Metal-Catalyzed Chemoselective Cycloisomerization of *cis*-2,4-Dien-1-als to 3-Cyclopentenones and 4-Alkylidene-3,4-dihydro-2*H*-pyrans

Ching-Yu Lo, Chung-Chang Lin, Hsin-Mei Cheng, and Rai-Shung Liu*

Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan, 30043, Republic of China

rsliu@mx.nthu.edu.tw

Received May 22, 2006

ABSTRACT

PtCl₂ (5 mol %) catalyst effected cycloisomerization of *cis*-2,4-dien-1-al (1) to 3-cyclopentenone (3) efficiently in hot toluene. In the presence of p-TSA, this PtCl₂ catalysis gave 2-cyclopentenone (5) exclusively because of the secondary isomerization reaction. Although the 1–2 equilibrium state greatly favors aldehyde (1), PdCl₂(PhCN)₂ (5 mol %) catalyzed cycloisomerization of aldehyde (1) to 4,6,7,8-tetrahydro-3*H*-isochromene (4) smoothly in hot toluene. A plausible mechanism is proposed on the basis of reaction observation and isotope-labeled experiment.

Metal-catalyzed cycloisomerization of an acyclic molecule to more than one cyclic structure is challenging and useful in organic synthesis. One prominent example is the cycloisomerization of 1,6- and 1,7-enynes with suitable catalysts to produce various carbocyclic and heterocyclic compounds.¹ A *cis*-2,4-dien-1-al functionality is often encountered in organic synthesis, and this species is prone to thermally reversible 6- π -electrocyclization to give 2*H*-pyran as depicted in Scheme 1 (eq 1).^{2,3} The state of this equilibrium depends on the nature of its substituents. This thermal cyclization has been employed as a key step to construct complex polycyclic frameworks.³ Metal-catalyzed cycloisomerization of *cis*-2,4-dien-1-als has been studied extensively;^{4,5} such reactions produce 2-cyclopentenones exclusively via two

2006 Vol. 8, No. 14 3153–3156

 ^{(1) (}a) Ma, S.-M.; Yu, S.; Gu, Z. Angew. Chem., Int. Ed. 2006, 45, 200.
 (b) Bruneau, C. Angew. Chem., Int. Ed. 2005, 44, 2328. (c) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813. (d) Mendez, M.; Mamane, V.; Fürstner, A. Chemtracts 2003, 16, 397.

⁽²⁾ Okamura, W. H.; De Lera, A. R. Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon: Oxford, 1991; Vol. 5, p 699.

⁽³⁾ For selected examples, see: (a) Tambar, U. K.; Kano, T.; Stoltz, B. M. Org. Lett. **2005**, 7, 2413. (b) Lumb, J.-P.; Trauner, D. Org. Lett. **2005**, 7, 5865. (c) Shoji, M.; Imai, H.; Shiina, I.; Kakeya, H.; Osada, H.; Hayashi, Y. J. Org. Chem. **2004**, *69*, 1548.

distinct pathways: (1) initial Lewis acid-catalyzed π 4a + π 2a or Nazarov-type cyclization to give cyclopentadiene epoxide I intermediates⁴ or (2) initial formation of rhodium-hydride species II via oxidative addition.⁵ Here, we report new metal-catalyzed chemoselective cyclization of *cis*-2,4-dien-1-als to 3-cyclopentenones and 4-alkylidene-3,4-dihy-dro-2*H*-pyran, respectively, in addition to the expected 3-cyclopentenones.

Table 1. Cyclization of cis-2,4-Dien-1-al 1 over VariousCatalysts^{a,b}

catalysts	solvents	conditions	products
(1) -	toluene	100 °C, 54 h	1 (81%)
(2) PtCl ₂	toluene	100 °C, 30 min	3 (92%)
(3) PtCl ₂ + p-TSA	toluene	100 °C, 30 min	5 (88%)
$(3) PdCl_2(PhCN)_2$	toluene	100 °C, 12 h	4 (87%)
(4) AgOTf	toluene	100 °C, 20 min	5 (91%)
(5) AuCl	benzene	100 °C, 17 h	1(25%), 4(63%)
(6) AuClPPh ₃	benzene	100 °C, 11 h	1 (56%), 4 (32%)
(7) AuClPPh ₃ +	CH_2Cl_2	23 °C, 20 min	3(15%)
AgSbF_{6}			

 a 5 mol % catalyst, [substrate] = 0.25 M. b Product yields are given after separation from a silica column.

