br
 [d] Laboratoire de Physico-Chimie Bioinorganique, Université
- [d] Laboratorie de Physico-Chimie Bioinorganique, Universite Louis Pasteur et CNRS, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM),
 25 rue Becquerel, 67087 Strasbourg Cedex 2, France E-mail: mholler@chimie.u-strasbg.fr

[e] Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, 40126 Bologna, Italy E-mail: paola.ceroni@unibo.it hybrid systems. Importantly, the different π -conjugation patterns in the two series have a dramatic effect on their electronic properties as attested by the differences observed in their absorption and emission spectra. The lower lying absorption onset and the wider spectral profile of the dyads with 1,2,4-triethynylbenzene branching units when compared to their 1,3,5-triethynylbenzene analogues clearly points out an improved light harvesting capability. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007)

preparation of new sensors or photochemical molecular devices.^[6] In particular, their absorption properties have been widely exploited for the design of light harvesting systems^[7–9] in which the π -conjugated dendritic chromophore is able to transfer the collected light energy to the central core of the dendrimer.^[10] Photophysical studies of such multicomponent molecular devices are not only important for the fundamental understanding of photoinduced processes, but appears of great interest for the design of new photovoltaic materials with optimized absorption properties,^[11] or even organic light-emitting diodes.^[12] Among the various terminal energy acceptors used in such light harvesting systems, [60]fullerene (C₆₀) has proven to be particularly interesting.^[8,9] Effectively, its first singlet and triplet excited-states are relatively low in energy and photoinduced energy-transfer events have been evidenced in numerous fullerene-based dyads.^[13] In this paper, we report the synthesis and the electronic properties of fullerene derivatives functionalized with isomeric phenyleneethynylene-based dendrons possessing 1,3,5-triethynylbenzene or 1,2,4-triethynylbenzene branching units (Figure 1). Whereas the π -conjugation of the dendritic antenna in C_{60} -G1 and C_{60} -G2 is rather limited due to the all-meta-branching scheme, the dendritic scaffold of C60-Y1 and C60-Y2 exhibits an increase of the conjugation length when going from the first to the second generation compound. The different conjugation length does not strongly affect the electrochemical processes since reduction is localized on the fullerene cage and oxi-

FULL PAPER

dation on the dialkyloxybenzene peripheral units. On the other hand, the photophysical properties of the two families are significantly different. Indeed, the absorption of the antenna unit in C_{60} -Y2 is significantly red-shifted when compared to the one in C_{60} -G2, thus the light harvesting capabilities of the system have been improved when going from C_{60} -G2 to C_{60} -Y2.

Figure 1. Compounds C₆₀-G1, C₆₀-G2, C₆₀-Y1, and C₆₀-Y2.

Results and Discussion

Synthesis

The preparation of the first generation derivatives C_{60} -G1 and C_{60} -Y1 is depicted in Scheme 1. Reaction of alkyne 1 with 3,5-dibromobenzaldehyde (2) and 3,4-dibromobenzaldehyde (3) under Sonogashira^[14] conditions gave the first generation dendrons 4 and 5, respectively. The functionalization of C_{60} was based on the 1,3-dipolar cycloaddition of the azomethine ylide^[15] generated in situ from aldehydes 4 and 5. The reaction of C_{60} with 4 in the presence of an excess of *N*-methylglycine in refluxing toluene gave compound C_{60} -G1 in 61% yield. Compound C_{60} -Y1 was obtained in 46% yield from 5, C_{60} and *N*-methylglycine under similar conditions.

Scheme 1. Reagents and conditions: (a) $Pd(PPh_3)_2Cl_2$, CuI, PPh₃, Et₃N, THF, 65 °C (4: 86%,5: 82%); (b) C₆₀, *N*-methylglycine, toluene, Δ (C₆₀-G1: 61%, C₆₀-Y1: 46%).

The ¹H NMR spectra of the pyrrolidinofullerene derivatives C_{60} -G1 and C_{60} -Y1 are in full agreement with the C_1 symmetry resulting from the presence of a stereogenic center in the pyrrolidine ring. At room temperature, the spectra exhibit the expected features with the characteristic signals arising from the 3,4-didodecyloxyphenyl units, a singlet for the methyl group, an AB quartet and a singlet for the pyrrolidine protons. For both C₆₀-G1 and C₆₀-Y1, the signals corresponding to the protons of the phenyl group directly attached to the pyrrolidine ring are broad at room temperature. A variable-temperature NMR study showed clear coalescence, and the reversible narrowing of all these peaks reveals a dynamic effect. This indicates restricted rotation of the phenyl substituent on the pyrrolidine ring.^[16] The ¹H NMR spectrum of compound C₆₀-G1 recorded at 110 °C in $C_2D_2Cl_4$ is shown in Figure 2. At high temperatures, an AX₂ system is seen for the aromatic protons of the 3,5diethynylphenyl unit. Indeed, the exchange between H1 and $H_{1'}$ is fast on the NMR timescale under these conditions, and protons H_1 and $H_{1'}$ appear equivalent in the ¹H NMR spectrum. In contrast, by cooling the solution to -50 °C, this exchange resulting from the rotation of the phenyl unit around the phenyl-pyrrolidine bond becomes slow on the NMR timescale, as attested by the three sets of signals observed for the aromatic protons H1, H1', and H2. In contrast, the effect observed for C_{60} -Y1 is resulting from a dynamic exchange between two atropisomers (A and B, Figure 2).^[16] When the ¹H-NMR spectrum of C_{60} -Y1 is recorded in C₂D₂Cl₄ at 100 °C (Figure 2), the dynamic exchange between the two atropisomers is fast on the NMR timescale, leading to a well resolved average spectrum under these conditions. By decreasing the temperature, a narrowing of all the peaks is also observed but the ¹H NMR spectrum becomes more complex. By -50 °C, the dynamic

Figure 2. (top left) ¹H NMR spectra (400 MHz) of C_{60} -G1 recorded in $C_2D_2Cl_4$ at 110 and 50 °C, and in CDCl₃ at room temperature (* solvent peak); (top right) ¹H NMR spectra (400 MHz) of C_{60} -Y1 recorded in $C_2D_2Cl_4$ at 100, 50, 40 and 27 °C (* solvent peak); (bottom) ¹H NMR spectra (400 MHz) of C_{60} -Y1 recorded in CDCl₃ at 10, 0, and -50 °C (* solvent peak; for the numbering, see Figure 2 top right).

exchange between the two atropisomers is slow on the NMR timescale and the spectra of both conformers are clearly observed.

The synthesis of C_{60} -G2 is depicted in Scheme 2. Treatment of 2 with CBr₄/PPh₃/Zn under the conditions described by Corey–Fuchs^[17] yielded dibromo olefin 6 in 95% yield. Elimination of HBr and halogen–metal exchange was best achieved with an excess of LDA in THF at –78 °C and the resulting anion was quenched with triethylsilyl chloride (TESCI) to give protected alkyne 7 in 70% yield. Compound 7 was subjected to a Pd-catalyzed cross-coupling reaction with 1 to yield dendron 8. Subsequent treatment with K_2CO_3 in THF/MeOH gave terminal alkyne 9 in 91% yield. The second generation dendron 10 was then obtained in 96% yield by Pd-catalyzed cross-coupling between 9 and 3,5-dibromobenzaldehyde (2). Finally, reaction of 10 with C_{60} and *N*-methylglycine in refluxing toluene gave C_{60} -G2 in 52% yield.

Compound C_{60} -Y2 was prepared from 3,4-dibromobenzaldehyde (3) by following a similar synthetic route (Scheme 3). Dibromoolefination according to Corey–Fuchs provided 11 which after treatment with an excess of LDA

Scheme 2. Reagents and conditions: (a) CBr₄, PPh₃, Zn, CH₂Cl₂, 0 °C to room temp. (95%); (b) LDA, THF, -78 °C, then TESCl, THF, -78 °C (70%); (c) **1**, Pd(PPh₃)₂Cl₂, CuI, PPh₃, Et₃N, THF, 65 °C (99%); (d) K₂CO₃, THF, MeOH, room temp. (91%); (e) **2**, Pd(PPh₃)₂Cl₂, CuI, PPh₃, Et₃N, THF, 65 °C (96%); (f) C₆₀, *N*methylglycine, toluene, Δ (52%).

in THF at -78 °C and quenching with TESCl afforded protected alkyne 12. Compound 12 was subjected to a Pd-catalyzed cross-coupling reaction with 1 to yield the second generation dendron 13. Treatment with tetra-*n*-butyl ammonium fluoride (TBAF) and subsequent reaction of the resulting 14 with 3 under Sonogashira conditions afforded dendron 15. Treatment of 15 with C₆₀ and *N*-methylglycine finally gave C₆₀-Y2 in 50% yield.

