A NEW APPROACH TO δ -LACTONES, RELATED TO THE PRELOG-DJERASSI LACTONE.

C.Malanga,*,a R.Menicagli,a,b M.Dell'Innocenti,a L.Lardiccia,b

^aDipartimento di Chimica e Chimica Industriale, ^bCentro delle Macromolecole Stereordinate ed Otticamente Attive, via Risorgimento 35-56100 Pisa-Italy.

Summary: The reductive rearrangement of 2-ethoxy-5-(2-alkenyl)-2H-tetrahydropyrane systems, in the presence of $AlBu^1_3$, was used as the key-step in the synthesis of Prelog-Djerassi related lactones.

Recent synthetic elaborations in the field of macrolides have prompted the development of some useful syntheses of δ -lactones^{1,2}, related to the Prelog-Djerassi lactone². However, such approaches often involve many steps that cause the drop in final overall yields. Here we wish to report a very efficient new synthetic route to the synthesis of δ -lactones employing, as the key step, the reductive rearrangement of suitable alkyl, 1-alkenyl acetals (1) promoted by AlBu $_3^i$; since such a reaction makes it possible to convert the C₂-O₁ bond into the C₂-C₄ bond, as shown in Scheme 1, we have concentrated our attention on the sequence of reactions reported in Scheme 2.

Scheme 1

In a typical experiment the required 2-ethoxy-3,4-dihydro-2H-pyrane derivative $\mathbf{1}$, easily obtained from the Diels-Alder reaction was reacted with allylic alcohol, in the reaction conditions already described, to give (70-80% yields) $\mathbf{2}$ that was purified from smaller amounts of trans-acetalization products by careful distillation, using a Fisher-Spalthror apparatus. Compounds $\mathbf{2b}$, were reacted with $\mathrm{RuH}_2(\mathrm{Ph}_3)_4$ (1/100, molar ratio, 150° C, 4h) to give compounds $\mathbf{3b}$, in quantitative yields, after elimination of the catalyst by bulb to bulb distillation. To the experimental conditions already reported, the reaction of $\mathbf{3b}$, with

AlBu $^{i}_{3}$ gave compounds **4b,c** in 70-90% overall yields. These last products were oxidized by the Jones reagent ⁷ to give the corresponding lactones **5b,c** in good overall yields (70%).

Scheme 2⁶

 $R^1 = R^2 = H$ (a); $R^1 = Me$, $R^2 = H$ (b); $R^1 = R^2 = Me$ (c)

This synthetical approach, characterized by only a few steps and high yields, gives diastereomeric mixtures that can be separated by chromatographic techniques. Owing to the general applicability of the reductive rearrangement, 3 the sequence reported (Scheme 2), might allow the preparation of a wide range of δ -lactones suitable as intermediates in macrolide syntheses.

REFERENCES AND NOTES

la) H.A.Bates, P.N.Deng, J.Org.Chem., 48,4479 (1983); b) M.Isobe, Y.Ichikwa, H.Masaki, T.Goto, Tetrahedron Lett., 25,3607(1984); c) P.A.Bartlett, D.P.Richardson, J.Myerson, Tetrahedron, 2317 (1984); d) M.Kitamura, M.Isobe, Y.Ichikawa, T.Goto, J.Org.Chem., 49,3517(1984); e) D.B.Gerth, B.Giese, J.Org.Chem., 51,3726(1986). 2a) P.A.Bartlett, J.A.Adams, J.Am.Chem.Soc., 102,337(1980); b) P.A.Grieco, Y.Ohfune, Y.Yokoyama, W.Owens, ibidem, 101,4749(1980); c) M.Isobe, Y.Ichikawa, T.Goto, Tetrahedron Lett., 22,4287(1981); d) S.Danishefsky, N.Kato, D.Askin, J.F.Kerwin, Jr., J.Am.Chem.Soc., 104,360(1982) e) K.Maruyama, Y.Ishihara, Y.Yamamoto, Tetrahedron.Lett., 22,4235(1981); f) W.C.Still, K.R.Shaw, ibidem 22,3725(1981); g) K.Santelli-Rouvier, ibidem, 25,4371(1984); h) S.F.Martin, D.E.Guinn, ibidem, 25,5607 (1984); i) P.G.Writs, M.L.Obrzut, P.A.Thompson, ibidem, 25,4051(1984); l) H.F.Chow, I.Fleming, ibidem, 26,397(1985); m) K.Suzuki, T.Masuda, Y.Fukazawa, G.Tsuchihashi, ibidem, 27,3661(1986). 3a) R.Menicagli, C.Malanga, L.Lardicci, J.Org.Chem., 47,2288(1982); b) R.Menicagli, C.Malanga, L.Lardicci, J.Org.Chem., submitted for the publication. 4) G.Desimoni, G.Tacconi, Chem.Rev., 75,651(1975). 5) Equimolecular amounts of reagents and pyridinium p.-toluensulphonate in CH₂Cl₂, at 0° C for 5h, are required to prevent the formation of trans-acetalization products such as 2,5-diethoxy and 2,5-di(2-alkenyloxy) tetrahydropyranyl derivatives. 6) All compounds gave satisfactory HNMR, IR and Mass spectral data. 7) 2.56 mmol of alcohol in 5 ml of acetone, 5.97 mmol of CrO₃ in 10 ml of H₂O and 3 ml of conc. H₂SO₄, at 0-5° C for 2h. 8) This research was supported in part by the Itafian Ministry of Education (Rome).

(Received in UK 4 November 1986)