As shown in Table 1, cis-2,4-dien-1-al 1 was selected as the studied molecule because similar aldehydes will not form 2H-pyran 2 at elevated temperatures.⁶ We undertook a theoretic calculation (B3LYP/6-31G**) of the relative energies of its four possible cycloisomerization species 2-5. The ease of formation of 2-cyclopentenone in most catalytic reactions is attributed to its conjugated stabilization energy, ca. 15-28 kcal/mol less than four other species. Heating aldehyde 1 alone in hot toluene (100 °C, 54 h) led to its exclusive recovery although 2H-pyran 2 has enthalpy 5 kcal/ mol less than aldehyde 1 (entry 1).^{6,7} Cyclization of this aldehyde with PtCl₂ (5 mol %) catalyst in hot toluene (100 °C, 30 min) gave 3-cyclopentenone 3 efficiently (92%, entry 2), whereas this catalyst produced 2-cyclopentone 5 in the presence of *p*-toluenesulfonic acid (p-TSA, 5 mol %, entry 3). The role of p-TSA is the isomerization of 3-cyclopentenone **3** to its conjugated isomer **5**. Notably, $PdCl_2(PhCN)_2$ (5 mol %) produced 4,6,7,8-tetrahydro-3*H*-isochromene **4** in 87% yield under optimum conditions. Among other π -alkyne activators (entries 4–7), only AgOTf (5 mol %) was catalytically efficient in hot toluene and gave 2-cyclopentenone **5** in 91% yield.

The value of this catalytic cyclization is manifested by formation of not only the expected 2-cyclopentenone **5**, but also the unprecedented 3-cyclopentenone **3** and 4-alkylidene-3,4-dihydro-2H-pyran **4**. Table 2 shows additional examples

 Table 2.
 PtCl₂-Catalyzed Chemoselective Cycloisomerization

 of cis-2,4-Dien-1-als to 3-Cyclopentenones

<i>cis</i> - 2,4-dien-1-al ^a product ^b (yields)	<i>cis</i> - 2,4-dien-1-al ^a product ^b (yields)
$\bigcup_{CHO}^{R^3} R^2 \qquad \bigcup_{O}^{R^3} R^2$	$\begin{array}{c} X \xrightarrow{r} R^2 \\ X \xrightarrow{r} R^1 \\ CHO \end{array} \xrightarrow{R^2} X \xrightarrow{r} R^2 \\ R^1 \end{array}$
(1) $\mathbb{R}^1 = \mathbb{R}^2 =$ $\mathbb{R}^3 = H(6)$ (21 (81%)	(9) R ¹ = R ² = Me 29 (91%) X = CH(^t Bu) (14)
(2) $\mathbb{R}^{-} = \mathbb{R}^{-} = \mathbb{H}$, 22 (83%) $\mathbb{R}^{3} = \mathbb{M}e(7)$ (3) $\mathbb{R}^{3} = \mathbb{H}$, 23 (92%)	(10) $R^{1} = {}^{n}Pr, R^{2}=H$ $X = CH({}^{t}Bu)$ 30 (dr = 1.40, (E/Z=2.25, 15) 92%)
R ¹ , R ² = -(CH ₂) ₄ - (8) (4) R ³ = H, 24 (92%)	(11) $R^1 = R^2 = Me$ X = O (16) 31 (88%)
$R^{+}, R^{2} = -(CH_{2})_{5}$ - (9) (5) $R^{1} = R^{3} = H$, 25 (dr = 1.10, $R^{2} = {}^{n}R_{11}$ (10) 92%)	(12) R' = "Pr, R ² =H X = O (E/Z=1.2, 17) 32 (dr = 1.35, 82%)
$\bigcap_{n=1}^{R^2} \bigcap_{n=1}^{R^2} \bigcap_{n=1}^{R^2}$	(13) $R^1, R^2 = -(CH_2)_{4^-}$ X = O (18) 33 (72%), 51 (18%)
(6) $R^{1} = H, R^{2} = Pr$, 26 (dr = 2.45,	Ссно ССХ
$\begin{array}{l} (2/2 - 2.34, 11) & (2/2) \\ (7) R^1 = Me, R^2 = Et, & 27 \ (dr = 1.17, \\ (E/Z = 1.39, 12) & 91\% \end{array}$	
(8) $R^1 = Me, R^2 = {}^{n}Pr, 28 (dr = 1.70, (E/Z = 1.10, 13) 90\%)$	(15) 20 35 (81%)