Compounds C_{60} -G2 and C_{60} -Y2 are well soluble in common organic solvents such as CH_2Cl_2 , $CHCl_3$, or THF and complete spectroscopic characterization was easily achieved. Both ¹H and ¹³C-NMR spectra are in full agreement with their C_1 symmetry resulting from the presence of a stereogenic center in the pyrrolidine ring. Variable-temperature ¹H NMR studies were also carried out with compounds C_{60} -G2 and C_{60} -Y2. In both cases, a dynamic effect was evidenced and the results are closely similar to that discussed in detail for compounds C_{60} -G1 and C_{60} -Y1. Finally, the structure of C_{60} -G2 and C_{60} -Y2 was confirmed by mass spectrometry. In both cases, the expected molecular ion peak was clearly observed.

In addition, compounds G1, G2, Y1 and Y2 (Figure 3) which were used as reference compounds, were prepared by diisobutylaluminum hydrid (DIBAL-H) reduction of benz-aldehydes 4, 10, 5 and 15, respectively.

Scheme 3. Reagents and conditions: (a) CBr₄, PPh₃, Zn, CH₂Cl₂, 0 °C to room temp. (95%); (b) LDA, THF, -78 °C, then TESCl, THF, -78 °C (63%); (c) **1**, Pd(PPh₃)₂Cl₂, CuI, PPh₃, Et₃N, THF, 65 °C (99%); (d) TBAF, THF, 0 °C (92%); (e) **3**, Pd(PPh₃)₂Cl₂, CuI, PPh₃, Et₃N, THF, 65 °C (84%); (f) C₆₀, *N*-methylglycine, toluene, Δ (50%).

Figure 3. Model compounds G1, G2, Y1, and Y2.

Electrochemistry

The cyclic voltammetric patterns of all the hybrid systems studied in CH_2Cl_2 show three reversible one-electron transfer processes in the cathodic region and two chemically

irreversible electron-transfer processes corresponding to illdefined peaks in the anodic region (Table 1). Comparison with the (*N*-methylpyrrolidino)fullerene reference compound **MeF** (Figure 4) allows us to assign the three observed reductions to the fullerene core. The C₆₀-based electron-transfer processes are almost unaffected by the presence of the phenyleneethynylene-based dendrons: only a very small positive shift of the half-wave potentials is observed.

Table 1. Half-wave potentials (in V vs. SCE) of C₆₀-G1, C₆₀-G2, C₆₀-Y1, C₆₀-Y2 and the corresponding reference compounds recorded in $CH_2Cl_2 + 0.1 \text{ M} nBu_4NPF_6$ at room temperature using a glassy carbon working electrode.

	Red ₃	Red ₂	Red_1	$Ox_1^{[a]}$	$Ox_2^{[a]}$
MeF	-1.54	-1.01	-0.62		
C ₆₀ -Y1	-1.49	-0.97	-0.59	+1.41	+1.52
Y1				+1.35	
C ₆₀ -G1	-1.50	-0.97	-0.60	+1.40	+1.50
G1				+1.37	
C ₆₀ -Y2	-1.49	-0.97	-0.60	+1.41	+1.54
Y2				+1.41	
C ₆₀ -G2	-1.48	-0.96	-0.59	+1.40	+1.48
G2				+1.41	

[a] Chemically irreversible electron-transfer process; $E_{\rm pa}$ value at 0.2 V/s.

Figure 4. Model compound MeF.

In the cathodic region, the observed processes are assigned to the peripheral dialkyloxyphenyl units, as expected on the basis of the electrochemical properties of 1,2-dimethoxybenzene.^[18] The oxidation process observed for the dendrons is very close to the first of the corresponding hybrid systems (E_{pa} values reported in Table 1), except for a slight negative shift in the case of **Y1** and **G1**. Moreover, the potential values corresponding to the first and second oxidation processes of all the C₆₀-based compounds are very similar without any significant difference between the Y and G series, thus suggesting that the electron transfers are mainly localized on the dialkyloxybenzene units. Surprisingly, in the case of C₆₀-G1, C₆₀-G2, C₆₀-Y1, and C₆₀-Y2 two oxidation processes are observed, while for the corresponding dendrons only one process is present in the same potential window (Table 1). Although the evaluation of the number of electrons exchanged is precluded by the chemical irreversibility of the oxidation processes, these results suggest that the dialkyloxyphenyl units are no longer equivalent from the electrochemical point of view when the C_{60} unit is present.

Electronic Absorption Spectra

Reference compounds. The electronic absorption spectra of reference compounds G1, G2, Y1 and Y2 recorded in

CH₂Cl₂ solutions at 298 K are shown in Figure 5. As expected, the increase in the size of the conjugated network for G2 relative to G1 results in a higher molar extinction coefficient. The absorption maxima as well as the end-absorptions are found similar for both G1 and G2. This trend shows that the all-meta ramification does not promote efficient π -electronic conjugation within the branched dendritic structure, as already observed for related phenylenevinylene-based dendrimers.^[5,8] In contrast, when going from Y1 to Y2, an absorption onset at lower energy and a wider spectral profile are observed. This is due the presence of two π -conjugated moieties made of 3 *para*-phenylacetylene units in Y2. As a result, the larger delocalization in Y2 leads to a 70 nm red-shift of the absorption onset relative to Y1. The absorption spectrum of MeF (Figure 6) shows the wellknown features of pyrrolidinofullerenes.^[19]

Figure 5. Absorption and normalized fluorescence spectra (inset) of (a) Y1 (black), G1 (grey); (b) Y2 (black), G2 (grey); CH_2Cl_2 , 298 K. Emission spectra were recorded upon excitation at the absorption maximum (O.D. = 0.1).

Figure 6. Absorption spectra of dyad compounds: (a) fulleropyrrolidine reference MeF (dashed), C_{60} V1 (black), C_{60} G1 (grey); (b) fulleropyrrolidine reference MeF (dashed), C_{60} V2 (black), C_{60} G2 (grey); CH₂Cl₂, 298 K. Beyond 400 nm, spectra are increased by a factor of 10 for display purposes.

Hybrid systems. The absorption spectra of the hybrid systems C_{60} -G1, C_{60} -G2, C_{60} -Y1, and C_{60} -Y2 recorded in CH₂Cl₂ solutions are shown in Figure 6. In all cases the contributions from the fullerene and antenna components

are clearly visible and distinguishable. Comparison of the absorption spectra of these hybrid systems with spectra resulting from the linear superimposition of the individual components (i.e. C_{60} and antenna) show no significant differences. This indicates that there are minimal ground state interactions between the fullerene and the conjugated dendritic subunits within these systems which would agree with the electrochemical data (vide supra).

Fully selective excitation of the dendritic unit in all hybrid systems is not possible due to overlap of their absorption profiles with that of the C₆₀ unit. For C₆₀-G1 and C₆₀-Y1, excitation at 310 nm corresponds to an average of 50% light absorption by the conjugated dendritic antenna. However, greater selectivity is possible for C₆₀-G2 and C₆₀-Y2 owing to the increased intensity of the absorption for the dendritic subunit of these compounds (selectivity as high as 86% is possible at 310 nm). Completely selective excitation of the C₆₀ unit is possible for all hybrids at wavelengths > 460 nm.

Luminescence Properties and Photoinduced Processes

Reference compounds. G1, G2, Y1 and Y2 exhibit fluorescence bands in CH_2Cl_2 solution (Figure 5, Table 2). The singlet excited state lifetimes determined at room temperature are in the nanosecond range for all the compounds as typically observed for oligophenyleneethynylene systems.^[20] The fluorescence spectra of G1 and G2 have practically the same shape, but the emission maximum of G2 is slightly red-shifted (18 nm). The fluorescence quantum yield and the singlet excited state lifetime of G1 are nearly identical to those of G2. When going from Y1 to Y2, a larger redshift of the emission maximum (40 nm) is observed. Furthermore, the emission quantum yields of Y1 and Y2 are much larger when compared to G1 and G2. The latter observations point out the differences in π -delocalization in the two families of branched systems already deduced from their absorption features (see above).

Table 2. Luminescence properties in CH₂Cl₂ at 298 K.

