Fullerodendrons: synthesis, electrochemistry and reduction in the electrospray source for mass spectrometry analysis

Delphine Felder,^a Hélène Nierengarten,^b Jean-Paul Gisselbrecht,^c Corinne Boudon,^c Emmanuelle Leize,^b Jean-François Nicoud,^a Maurice Gross,^{*c} Alain Van Dorsselaer^{*b} and Jean-François Nierengarten^{*a}

- ^a Institut de Physique et Chimie des Matériaux de Strasbourg, Groupe des Matériaux Organiques, Université Louis Pasteur and CNRS (UMR 7504), 23 rue du Loess, 67037, Strasbourg, France. E-mail: niereng@ipcms.u-strasbg.fr
- ^b Laboratoire de Spectrométrie de Masse Bio-Organique, Université Louis Pasteur and CNRS (UMR 7509), 1 rue Blaise Pascal, 67000, Strasbourg, France. E-mail: vandors@chimie.u-strasbg.fr
- ^c Laboratoire d'Electrochimie et de Chimie Physique du Corps Solide, Université Louis Pasteur and CNRS (UMR 7512), 4 rue Blaise Pascal, 67008, Strasbourg, France. E-mail: gross@chimie.u-strasbg.fr

Received (in Strasbourg, France) 25th April 2000, Accepted 29th May 2000 Published on the Web 18th July 2000

The synthesis of fullerene-functionalized dendritic branches (fullerodendrons) containing C_{60} spheres at each branching unit has been carried out by a convergent approach using successive esterification and deprotection steps. The *tert*-butyl protected fullerodendrons containing one, three or seven methanofullerene subunits can be characterized by ESMS owing to their reduction in the electrospray source. The MS analysis of the reduced species also confirmed that all the methanofullerene subunits in the fullerodendrons of highest generation behave as independent redox centers, as shown by their electrochemical behavior.

The recent developments in the functionalization of fullerenes allow the preparation of covalent fullerene derivatives with increasing complexity.¹ Since X-ray suitable crystals of sufficient quality are often difficult to obtain with fullerene derivatives, mass spectrometry (MS) and NMR spectroscopy appear to be the most important tools for their structural analysis. As far as MS is concerned, several ionization techniques such as electron impact (EI),² matrix-assisted laser desorption/ionization (MALDI),³ or fast-atom bombardment (FAB)⁴ have been used to characterize functionalized fullerenes. Unfortunately, these techniques are not always well adapted for C₆₀ derivatives of high molecular weights. In effect, with these methods, the MS analysis leads to fragmentations and the molecular ions are not observed. This is due to the fact that too much energy is deposited in the evaporation/ ionization process and/or that the matrices used are not well adapted. Despite the problems and difficulties that may arise with the increasing size of such molecules, encouraging perspectives are offered by the use of electrospray mass spectrometry (ESMS)⁵ for their characterization. Indeed, under carefully controlled experimental conditions, ESMS has the ability to desolvate, without fragmentation, ions pre-existing in solution. A wide variety of large biomolecules⁶ and coordination complexes,⁷ where the charge is respectively conferred by protonation (deprotonation) and successive loss of counterions, have been successfully characterized by ESMS. Unfortunately, fullerene derivatives are generally uncharged in solutions and therefore not suitable for ESMS analysis. However, several strategies of ionization have been developed to analyze uncharged compounds by ESMS, using ESMSactive tags⁸ or reducing agents in solution.⁹ In the same way, but without prior chemical or electrochemical treatment, we have already described the characterization of C₆₀ and other neutral species by ESMS, using their redox properties to induce ionization for MS analysis.¹⁰ As a matter of fact, radical cations (positive mode) or radical anions (negative mode) can be generated during the ES process owing to the ability of the ES source to behave like an electrolysis cell.¹¹

In this paper, we report in detail the synthesis of fullerenefunctionalized dendritic branches (fullerodendrons) containing a C_{60} sphere at each branching unit¹² and show that these compounds can be characterized by ESMS on account of their reduction in the electrospray source.

Results and discussion

Synthesis

The preparation of the fullerodendrons with a C_{60} group at each branching unit was carried out by a convergent approach,¹³ using successive esterification and deprotection steps. The preparation of the key building block 1 is depicted in Scheme 1. This diol containing one *tert*-butyl ester function is the branching unit for the construction of the fullerodendrons.