^{*a*} 5% PdCl₂(PhCN)₂, toluene, [substrate] = 0.25 M, 100 °C, 12 h for entries 6 and 8, 14 h for entry 10, 16 h for entry 5, 18 h for entries, 1, 3–4, and 11, and 24 h for entries 2, 7, and 9. ^{*b*} Yields of products are given after separation from a silica column.

to generalize the catalytic cycloisomerization of various *cis*-2,4-dien-1-als **6**-**20** to corresponding 3-cyclopentenones **21**-**35** with PtCl₂ catalyst (5 mol %); the resulting yields were as high as 81-92% except for **18**, which gave desired **33** (72%) in addition to 4-alkylidene-3,4-dihydro-2*H*-pyran **51** (see Table 3) in 17% yield.⁸ These catalytic reactions were completed in hot toluene (100 °C) within 30-50 min, except for entry 15, which requires a longer period (6 h). 3-Cyclopentenone **25** was obtained in two isomeric forms (dr = 1.10) from aldehyde **10** bearing a *trans*-hexene substituent (entry 5). In entry 14, aldehyde **19** equilibrates with its thermally 6- π -cyclized 2*H*-pyran species (aldehyde:

⁽⁴⁾ To the best of our knowledge, there is only one example for catalytic cycloisomerization of *cis*-2,4-dien-1-als to 2-cyclopentenones with use of Lewis acids, see: Miller, A. K.; Banghart, M. R.; Beaudry, C. M.; Suh, J. M.; Trauner, D. *Tetrahedron* **2003**, *59*, 8919 and reference therein.

⁽⁵⁾ Kundu, K.; McCullagh, J. V.; Morehead, A. T., Jr. J. Am. Chem. Soc. 2005, 127, 16042.

⁽⁶⁾ Tekevac, T. N.; Louie, J. Org. Lett. 2005, 7, 4037.

⁽⁷⁾ The absence of 2*H*-pyran $\mathbf{2}$ in this thermal equilibrium is attributed to the negative entropy change because acyclic 2,4-dien-1-al $\mathbf{1}$ is more conformationally flexible.

⁽⁸⁾ Formation of 2*H*-pyran **51** is attributed the acidity of the O–CH₂ of *cis*-2,4-dien-1-al **18**. This hypothesis is verified by treatment of alcohol **18** with PtCl₂ (5 mol %) and 2,6-lutidine (5 mol %) in hot toluene (100 °C, 14 h), which increased the yield of 2*H*-pyran **51** to 85%.

 Table 3.
 PtCl₂-Catalyzed Chemoselective Cycloisomerization

 of *cis*-2,4-Dien-1-als to 3-Cyclopentenones

R^2	\mathbf{R}^2	
$X \xrightarrow{R^1} \frac{PdCl_2(PhCN)_2}{PdCl_2(PhCN)_2}$	$X \rightarrow R^{1}$	\mathcal{R}^{R}
8, 10-19	42-52	23, 27-28
cis -2,4-dien-1-al a	additive	product (yields) ^{b}
(1) $R^1 = H$, $R^2 = {^nBu}$ X = CH ₂ (<i>E</i> -isomer, 10)	_	42 (77%)
(2) $\mathbf{R}^1 = \mathbf{H}, \mathbf{R}^2 = i \mathbf{Pr}$ $\mathbf{X} = \mathbf{CH}_2 (E/Z = 2.34, 11)$	-	43 (75%)
(3) $R^1 = Me, R^2 = Et$	-	44 (21%), 27 (58%)
$X = CH_2, (E/Z = 1.39, 12)$	5% 2,6-lutidine	44 (78%)
(4) $R^1 = Me, R^2 = {^nPr}$	-	45 (11%), 28 (69%)
$X = CH_2 (E/Z = 1.10, 13)$	5% 2,6-lutidine	45 (75%)
(5) R^1 , $R^2 = -(CH_2)_4 -$	-	46 (13%), 23 (72%)
$X = CH_2, (8)$	5% 2,6-lutidine	46 (75%)
(6) R^1 , $R^2 = Me$ $X = CH({}^tBu)$ (14)	-	47 (82%)
(7) $R^1 = H, R^2 = {^nPr} X = CH({^tBu}) (E/Z = 2.25, 15)$	-	48 (75%)
$\begin{array}{l} (8) \ R^1, \ R^2 = Me \\ X = O \ ({\bf 16}) \end{array}$	-	49 (85%)
(9) $R^1 = Me, R^2 = {^nPr} X = O(E/Z = 1.20, 17)$	_	50 (83%)
$\begin{array}{l} (10) \ R^1, \ R^2 = -(CH_2)_4 - \\ X = O \ ({\bf 18}) \end{array}$	-	51 (83%)
$\begin{array}{l} (11) \ R^1, \ R^2 = Me \\ X = -(CH_2)_2 - \ (19) \end{array}$	5% 2,6-lutidine	52 (61%)