	$\begin{array}{c} \mathrm{C}_{60} \\ \lambda_{\mathrm{max}}^{[\mathrm{a}]} \\ \mathrm{[nm]} \end{array}$	$\Phi_{\rm em}^{[b]}(imes 10^4)$	τ ^[c] [ns]	Dendron $\lambda_{max}^{[a]}$ [nm]	$\Phi_{\rm em}^{\rm [b]}$	$ au^{[d]}$ [ns]
MeF	714	5.50	1.19	-		
Y1				400	0.440	1.30
C ₆₀ -Y1	714	5.56	1.27	478	0.002	
G1				382	0.110	1.25
C ₆₀ -G1	712	4.74	1.22	438	0.001	
Y2				440	0.55	1.23
C ₆₀ -Y2	714	4.80	1.31	498	0.006	
G2				400	0.17	1.24
C ₆₀ -G2	714	5.69	1.32	422	0.002	

[a] Emission maxima from corrected spectra. [b] Emission quantum yields obtained in aerated samples. [c] Excited state lifetimes obtained in aerated samples; $\lambda_{ex} = 337$ nm. [d] Excited state lifetimes obtained in aerated samples; $\lambda_{ex} = 465$ nm.

Pyrrolidinofullerene **MeF** exhibit singlet excited state parameters (Table 2) identical to those of very similar systems reported previously.^[19]

Hybrid systems. Following excitation at 310 nm, negligible fluorescence of the dendritic subunits is observed for C₆₀-G1, C₆₀-G2, C₆₀-Y1, and C₆₀-Y2. Indeed, when compared to the fluorescence intensity observed for reference compounds G1, G2, Y1 and Y2 under the same conditions, it appears that fluorescence is quenched by about two orders of magnitude (Table 2). Additionally, we observe a fluorescence band at approximately 710 mn which is almost identical in all cases to fluorescence observed for the fullerene reference compound MeF. Indeed the intensity of the bands observed for all hybrids is nearly equal to that of the fullerene reference MeF under the same experimental conditions (same absorbance at the excitation wavelength). These results suggest that efficient intramolecular singletsinglet energy transfer takes place, as seen previously for analogous systems.^[8] This process, clearly, must be on a timescale faster than that of the fluorescence of the conjugated dendritic units (≈ 1 ns). Excitation spectra taken in the range 300–450 nm at $\lambda_{\rm em} = 730$ nm (fullerene fluorescence) show that sensitization of the C₆₀ moiety occurs for C₆₀-G1, C₆₀-G2, C₆₀-Y1, and C₆₀-Y2 giving strong support to a dendron \rightarrow C₆₀ singlet-singlet energy-transfer process. In previous studies involving similar hybrid systems, namely C_{60} derivatives bearing linear π -conjugated fragments, the initial energy-transfer event populates the lowest fullerene singlet excited state which is capable of promoting electron transfer from the oligomer to the C₆₀ unit.^[21] Actually, this can take place only when the charge separated state is lower in energy than the fullerene singlet. This is not the case here where the fulleropyrrolidine lowest singlet excited state is placed at 1.7 eV^[8] above the ground state, i.e. substantially lower lying than the charge separated level which is located at about 2.9 eV for C₆₀-G1, C₆₀-G2, C₆₀-Y1, and C₆₀-Y2, as derived from the electrochemical data in CH₂Cl₂ (Table 1). Experimental evidence for a 100% efficient dendron \rightarrow C₆₀ energy transfer is also obtained in benzonitrile from fluorescence data. Thus, for the present dyads, the large difference in energy between the fullerene singlet and the charge separated state does not enable charge separation even in polar media, thus preventing tuning of photoinduced processes by solvent polarity as observed previously for a number of C₆₀ multicomponent systems.^[13]

Conclusions

Two series of isomeric dyads with differently branched phenyleneethynylene-based moieties and a pyrrolidinofullerene core have been prepared. The photophysical properties revealed an ultrafast and very efficient dendron $\rightarrow C_{60}$ energy transfer in all these hybrid systems. Importantly, the different π -conjugation patterns in Y1–2 relative to G1–2 have a dramatic effect on their electronic properties as attested by the differences observed in their absorption and emission spectra. The lower lying absorption onset and the wider spectral profile of C₆₀-Y2 when compared to C₆₀-G2 clearly points out an improved light harvesting capability for the former compound. On the other hand, the electrochemical properties of the two series of compounds are not strongly different since reduction and oxidation processes are mainly localized on the C_{60} core and the dialkoxybenzene peripheral units, respectively.

Experimental Section

General: Reagents and solvents were purchased as reagent grade and used without further purification. THF was distilled from sodium benzophenone ketyl. All reactions were performed in standard glassware under an inert Ar atmosphere. Evaporation and concentration were done at water aspirator pressure and drying in vacuo at 10⁻² Torr. Column chromatography: silica gel 60 (230-400 mesh, 0.040-0.063 mm) was purchased from E. Merck. Thinlayer chromatography (TLC) was performed on glass sheets coated with silica gel 60 F₂₅₄ purchased from E. Merck, visualization by UV light. IR spectra (cm⁻¹) were measured on an ATI Mattson Genesis Series FTIR instrument. NMR spectra were recorded on a Bruker AC 300 with solvent peaks as reference. FAB-mass spectra (m/z; % relative intensity) were taken on a ZA HF instrument with 4-nitrobenzyl alcohol as matrix. MALDI-TOF-mass spectra (m/z; % relative intensity) were carried out on a Bruker BIFLEXTM matrix-assisted laser desorption time-of-flight mass spectrometer equipped with SCOUTTM High Resolution Optics, an X-Y multisample probe and a gridless reflector. Ionization is accomplished with the 337 nm beam from a nitrogen laser with a repetition rate of 3 Hz. All data were acquired at a maximum accelerating potential of 20 kV in the linear positive ion mode. The output signal from the detector was digitized at a sampling rate of 1 GHz. A saturated solution of 1,8,9-trihydroxyanthracene (dithranol ALDRICH EC: 214-538-0) in CH₂Cl₂ was used as a matrix. Typically, a 1/1 mixture of the sample solution in CH₂Cl₂ was mixed with the matrix solution and 0.5 µL of the resulting mixture was deposited on the probe tip. Elemental analyses were performed by the analytical service at the Institut Charles Sadron, Strasbourg.

General Procedure for the Preparation of Compounds 6 and 11: A mixture of CBr_4 , PPh₃ and Zn dust in dry CH_2Cl_2 was stirred at room temperature for 24 h. The suspension was then cooled to 0 °C and the appropriate aldehyde dissolved in CH_2Cl_2 was added at once. The resulting mixture was slowly warmed to room temperature and stirred overnight. The resulting thick suspension was filtered and the solvents evaporated. The residue was dissolved in a minimum of CH_2Cl_2 , then hexane was added to precipitate the remaining P-containing by-products. The resulting mixture was filtered and the solvents evaporated. The product was then purified as outlined in the following text.

Compound 6: This compound was prepared from **2** (3.00 g, 11.37 mmol), CBr₄ (18.85 g, 56.85 mmol), PPh₃ (14.91 g, 56.85 mmol) and Zn dust (3.72 g, 56.85 mmol) in CH₂Cl₂ (300 mL) and column chromatography (SiO₂, hexane) yielded **6** (4.55 g, 95%). Colorless solid. ¹H NMR (CDCl₃, 300 MHz): δ = 7.65 (t, *J* = 2 Hz, 1 H), 7.61 (2d, *J* = 2 Hz, 2 H), 7.37 (s, 1 H) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 138.3, 133.9, 133.8, 129.8, 122.8, 93.1 ppm.

Compound 11: This compound was prepared from **3** (1.00 g, 3.79 mmol), CBr₄ (6.28 g, 18.95 mmol), PPh₃ (4.97 g, 18.95 mmol) and Zn dust (1.24 g, 18.95 mmol) in CH₂Cl₂ (100 mL) and column chromatography (SiO₂, hexane) yielded **11** (1.51 g, 95%). Pale yellow solid. ¹H NMR (300 MHz, CDCl₃): δ = 7.80 (d, *J* = 2 Hz, 1 H), 7.62 (d, *J* = 8 Hz, 1 H), 7.38 (s, 1 H), 7.34 (dd, *J* = 8 and 2 Hz, 1 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 135.8, 134.4, 133.5, 133.2, 128.2, 124.9, 124.8, 92.0 ppm.

General Procedure for the Preparation of Compounds 7 and 12: A solution of LDA in THF was slowly added to a solution of the appropriate dibromo olefine in THF at -78 °C under argon. After 2 h, a solution of triethylsilyl chloride was added at the same temperature. After 2 h a saturated aqueous NH₄Cl solution was added. The reaction mixture was diluted with hexane, washed with water, dried with MgSO₄ and the solvents evaporated. The product was then purified as outlined in the following text.

Compound 7: This compound was prepared from **6** (4.00 g, 9.53 mmol), LDA (38.12 mmol) and TESCl (10.48 mmol) in THF (250 mL) and column chromatography (SiO₂, hexane) yielded **7** (2.50 g, 70%). Colorless oil. IR (CH₂Cl₂): $\tilde{v} = 2164$ (C=C) cm⁻¹. ¹H NMR (CDCl₃, 300 MHz): $\delta = 7.61$ (t, J = 2 Hz, 1 H), 7.54 (d, J = 2 Hz, 2 H), 1.04 (m, 9 H), 0.68 (m, 6 H) ppm. ¹³C NMR (CDCl₃, 75 MHz): $\delta = 134.0$, 133.4, 126.7, 122.5, 102.9, 95.2, 7.4, 4.3 ppm. C₁₄H₁₈Br₂Si (374.19): calcd. C 44.94, H 4.85; found C 44.85, H 4.91.

Compound 12: This compound was prepared from **11** (1.59 g, 3.79 mmol), LDA (15.16 mmol) and TESCI (4.17 mmol) in THF (100 mL) and column chromatography (SiO₂, hexane) yielded **10** (0.89 g, 63%). Colorless solid (m.p. 155 °C). IR (KBr): $\tilde{v} = 2162$ (C=C) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.72$ (d, J = 2 Hz, 1 H), 7.55 (d, J = 8 Hz, 1 H), 7.25 (dd, J = 8 and 2 Hz, 1 H), 1.05 (m, 9 H), 0.7 (m, 6 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 136.7, 133.3, 131.7, 125.0, 124.5, 124.0, 103.5, 94.6, 7.5, 4.3 ppm. C₁₄H₁₈Br₂Si (374.19): calcd. C 44.94, H 4.85; found C 44.99, H 4.84.$

Compound 9: K₂CO₃ (50 mg, 0.36 mmol) was added to a solution of **8** (1.55 g, 1.99 mmol) in a mixture of THF (10 mL) and MeOH (100 mL). After 3 h, the reaction mixture was filtered through a celite pad and the solvent evaporated. The crude product was diluted with dichloromethane. The resulting solution was washed with water, dried with MgSO₄ and the solvents evaporated. Column chromatography (SiO₂, hexane) yielded **9** (1.20 g, 91 %). Pale yellow glassy product. IR (KBr): $\tilde{v} = 3304$ (C=C-H), 2152 (C=C) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.66$ (t, J = 2 Hz, 1 H), 7.60 (d, J = 2 Hz, 2 H), 5.30 (s, 8 H), 3.12 (s, 1 H), 1.14 (s, 42 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 134.7$, 134.6, 132.4, 132.3, 132.0, 131.5, 131.1, 123.9, 123.8, 123.0, 122.5, 106.5, 93.1, 90.4, 89.3, 81.9, 78.5, 18.7, 11.3 ppm. C₄₆H₅₄Si₂·H₂O (681.11): calcd. C 81.13, H 8.30; found C 81.15, H 8.28.

Compound 14: A 1 M solution of TBAF in THF (2.60 mL, 2.60 mmol) was added to a solution of 13 (3.00 g, 2.60 mmol) in THF (150 mL) at 0 °C under argon. After 2 h, water was added. The reaction mixture was diluted with dichloromethane, washed with water, dried with MgSO₄ and the solvent was evaporated. Column chromatography (SiO₂, hexane/CH₂Cl₂, 7:3) yielded 14 (2.45 g, 92%). Pale yellow glassy product. IR (KBr): $\tilde{v} = 3290$ (C≡C-H), 2155 (C≡C) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.66 (d, J = 2 Hz, 1 H), 7.47 (d, J = 8 Hz, 1 H), 7.36 (dd, J = 2and 8 Hz, 1 H), 7.13 (2 dd, J = 2 and 8 Hz, 2 H), 7.05 (d, J = 2 Hz, 2 H), 6.81 (d, J = 8 Hz, 2 H), 4.00 (2t, J = 7 Hz, 4 H), 3.89 (2t, J = 7 Hz, 4 H), 3.17 (s, 1 H), 1.81 (m, 8 H), 1.27–1.76 (m, 72 H), 0.89 (t, J = 7 Hz, 12 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta =$ 150.0, 149.9, 148.8, 134.8, 131.2, 131.0, 126.4, 126.3, 125.0, 124.9, 121.4, 116.5, 115.1, 113.0, 96.0, 94.6, 86.6, 86.0, 82.6, 79.0, 69.0, 32.0, 29.7, 29.6, 29.5, 29.4, 29.3, 29.2, 26.1, 26.0, 22.7, 14.1 ppm. C₇₂H₁₁₀O₄ (1039.64): calcd. C 83.18, H 10.66; found C 83.37, H 10.69.

General Procedure for the Preparation of Compounds 4, 5, 8, 10, 13 and 15: To an oven-dried glass screw capped tube were added all solids including the halide, alkyne, CuI, PPh₃ and palladium catalyst. The atmosphere was removed via vacuum and replaced with dry argon (3×). THF and triethylamine were added by syringe and the reaction was heated at 65 °C in an oil bath while stirring. Upon cooling the reaction mixture was filtered via gravity filtration to remove solids and diluted with dichloromethane. The reaction mixture was extracted with an aqueous NH₄Cl solution. The organic layer was dried with MgSO₄ and the solvent was evaporated. The product was then purified as outlined in the following text.

Compound 4: This compound was prepared from **2** (0.40 g, 1.52 mmol), **1** (2.14 g, 4.55 mmol), Pd(PPh₃)₂Cl₂ (128 mg, 0.18 mmol), CuI (14.5 mg, 0.08 mmol) and PPh₃ (60 mg, 0.23 mmol) in THF/Et₃N, 4:1 (10 mL). Column chromatography (SiO₂, hexane/CH₂Cl₂, 9:1) yielded **4** (1.36 g, 86%). Yellow glassy product. IR (KBr): $\tilde{v} = 2151$ (C=C), 1704 (C=O) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 10.00$ (s, 1 H), 7.93 (d, J = 2 Hz, 2 H), 7.88 (t, J = 2 Hz, 1 H), 7.12 (dd, J = 8 and 2 Hz, 2 H), 7.05 (d, J = 2 Hz, 2 H), 6.86 (d, J = 8 Hz, 2 H), 4.03 (2 t, J = 7 Hz, 8 H), 1.83 (m, 8 H), 1.28–1.49 (m, 72 H), 0.89 (m, 12 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 191.0$, 150.2, 149.8, 139.2, 136.6, 131.4, 125.2, 116.7, 114.4, 113.2, 91.9, 85.8, 69.3, 69.2, 31.9, 29.7, 29.6, 29.4, 29.3, 29.2, 29.1, 26.0, 22.7, 14.1 ppm. C₇₁H₁₁₀O₅ (1043.63): calcd. C 81.71, H 10.62; found C 81.55, H 10.76.

Compound 5: This compound was prepared from 1 (2.01 g, 4.26 mmol), 3 (0.38 g, 1.42 mmol), Pd(PPh₃)₂Cl₂ (120.00 mg, 0.17 mmol), CuI (13.5 mg, 0.07 mmol) and PPh₃ (56 mg, 0.21 mmol) in THF/Et₃N, 4:1 (10 mL). Column chromatography (SiO₂, hexane/CH₂Cl₂, 4:1) yielded C (1.21 g, 82%). Glassy product. IR (KBr): $\tilde{v} = 2151$ (C=C), 1702 (C=O) cm⁻¹. ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3)$: $\delta = 10.00 \text{ (s, 1 H)}, 8.02 \text{ (d, } J = 2 \text{ Hz}, 1 \text{ H}), 7.79$ (dd, J = 8 and 2 Hz, 1 H), 7.67 (d, J = 8 Hz, 1 H), 7.17 (2 dd, J = 8 and 2 Hz, 2 H), 7.07 (2 d, J = 2 Hz, 2 H), 6.83 (2 d, J = 8 Hz, 2 H), 4.01 (2 t, J = 7 Hz, 4 H), 3.90 (2 t, J = 7 Hz, 4 H), 1.83 (m, 8 H), 1.27-1.56 (m, 72 H), 0.89 (m, 12 H) ppm. ¹³C NMR (75 MHz, $CDCl_3$): $\delta = 190.8, 150.4, 150.1, 148.8, 134.9, 132.9, 131.8, 131.7,$ 127.7, 126.9, 125.3, 125.0, 116.6, 116.5, 114.8, 114.6, 113.1, 113.0, 98.3, 95.4, 86.7, 85.8, 69.1, 31.1, 29.8, 29.7, 29.6, 29.5, 29.4, 29.3, 29.2, 26.1, 26.0, 22.7, 14.1 ppm. C₇₁H₁₁₀O₅·0.5H₂O (1052.64): calcd. C 81.01, H 10.63; found C 81.06, H 10.64.