^{*a*} 5% PdCl₂(PhCN)₂, toluene, [substrate] = 0.25 M, 100 °C, 12 h for entries 6 and 8, 14 h for entry 10, 16 h for entry 5, 18 h for entries 1, 3–4, and 11, and 24 h for entries 2, 7, and 9. ^{*b*} Yields of products are given after separation from a silica column.

2H-pyran = 12:88), and such an equilibrium mixture can be transformed into 3-cyclopentenone **34** (81%) efficiently with PtCl₂. This catalytic reaction is further compatible with an acyclic 2,4-dien-al **20** and gave the expected 3-enone **35** in 81% yield.

The PtCl₂-catalyzed synthesis of 3-cyclopentenones involves unusual skeletal rearrangement for special *cis*-2,4-dien-1-als **36**–**38** bearing a bulky *tert*-butyl and phenyl group at the C(2)-carbon. As shown in Scheme 2, treatment of

^{*a*} 5% PtCl₂, [substrate] = 0.25 M, toluene, 100 °C, 10 h for entries 1 and 2 h for entries 2 and 3. ^{*b*}Yields of products are given after separation from a silica column.

aldehydes 36-38 with PtCl₂ (5 mol %) in hot toluene (100 °C) for 2 h gave two isomeric products 39-41(A) and 39-41(B) which were not separable from silica column. 3-Cy-clopententones 39-41(A) are related to their isomeric forms 39-41(B) by a 1,3-migration of the oxygen atom.

Table 3 shows the generalization of the PdCl₂-catalyzed synthesis of 4-alkylidene-3,4-dihydro-2*H*-pyran derivatives 42-52 with use of the same *cis*-2,4-dien-1-als 8 and 10-**19.** Synthesis of such 2*H*-pyrans is extendable to aldehydes 10-11, and gave desired products 42 and 43 in 77% and 75% yields, respectively. In entries 3-5, cyclization of aldehydes 12-13 and 8 by using PdCl₂(PhCN)₂ catalyst (5 mol %) produced preferably 3-cyclopentenones 27-28 and 23, rather than the desired 2*H*-pyrans 44-46. This chemoselectivity problem was circumvented by using 2,6-lutidine (5%), and in such cases 2H-pyrans 44-46 were produced exclusively (75-78%). For the remaining aldehydes 14-18, PdCl₂ maintains high cyclization efficiencies toward formation of 2H-pyrans 47-51 with 75-83% yields in the absence of 2,6-lutidine additives. Cyclization of aldehyde **19** requires 2,6-lutidine (5%) and PdCl₂(PhCN)₂ to furnish 2H-pyran 52 in 61% yield.

We also prepared ²H- and ¹³C-labeled samples **1** and **37** to elucidate the mechanism of formation of 3-cyclopentenones. As shown in Scheme 3, species **1** bearing a deuterated

aldehyde produced 3-enone **3** with a 1,2-deuterium migration. In contrast, we did not observe an oxygen migration for 3-enone **3** produced from species **1** bearing a 10% ¹³C-enriched alkenyl C(1) carbon. Cyclization of *cis*-2,4-dien-al **37** bearing a deuterated aldehyde gave two 3-enones **40**(**A**) and **40**(**B**) bearing a deuterium at their C(2)Ph and =C(4) carbons, respectively, and no loss of deuterium occurred.

The 1,3-oxygen migration shown by 3-cyclopentenones 39-41(B) (Scheme 2) excludes a conventional Lewiscatalyzed c4a + c2a cyclization mechanism.^{4,9} Nazarov-type cyclization^{4,10,11} is also unlikely to occur because *cis*-2,4dien-1-al **10** bearing a *trans*-hexenyl substituent gave two

 ^{(9) (}a) Ireland, C.; Faulkner, D. J.; Solheim, B. A.; Clardy, J. J. Am. Chem. Soc. 1972, 94, 6767. (b) George, M. V.; Mitra, A.; Sukumaran, K. B. Angew. Chem., Int. Ed. 1980, 19, 973.