Compound 8: This compound was prepared from 7 (500 mg, 1.34 mmol), **1** (1.89 g, 4.01 mmol), Pd(PPh₃)₂Cl₂ (113 mg, 0.16 mmol), CuI (13 mg, 0.07 mmol) and PPh₃ (53 mg, 0.20 mmol) in THF/Et₃N, 4:1 (10 mL). Column chromatography (SiO₂, hexane/CH₂Cl₂, 8:2) yielded **8** (1.54 g, 99%). Glassy product. IR (KBr): $\tilde{v} = 2151$ (C=C) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.59$ (t, J = 2 Hz, 1 H), 7.55 (d, J = 2 Hz, 2 H), 7.09 (2 dd, J = 8 and 2 Hz, 2 H), 7.03 (d, J = 2 Hz, 2 H), 6.84 (d, J = 8 Hz, 2 H), 4.02 (t, J = 7 Hz, 8 H), 1.84 (m, 8 H), 1.27–1.56 (m, 72 H), 1.06 (t, J = 8 Hz, 9 H), 0.89 (t, J = 7 Hz, 12 H), 0.69 (q, J = 8 Hz, 6 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 150.0$, 148.8, 134.0, 133.9, 125.1, 124.2, 124.0, 116.7, 114.9, 113.3, 104.8, 92.9, 90.8, 86.3, 69.3, 69.2, 53.4, 31.9, 29.8, 29.7, 29.6, 29.4, 29.3, 29.2, 29.1, 26.1, 26.0, 22.7, 14.1, 7.5, 4.4 ppm. C₇₈H₁₂₄O₄Si (1153.90): calcd. C 81.19, H 10.83; found C 81.15, H 10.80.

Compound 10: This compound was prepared from **2** (169 mg, 0.64 mmol), **9** (2.00 g, 1.92 mmol), Pd(PPh₃)₂Cl₂ (54 mg, 0.08 mmol), CuI (6 mg, 0.03 mmol) and PPh₃ (25 mg, 0.10 mmol) in THF/Et₃N, 4:1 (5 mL). Column chromatography (SiO₂, hexane/CH₂Cl₂, 7:3) yielded **10** (1.34 g, 96%). Glassy product. IR (KBr): $\tilde{v} = 2150$ (C=C), 1702 (C=O) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 10.04$ (s, 1 H), 8.00 (d, J = 2 Hz, 2 H), 7.91 (t, J = 2 Hz, 1 H), 7.66 (t, J = 2 Hz, 2 H), 7.63 (d, J = 2 Hz, 4 H), 7.12 (dd, J = 2 and 8 Hz, 4 H), 7.05 (d, J = 2 Hz, 4 H), 6.85 (d, J = 8 Hz, 4 H),

4.03 (t, J = 7 Hz, 16 H), 1.83 (m, 16 H), 1.28–1.57 (m, 144 H), 0.91 (m, 24 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 150.1$, 148.8, 139.5, 136.7, 134.4, 133.6, 132.3, 125.1, 124.6, 124.5, 123.0, 116.7, 114.7, 113.2, 91.2, 90.2, 87.9, 86.2, 69.3, 69.1, 32.0, 29.7, 29.6, 29.5, 29.4, 29.3, 29.2, 29.1, 26.1, 26.0, 22.7, 14.1 ppm. C₁₅₁H₂₂₂O₉ (2181.41): calcd. C 83.14, H 10.26; found C 83.24, H 10.27.

Compound 13: This compound was prepared from 1 (1.13 g, 2.40 mmol), **12** (0.30 g, 0.80 mmol), Pd(PPh₃)₂Cl₂ (68 mg, 0.10 mmol), CuI (7.5 mg, 0.04 mmol) and PPh₃ (32 mg, 0.12 mmol) in THF/Et₃N, 4:1 (10 mL). Column chromatography (SiO₂, hexane/ CH₂Cl₂, 9:1) yielded 13 (0.92 g, 99%). Glassy product. IR (KBr): $\tilde{v} = 2154 \text{ (C=C) cm}^{-1}$. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.65 \text{ (d,}$ J = 2 Hz, 1 H), 7.45 (d, J = 8 Hz, 1 H), 7.36 (dd, J = 8 and 2 Hz, 1 H), 7.13 (2 dd, J = 8 and 2 Hz, 2 H), 7.05 (d, J = 2 Hz, 2 H), 6.80 (d, J = 8 Hz, 2 H), 3.97 (2t, J = 7 Hz, 4 H), 3.88 (2t, J = 7 Hz, 4 H), 1.80 (m, 8 H), 1.19–1.56 (m, 72 H), 1.06 (t, J = 8 Hz, 9 H), 0.89 (t, J = 7 Hz, 12 H), 0.69 (q, J = 8 Hz, 6 H) ppm. ¹³C NMR $(75 \text{ MHz}, \text{ CDCl}_3)$: $\delta = 150.4$, 150.0, 149.9, 148.7, 148.6, 134.7, 131.0, 130.8, 126.2, 126.0, 125.9, 124.9, 122.6, 117.0, 116.5, 115.2, 113.9, 113.0, 105.3, 95.8, 94.4, 93.8, 86.8, 86.1, 69.1, 69.0, 32.0, 29.8, 29.7, 29.6, 29.5, 29.4, 29.3, 29.2, 26.1, 26.0, 25.9, 22.7, 14.0, 7.4, 4.3 ppm. C₇₈H₁₂₄O₄Si (1153.90): calcd. C 81.19, H 10.83; found C 81.14, H 10.88.

Compound 15: This compound was prepared from 3 (169 mg, 0.64 mmol), 14 (2.00 g, 1.92 mmol), Pd(PPh₃)₂Cl₂ (54 mg, 0.08 mmol), CuI (6 mg, 0.03 mmol) and PPh₃ (25 mg, 0.10 mmol) in THF/Et₃N, 4:1 (7 mL). Column chromatography (SiO₂, hexane/ CH₂Cl₂, 7:3) yielded 15 (1.17 g, 84%). Glassy product. IR (KBr): $\tilde{v} = 2150 \text{ (C=C)}, 1702 \text{ (C=O) cm}^{-1}.$ ¹H NMR (300 MHz, CDCl₃): $\delta = 10.04$ (s, 1 H), 8.07 (broad s, 1 H), 7.85 (broad d, J = 8 Hz, 1 H), 7.79 (m, 2 H), 7.72 (d, J = 8 Hz, 1 H), 7.52 (m, 4 H), 7.14 (m, 4 H), 7.05 (m, 2 H), 7.02 (m, 2 H), 6.77 (2d, J = 8 Hz, 4 H), 4.00 (t, J = 7 Hz, 4 H), 3.87 (m, 12 H), 1.81 (m, 16 H), 1.27-1.56 (m, 12 H), 1.81 (m, 16 H), 1.27-1.56 (m, 12 H), 1.81 (m, 16 H), 1.27-1.56 (m, 12 H), 1.81 (m, 16 H), 1.81 (m,144 H), 0.89 (t, *J* = 7 Hz, 24 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 150.2, 150.1, 150.0, 149.9, 148.8, 148.7, 135.4, 134.6, 134.5,$ 133.1, 132.3, 131.5, 131.2, 130.6, 130.5, 129.3, 126.7, 126.4, 125.2, 125.1, 122.0, 121.8, 116.6, 116.5, 115.1, 115.0, 114.9, 114.8, 113.1, 96.9, 96.5, 96.3, 95.0, 94.9, 94.4, 86.6, 89.0, 86.9, 86.0, 85.9, 69.1, 69.0, 68.9, 32.0, 29.7, 29.5, 29.4, 29.3, 29.2, 26.1, 26.0, 23.0, 14.1 ppm. C₁₅₁H₂₂₂O₉ (2181.37): calcd. C 83.14, H 10.26; found C 83.17, H 10.28.

General Procedure for the Preparation of G1, G2, Y1, and Y2: A 1 M DIBAL-H solution in hexane was slowly added to a solution of the appropriate benzaldehyde in THF at 0 °C under argon. After 3 h, methanol then water were added. The reaction mixture was filtered through a celite pad, dried with $MgSO_4$ and the solvent was evaporated. The product was then purified as outlined in the following text.

Compound G1: This compound was prepared from **4** (200 mg, 0.19 mmol), DIBAL-H (0.50 mL), in THF (7 mL). Column chromatography (SiO₂, hexane/CH₂Cl₂, 7:3) yielded **G1** (158.00 mg, 79%). Yellow glassy product. IR (KBr): $\tilde{v} = 3212$ (-OH), 2151 (C=C) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.60$ (t, J = 2 Hz, 1 H), 7.44 (d, J = 2 Hz, 2 H), 7.10 (dd, J = 8 and 2 Hz, 2 H), 7.04 (d, J = 2 Hz, 2 H), 6.83 (d, J = 8 Hz, 2 H), 4.68 (s, 2 H), 4.01 (t, J = 7 Hz, 8 H), 1.84 (m, 8 H), 1.28–1.49 (m, 72 H), 0.90 (m, 12 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 149.7$, 148.6, 141.4, 133.2, 129.0, 125.0, 124.0, 116.6, 115.0, 113.1, 90.3, 86.9, 69.2, 69.1, 64.4, 31.9, 29.7, 29.65, 29.6, 29.4, 29.35, 29.2, 29.15, 25.9, 22.7, 14.0 ppm. C₇₁H₁₁₂O₅ (1045.65): calcd. C 81.54, H 10.80; found C 81.03, H 10.83.

Compound G2: This compound was prepared from **10** (200 mg, 0.09 mmol), DIBAL-H (0.23 mL), in THF (14 mL). Column chromatography (SiO₂, hexane/CH₂Cl₂, 7:3) yielded **G2** (160 mg, 80%). Yellow glassy product. IR (KBr): $\tilde{v} = 3200$ (–OH), 2152 (C=C) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.61-7.64$ (m, 6 H), 7.51 (s, 3 H), 7.12 (dd, J = 2 and 8 Hz, 4 H), 7.05 (d, J = 2 Hz, 4 H), 6.84 (d, J = 8 Hz, 4 H), 4.72 (s, 2 H), 4.03 (t, J = 7 Hz, 16 H), 1.83 (m, 16 H), 1.29–1.49 (m, 144 H), 0.89 (m, 24 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 149.9$, 148.7, 141.7, 133.9, 133.6, 133.5, 129.9, 125.1, 124.4, 123.5, 123.4, 116.7, 114.8, 113.2, 90.9, 89.2, 88.7, 86.3, 69.3, 69.2, 64.3, 31.9, 29.7, 29.65, 29.6, 29.4, 29.35, 29.2, 29.15, 26.0, 22.7, 22.4, 14.1 ppm. C₁₅₁H₂₂₄O₉ (2183.39): calcd. C 83.05, H 10.35; found C 83.03, H 10.54.

Compound Y1: This compound was prepared from **5** (200 mg, 0.19 mmol), DIBAL-H (0.50 mL), in THF (7 mL). Column chromatography (SiO₂, hexane/CH₂Cl₂, 7:3) yielded **Y1** (163.00 mg, 81%). Yellow glassy product. IR (KBr): $\tilde{v} = 3678$ (-OH), 2220 (C=C) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.53$ (m, 2 H), 7.27 (s, 1 H), 7.14 (2dd, J = 8 and 2 Hz, 2 H), 7.06 (2d, J = 2 Hz, 2 H), 6.81 (d, J = 8 Hz, 2 H), 4.71 (d, J = 5 Hz, 2 H), 4.00 (2t, J = 7 Hz, 4 H), 3.89 (2t, J = 7 Hz, 4 H), 1.80 (m, 8 H), 1.27–1.58 (m, 72 H), 0.89 (m, 12 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 149.8$, 149.75, 148.7, 140.5, 131.5, 129.5, 126.2, 126.0, 125.1, 124.9, 116.6, 115.4, 115.3, 113.1, 94.0, 93.9, 86.8, 86.8, 69.15, 69.1, 64.6, 31.9, 29.7, 29.65, 29.6, 29.5, 29.4, 29.35, 29.2, 26.1, 26.0, 22.7, 14.1 ppm. C₇₁H₁₁₂O₅·0.5H₂O (1054.66): calcd. C 80.86, H 10.80; found C 80.87, H 11.02.

Compound Y2: This compound was prepared from **15** (200 mg, 0.09 mmol), DIBAL-H (0.23 mL), in THF (14 mL). Column chromatography (SiO₂, hexane/CH₂Cl₂, 7:3) yielded **Y2** (86.00 mg, 43%). Orange glassy product. IR (KBr): $\tilde{v} = 3212$ (–OH), 2151 (C=C) cm^{-1.} ¹H NMR (300 MHz, CDCl₃): $\delta = 7.77$ (s, 2 H), 7.49–7.58 (m, 7 H), 7.13 (d, J = 7 Hz, 4 H), 7.04 (dd, J = 7 and 2 Hz, 4 H), 6.80 (d, J = 8 Hz, 2 H), 6.74 (d, J = 8 Hz, 2 H), 4.74 (s, 2 H), 4.00 (t, J = 7 Hz, 4 H), 3.87 (m, 12 H), 1.78 (m, 16 H), 1.28–1.57 (m, 144 H), 0.89 (m, 24 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 149.9$, 149.8, 148.8, 148.687 141.3, 134.4, 131.9, 131.5, 130.7, 130.4, 129.9, 126.7, 126.5, 125.95, 125.9, 125.8, 125.1, 125.0, 124.8, 122.6, 122.5, 116.5, 116.45, 115.2, 115.1, 113.0, 95.9, 94.7, 93.1, 92.9, 90.2, 86.9, 86.1, 69.1, 69.0, 68.9, 64.5, 31.9, 31.6, 29.7, 29.5, 29.45, 29.4, 29.3, 26.1, 26.1, 22.7, 14.1, 13.9 ppm. C₁₅₁H₂₂₄O₉ (2183.39): calcd. C 83.05, H 10.35; found C 83.07, H 10.33.

General Procedure for the Preparation of C₆₀-G1, C₆₀-G2, C₆₀-Y1, and C₆₀-Y2: A solution of the appropriate benzaldehyde, C₆₀, and *N*-methylglycine in toluene was refluxed under argon for 24 h. After cooling, the resulting solution was evaporated to dryness. The product was then purified as outlined in the following text.

Compound C₆₀-G1: This compound was prepared from 4 (50 mg, 0.48 mmol), C₆₀ (380 mg, 0.53 mmol), *N*-methylglycine (346 mg, 0.53 mmol) in toluene (225 mL). Column chromatography (SiO₂, hexane/CH₂Cl₂, 7:3) yielded C₆₀-G1 (522 mg, 61%). Brown glassy product. IR (KBr): $\tilde{v} = 2157$ (C=C) cm⁻¹. ¹H NMR (400 MHz, C₂D₂Cl₂, 110 °C): $\delta = 7.98$ (d, J = 1 Hz, 2 H), 7.66 (t, J = 2 Hz, 1 H), 7.11 (dd, J = 2 and 8 Hz, 2 H), 7.06 (d, J = 2 Hz, 2 H), 6.83 (d, J = 8 Hz, 2 H), 5.00 (d, J = 10 Hz, 1 H), 4.90 (s, 1 H), 4.27 (d, J = 10 Hz, 1 H), 4.01 (t, J = 7 Hz, 8 H), 2.83 (s, 3 H), 1.83 (2t, J = 7 Hz, 8 H), 1.27–1.47 (m, 72 H), 0.89 (m, 12 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 146.0$, 145.95, 145.9, 145.7, 145.6, 145.5, 145.35, 145.2, 145.1, 144.6, 144.5, 144.3, 143.0, 142.9, 142.7, 142.5, 142.25, 142.2, 142.1, 142.0, 141.95, 141.9, 141.6, 140.1, 139.6, 137.7, 137.0, 136.5, 135.9, 135.6, 134.5, 125.1, 116.6, 114.9, 113.2, 90.9, 87.1, 82.9, 69.9, 69.2, 69.1, 69.0, 40.1, 31.9, 29.7, 29.6,

29.4, 29.3, 29.2, 29.15, 26.0, 25.95, 22.7, 14.1 ppm. FAB-MS: 1791.6 (60%, [M]⁺, calcd. for $C_{133}H_{115}O_4N$ 1791.4), 1070.9 (100%, $[M - C_{60}]^+$, calcd. for $C_{73}H_{115}O_4N$ 1070.7). $C_{133}H_{115}O_4N$ (1791.34): calcd. C 89.17, H 6.47, N 0.78; found C 88.78, H 6.55, N 0.45.