⁽¹⁰⁾ Habermas, K. L.; Denmark, S. E.; Jones, K. T. Org. React. 1994, 45, 1.

isomers of 3-cyclopentenone **25** in equal population (see Table 2, entry 5), inconsistent with the expected trans isomer according to Nazarov cyclization. Scheme 4 shows a

plausible pathway to rationalize the oxygen migration and isotopic labeling experiments. The formation of 3-cyclopentenone is initiated with an intramolecular ene-aldehyde condensation¹² to form an OPt(IV)-allyl species **B**. This species preferably generates cyclopentadiene epoxide D via reductive elimination, leading to 3-cyclopentenone 40A with a 1,2-deuterium migration.¹³ In the case of a bulky R¹ group, species **B** likely undergoes reductive elimination to form oxabicyclic alkene species C reversibly. The reversible nature of this transformation allows the formation of a second OPt-(IV)-allyl intermediate **B'**, and ultimately gave the isomeric 3-cyclopentenone 40B via intermediate D. Most cis-2,4-dien-1-als with a moderate size R^1 substituent are expected to give 3-cyclopentenone such as species 40A without oxygen migration.¹⁴ The feasibility of the interconversion between intermediates B and C, as well as C and B, was recently proposed in a ruthenium-based catalysis.¹⁵

(11) In the Nazarov-type cyclization, the cyclization follows the conrotatory mode to give epoxide opposite to the *n*-propyl substituent. $PtCl_2$ catalyzed rearrangement of this vinyl epoxide is expected to give *trans*-3cyclopentenone via a 1,2-hydrogen shift.

(12) Review: Snider, B. In *The Prins Reaction and Carbonyl Ene Reactions*; Trost B. M., Fleming, I., Heathcock, C. H., Eds.; Pergamon Press: New York, 1991; Vol. 2, pp 527–561.

(13) For metal-catalyzed transformation of vinyl epoxides into 3-en-1ones, see: (a) Suzuki, M.; Oda, Y.; Noyori, R. J. Am. Chem. Soc. **1979**, *101*, 63. (b) Rosenberger, M.; Jackson, W.; Saucy, G. Helv. Chim. Acta **1980**, 63, 1665. For *cis*-2,4-dien-1-al **12**, the use of 2,6-lutidine (5%) to alter the cyclization chemoselectivity in the PdCl₂-based catalysis (Table 3, entries 3) is informative about the relation of the two new cyclizations. This observation indicates that an equilibrium exists between **A** and **E** as depicted in Scheme 5. With PdCl₂ catalyst, most *cis*-2,4-dien-als follow the **A**

 \rightarrow **E** \rightarrow **F** \rightarrow **G** pathway except for alcohol such as 12, which gave 3-cyclopentenone 27 as major products unless 2,6-lutidine is present. We envision that this pyridine base accelerates the deprotonation reaction of intermediate **F** and preferably gives 2*H*-pyrans 44 with alternation of chemose-lectivity.

In summary, we have achieved chemoselective cycloisomerization of *cis*-2,4-dien-1-als to 3-cyclopentenones and 4-alkylidene-3,4-dihydro-2*H*-pyrans using PtCl₂ and PdCl₂-(PhCN)₂, respectively. In the presence of p-TSA catalyst, PtCl₂ also led to formation of conjugated 2-cyclopentenones. These new metal-catalyzed reactions highlight the synthetic utility of *cis*-2,4-dien-1-als with the availability of various carbocyclic and oxygen heterocyclic compounds. The use of *cis*-2,4-dien-1-al as a building block to construct a complex molecular framework will be more attractive than before.

Acknowledgment. This work was supported by the National Science Council, Taiwan.

Supporting Information Available: Experimental procedures, spectral data, and NMR spectra of key compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL061248H

⁽¹⁴⁾ The *gem*-dialkyl group of the alkenyl substituent of 2,4-dien-1-al is expected to block this oxygen transfer process, and this hypothesis is supported by a high A/B ratio (A/B = 2.0) of species **38** compared to that (A/B = 0.58) of its vinyl analogue **37**.

⁽¹⁵⁾ Villeneuve, K.; Tam, W. J. Am. Chem. Soc. 2006, 128, 3514.