Compound C₆₀-G2: This compound was prepared from 10 (500 mg, 0.23 mmol), C₆₀ (182 mg, 0.25 mmol), N-methylglycine (165 mg, 1.86 mmol) in toluene (180 mL). Column chromatography (SiO₂, hexane/CH₂Cl₂, 7:3) yielded C₆₀-G2 (352 mg, 52%). Brown glassy product. IR (KBr): $\tilde{v} = 2152$ (C=C) cm⁻¹. ¹H NMR (400 MHz, CDCl₃, -10 °C): $\delta = 8.18$ (s, 1 H), 7.67 (t, J = 2 Hz, 1 H), 7.63 (s, 7 H), 7.09 (dd, J = 2 and 6 Hz, 4 H), 7.03 (d, J = 2 Hz, 4 H), 6.83 (d, J = 8 Hz, 4 H), 5.02 (d, J = 10 Hz, 1 H), 4.93 (s, 1 H), 4.25 (d, J = 10 Hz, 1 H), 4.93 (s, 1 H), 4.25 (d, J = 10 Hz, 1 H), 4.93 (s, 1J = 10 Hz, 1 H), 4.01 (2t, J = 7 Hz, 16 H), 2.85 (s, 3 H), 1.88 (m, 16 H), 1.48 (m, 144 H), 0.89 (2t, J = 7 Hz, 24 H) ppm. ¹³C NMR $(75 \text{ MHz}, \text{ CDCl}_3)$: $\delta = 145.2, 145.15, 145.1, 145.05, 144.6, 144.5,$ 144.3, 143.0, 142.9, 142.6, 142.5, 142.2, 142.1, 142.0, 141.9, 141.85, 141.6, 141.5, 140.1, 139.6, 138.2, 137.1, 136.5, 135.9, 135.6, 135.0, 134.0, 133.7, 125.1, 124.4, 123.4, 116.6, 114.8, 113.2, 91.2, 89.3, 86.4, 82.6, 69.8, 69.2, 69.1, 68.9, 40.0, 31.9, 31.7, 29.7, 29.6, 29.4, 29.35, 29.2, 29.15, 26.1, 26.0, 22.7, 22.4, 14.1 ppm. MALDI-TOF-MS: 2930.3 (9%, [M]⁺, calcd. for C₂₁₃H₂₂₈O₈N: 2930.2), 2208.6 $(100\%, [M - C_{60}]^+, calcd. for C_{153}H_{227}O_8N 2208.5), 720.0 (100\%,$ $[C_{60}]^+$, calcd. for C_{60} 720.0). $C_{213}H_{227}O_8N$ (2929.08): calcd. C 87.34, H 7.81, N 0.48; found C 86.61, H 7.85, N 0.61.

Compound C_{60} -Y1: This compound was prepared from 5 (350 mg, 0.34 mmol), C₆₀ (266 mg, 0.37 mmol), N-methylglycine (242 mg, 2.71 mmol) in toluene (200 mL). Column chromatography (SiO₂, hexane/CH₂Cl₂, 7:3) yielded C₆₀-Y1 (275 mg, 46%). Brown glassy product. IR (KBr): $\tilde{v} = 2157$ (C=C) cm⁻¹. ¹H NMR (400 MHz, $C_2D_2Cl_2$, 90 °C): δ = 8.02 (d, J = 2 Hz, 1 H), 7.82 (dd, J = 2 and 8 Hz, 1 H), 7.62 (d, J = 8 Hz, 1 H), 7.13 (2dd, J = 2 and 8 Hz, 2 H), 7.08 (d, J = 2 Hz, 1 H), 7.03 (d, J = 2 Hz, 1 H), 6.80 (2d, J = 28 Hz, 2 H), 5.00 (d, J = 10 Hz, 1 H), 4.92 (s, 1 H), 4.28 (d, J =10 Hz, 1 H), 3.99 (2t, J = 7 Hz, 4 H), 3.87 (2t, J = 7 Hz, 4 H), 2.83 (s, 3 H), 1.79 (m, 8 H), 1.26–1.44 (m, 72 H), 0.89 (m, 12 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 142.1, 142.05, 142.0, 141.95, 141.9, 141.8, 141.6, 141.5, 140.0, 139.9, 139.6, 136.9, 136.85, 136.4, 135.9, 135.6, 131.7, 128.5, 126.2, 124.9, 124.8, 116.4, 115.2, 113.0, 94.9, 94.7, 87.1, 86.9, 82.9, 69.9, 69.0, 68.9, 68.8, 40.0, 32.1, 31.9, 31.7, 29.7, 29.65, 29.6, 29.5, 29.45, 29.4, 29.35, 29.3, 29.2, 26.1, 26.05, 26.0, 22.9, 22.7, 22.4, 14.1 ppm. FAB-MS: 1791 (19%, $[M]^+$, calcd. for $C_{133}H_{115}O_4N$: 1791.4), 1070.6 (100%, $[M - C_{60}]^+$, calcd. for C₇₃H₁₁₅O₄N 1070.7). C₁₃₃H₁₁₅O₄N (1791.34): calcd. C 89.17, H 6.47, N 0.78; found C 88.78, H 6.55, N 0.45.

Compound C₆₀-Y2: This compound was prepared from 15 (500 mg, 0.23 mmol), C₆₀ (182 mg, 0.25 mmol), N-methylglycine (165 mg, 1.86 mmol) in toluene (180 mL). Column chromatography (SiO₂, hexane/CH₂Cl₂, 7:3) yielded C₆₀-Y2 (337 mg, 50%). Brown glassy product. IR (KBr): $\tilde{v} = 2151$ (C=C) cm⁻¹. ¹H NMR (400 MHz, C₂D₂Cl₂, 110 °C): δ = 8.10 (s, 1 H), 7.91 (d, J = 8 Hz, 1 H), 7.82 (d, J = 2 Hz, 1 H), 7.79 (d, J = 2 Hz, 1 H), 7.70 (d, J = 8 Hz, 1 H), 7.53 (m, 2 H), 7.49 (dd, J = 2 and 8 Hz, 2 H), 7.17 (dd, J = 2 and 8 Hz, 4 H), 7.12 (dd, J = 2 and 5 Hz, 4 H), 6.87 (d, J = 8 Hz, 2 H), 6.83 (d, J = 8 Hz, 2 H), 5.00 (d, J = 10 Hz, 1 H), 4.93 (s, 1 H), 4.25 (d, J = 10 Hz, 1 H), 3.99 (t, J = 7 Hz, 8 H), 3.86 (m, 8 H), 2.81 (s, 3 H), 1.76 (m, 16 H), 1.27 (m, 144 H), 0.89 (2t, J = 7 Hz, 24 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 145.3, 145.25, 145.2, 145.1, 144.7, 144.6, 144.4, 143.1, 142.9, 142.7, 142.5, 142.2, 142.1, 142.0, 141.9, 141.65, 141.6, 140.2, 139.7, 137.8, 137.0, 136.4, 135.9, 135.6, 134.5, 134.4, 131.5, 130.4, 126.5, 126.0, 125.7, 125.1, 125.0, 122.4, 116.5, 115.2, 115.1, 113.0, 96.1, 94.8, 93.7, 93.6, 90.1, 86.9, 86.1, 82.9, 76.6, 69.9, 69.1, 69.0, 68.9, 40.0, 31.9, 29.7, 29.5,

FULL PAPER

29.45, 29.4, 29.3, 26.1, 26.0, 22.7, 14.1 ppm. MALDI-TOF-MS: 2229.6 (7%, [M]⁺, calcd. for $C_{213}H_{227}O_8N$: 2229.2), 2208.7 (100%, [M - C_{60}]⁺, calcd. for $C_{153}H_{227}O_8N$ 2208.5). $C_{213}H_{227}O_8N$ (2929.08): calcd. C 87.34, H 7.81, N 0.48; found C 87.45, H 7.92, N 0.07.

Electrochemistry: The electrochemical experiments were carried out in argon-purged CH₂Cl₂ solutions at 298 K with an EcoChemie Autolab 30 multipurpose instrument interfaced to a personal computer. In the cyclic voltammetry (CV) the working electrode was a glassy carbon electrode (0.08 cm², Amel) or a Pt disk ultramicroelectrode ($r = 25 \mu m$). In all cases, the counter electrode was a Pt spiral, separated from the bulk solution with a fine glass frit, and a silver wire was employed as a quasi-reference electrode (AgQRE). The potentials reported are referred to SCE by measuring the AgQRE potential with respect to ferrocene. The concentration of the compounds examined was of the order of 5×10^{-4} M; 0.05 M tetrabutylammonium hexafluoro-phosphate (TBAPF₆) was added as supporting electrolytes. Cyclic voltammograms were obtained with scan rates in the range 0.05–20 V s⁻¹.

Photophysics: The photophysical investigations were carried out in CH₂Cl₂ (Carlo–Erba, spectrofluorimetric grade). The samples were placed in fluorimetric 1-cm path cuvettes. Absorption spectra were recorded with a Perkin–Elmer $\lambda 40$ spectrophotometer. Uncorrected emission spectra were obtained with a Spex Fluorolog II spectrofluorimeter (continuous 150-W Xe lamp), equipped with a Hamamatsu R-928 photomultiplier tube. The corrected spectra were obtained via a calibration curve. Fluorescence quantum yields obtained from spectra on an energy scale [cm⁻¹] were measured with the method described by Demas and Crosby^[22] using as standards air equilibrated solutions of quinine sulfate in 1 N H₂SO₄ ($\Phi_{\rm em}$ = 0.546).^[23] Emission lifetimes on the nanosecond time scale were determined with an IBH single-photon counting spectrometer equipped with a thyratron gated nitrogen lamp working in the range 2–40 kHz (λ_{exc} = 337 nm, 0.5 ns time resolution); the detector was a red-sensitive (185-850 nm) Hamamatsu R-3237-01 photomultiplier tube. Experimental uncertainties are estimated to be 8% for lifetime determinations, 20% for emission quantum yields, and 1 nm and 5 nm for absorption and emission peaks respectively.

Acknowledgments

This research was supported by the Consiglio Nazionale delle Ricerche (CNR) (Commessa PM.P04.010, MACOL), the Centre National de la Recherche Scientifique (CNRS) (UPR 8241), Ministero dell'Università e della Ricerca (PRIN, "Sistemi supramolecolari per la conversione dell'energia luminosa") and the European Union (HPRN-CT-2002-00171, FAMOUS). S. Z. thanks the Direction de la Recherche of the French Ministry of Research, A. G. the Agence de l'Environnement et de la Maîtrise de l'Energie – Région Alsace for their fellowships and R. P. F the Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brazil). We further thank L. Oswald and R. Cortesi for technical help and J.-M. Strub for MS measurements.

- J. S. Moore, Z. Xu, Macromolecules 1991, 24, 5893–5894; J. S. Moore, Z. Xu, J. Am. Chem. Soc. 1994, 116, 4537–4550; J. S. Moore, Z. Xu, Angew. Chem. Int. Ed. Engl. 1993, 32, 246–248.
- [4] Z. Peng, Y. Pan, B. Xu, J. Zhang, J. Am. Chem. Soc. 2000, 122, 6619–6623.
- [5] J.-F. Nierengarten, S. Zhang, A. Gégout, M. Urbani, N. Armaroli, G. Marconi, Y. Rio, J. Org. Chem. 2005, 70, 7550–7557.
- [6] J. S. Moore, Acc. Chem. Res. 1997, 30, 402–413.
- [7] C. Devadoss, P. Bharathi, J. S. Moore, J. Am. Chem. Soc. 1996, 118, 9635–9644; Y. Pan, M. Lu, Z. Peng, J. S. Melinger, J. Org. Chem. 2003, 68, 6952–6958.
- [8] N. Armaroli, F. Barigelletti, P. Ceroni, J.-F. Eckert, J.-F. Nicoud, J.-F. Nierengarten, *Chem. Commun.* 2000, 599–600; G. Accorsi, N. Armaroli, J.-F. Eckert, J.-F. Nierengarten, *Tetrahedron Lett.* 2002, 43, 65–68; J.-F. Nierengarten, N. Armaroli, G. Accorsi, Y. Rio, J.-F. Eckert, *Chem. Eur. J.* 2003, 9, 36–41; N. Armaroli, G. Accorsi, J. N. Clifford, J.-F. Eckert, J.-F. Nierengarten, *Chem. Asian J.* 2006, 1, 564–574.
- [9] F. Langa, M. J. Gomez-Escalonilla, E. Diez-Barra, J. C. Garcia-Martinez, A. de la Hoz, J. Rodriguez-Lopez, A. Gonzalez-Cortes, V. Lopez-Arza, *Tetrahedron Lett.* 2001, 42, 3435–3438; J. L. Segura, R. Gomez, N. Martin, C. P. Luo, A. Swartz, D. M. Guldi, *Chem. Commun.* 2001, 707–708; M. Schwell, N. K. Wachter, J. H. Rice, J. P. Galaup, S. Leach, R. Taylor, R. V. Bensasson, *Chem. Phys. Lett.* 2001, 339, 29–35; L. Pérez, J. C. Garcia-Martinez, E. Diez-Barra, P. Atienzar, H. Garcia, J. Rodriguez-Lopez, F. Langa, *Chem. Eur. J.* 2006, 12, 5149–5157.
- [10] V. Balzani, S. Campagna, G. Denti, A. Juris, S. Serroni, M. Venturi, Acc. Chem. Res. 1998, 31, 26–34; V. Balzani, P. Ceroni, A. Juris, M. Venturi, S. Campagna, F. Puntoriero, S. Serroni, Coord. Chem. Rev. 2001, 219, 545–572; A. Adronov, J. M. J. Frechet, Chem. Commun. 2000, 1701–1710; M. Fischer, F. Vögtle, Angew. Chem. Int. Ed. 1999, 38, 885–905.
- [11] J. Baffreau, L. Perrin, S. Leroy-Lhez, P. Hudhomme, *Tetrahe-dron Lett.* 2005, 46, 4599–4603; J.-F. Nierengarten, *New J. Chem.* 2004, 28, 1177–1191; J.-F. Nierengarten, *Sol. Energy Mater. and Sol. Cells* 2004, 83, 187–199.
- [12] P. L. Burn, S.-C. Lo, I. D. W. Samuel, Adv. Mater. 2007, 19, 1675–1688.
- [13] N. Armaroli, in *Fullerenes: from synthesis to optoelectronic properties* (Eds.: D. M. Guldi, N. Martin), Kluwer Academic Publishers, Dordrecht, **2002**, pp. 137–162.
- [14] Metal-catalyzed Cross-coupling Reactions (Eds.: F. Diederich, P. J. Stang), Wiley-VCH, Weinheim, 1998.
- [15] M. Prato, M. Maggini, Acc. Chem. Res. 1998, 31, 519-526.
- [16] F. Ajamaa, T. M. Figueira Duarte, C. Bourgogne, M. Holler, P. W. Fowler, J.-F. Nierengarten, *Eur. J. Org. Chem.* 2005, 3766– 3774.
- [17] E. J. Corey, P. L. Fuchs, Tetrahedron Lett. 1972, 13, 3769-3772.
- [18] M. Goez, G. Eckert, J. Phys. Chem. 1991, 95, 1179.
- [19] J.-F. Eckert, J.-F. Nicoud, J.-F. Nierengarten, S.-G. Liu, L. Echegoyen, F. Barigelletti, N. Armaroli, L. Ouali, V. Krasnikov, G. Hadziioannou, J. Am. Chem. Soc. 2000, 122, 7467–7479; N. Armaroli, G. Accorsi, J.-P. Gisselbrecht, M. Gross, V. Krasnikov, D. Tsamouras, G. Hadziioannou, M. J. Gomez-Escalonilla, F. Langa, J.-F. Eckert, J.-F. Nierengarten, J. Mater. Chem. 2002, 12, 2077–2087.
- [20] J. N. Clifford, T. Gu, J.-F. Nierengarten, N. Armaroli, *Photochem. Photobiol. Sci.* 2006, 5, 1165–1172.
- [21] T. M. Figueira-Duarte, A. Gégout, J.-F. Nierengarten, Chem. Commun. 2007, 109–119.
- [22] J. N. Demas, G. A. Crosby, J. Phys. Chem. 1971, 75, 991.

G. R. Newkome, C. N. Moorefield, F. Vögtle, *Dendrimers and Dendrons: Concepts, Syntheses, Applications*, VCH, Weinheim, 2001.

^[2] D. M. Guldi, A. Swartz, C. P. Luo, R. Gomez, J. L. Segura, N. Martin, J. Am. Chem. Soc. 2002, 124, 10875–10886.

^[23] S. R. Meech, D. Phillips, J. Photochem. 1983, 23, 193-217.

Received: July 25, 2007

Published Online: October 8, 2007