The mono-protection of 1,6-hexanediol was carried out by treatment with Ag₂O and *p*-methoxybenzyl chloride (PMBCl) according to the conditions reported by Bouzide and Sauvé.¹⁴ Treatment of the resulting mono-protected derivative **2** with CBr₄ and PPh₃ in dry THF at room temperature afforded bromide **3** in 79% yield. Reaction of **3** with 3,5-dihydroxybenzyl alcohol in DMF at 80 °C in the presence of K₂CO₃ yielded **4** in 52% yield. Subsequent reaction with 2,2-dimethyl-1,3-dioxane-4,6-dione (Meldrum's acid)¹⁵ at 120 °C gave the mono-ester **5** of malonic acid in 99% yield. *N,N'*-Dicyclohexylcarbodiimide (DCC) mediated esterification of **5** with *tert*-butyl 2-hydroxyacetate¹⁶ in CH₂Cl₂ yielded malonate **6** in 91% yield. The functionalization of C₆₀ is based on the Bingel reaction.¹⁷ Nucleophilic addition of a stabilized α -

DOI: 10.1039/b003345f

Scheme 1 Preparation of methanofullerene 1 (5% overall yield from 1,6-hexanediol).

halocarbanion to the C_{60} core, followed by intramolecular nucleophilic substitution, leads to clean cyclopropanation of C_{60} . The α -halomalonate derivative was prepared *in situ* from the reaction of the malonate with iodine.¹⁸ Treatment of C_{60} with **6**, iodine and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in toluene at room temperature afforded methanofullerene **7** in 30% yield. The choice of the appropriate protecting group for the two alcohol functions in 7 was the key to this synthesis. The deprotection conditions must not be acidic to preserve the *tert*-butyl ester function and may not be basic to preserve the other ester functions. Furthermore, the decomposition of fullerene derivatives under reaction conditions using fluoride¹⁹ prevents the use of silyl protecting groups. The PMB protecting groups in 7 could be removed under neutral

conditions by treatment with 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) in CH_2Cl_2 containing a small amount of water²⁰ at room temperature. All the ester functions remained unchanged and key building block 1 was thus obtained in good yield (84%).

Fullerene derivative **8** substituted with two long alkyl chains (solubilizing groups) and a carboxylic function was used as a peripheral subunit for the constructions of the dendrons. Its preparation is depicted in Scheme 2.

Alcohol 9 was obtained in 90% yield by alkylation of 3,5dihydroxybenzyl alcohol with 1-bromooctane in DMF at 70 °C with K_2CO_3 as base. Subsequent treatment with Meldrum's acid at 120 °C afforded the corresponding malonic mono-ester 10 in 99% yield. Reaction of acid 10 with *tert*butyl 2-hydroxyacetate under esterification conditions using DCC and 4-dimethylaminopyridine (DMAP) led to malonic ester 11 in 93% yield. Treatment of C_{60} with 11 in the presence of iodine and DBU under Bingel conditions afforded methanofullerene 12 in 44% yield. Subsequent hydrolysis of the *tert*-butyl ester group with $CF_3CO_2H^{21}$ gave carboxylic acid **8** in 97% yield.

Esterification of acid 8 with diol 1 under conditions using DCC, 1-hydroxybenzotriazole (BtOH) and DMAP afforded the *tert*-butyl-protected fullerodendron 13 in 70% yield (Scheme 3). Selective hydrolysis of the *tert*-butyl ester under acidic conditions afforded acid 14 in 98% yield. Subsequent reaction of 14 with the branching unit 1 in the presence of DCC, BtOH and DMAP afforded fullerodendron 15 (Scheme 4), which after treatment with CF_3CO_2H gave 16. The ¹H and ¹³C NMR, MS, IR, UV/Vis and elemental analysis data were consistent with the proposed molecular structures assigned to the fullerodendrons of each generation.

Electrochemistry

The electrochemical properties of fullerodendrons 12, 13 and 15 have been investigated by cyclic voltammetry (CV) and by

Scheme 2 Preparation of methanofullerene 8 (35% overall yield from 3,5-dihydroxybenzyl alcohol).

Scheme 3 Preparation of fullerodendron 14.

steady state voltammetry (SSV) on a rotating disk electrode. All experiments have been performed at room temperature in $CH_2Cl_2 + 0.1 \text{ M Bu}_4\text{NPF}_6$. The cyclic voltammograms of **12**, **13**, and **15** are shown in Fig. 1 and Table 1 summarizes the redox potentials of the three compounds along those of C_{60} .

Compound 12 shows the characteristic behavior previously reported for methanofullerenes.^{22,23} By CV, up to three oneelectron reduction steps are seen [Fig. 1(*a*)] and no oxidation could be observed at potentials below +1 V vs. Fc/Fc⁺. Whereas the first reduction is perfectly reversible, the second reduction step shows the characteristics of an E.C. mechanism at sweep rates lower than 1 V s⁻¹ and is followed by a chemical reaction²⁴ giving rise to the small amplitude signals seen in Fig. 1(*a*). By SSV, a fourth well-resolved reduction step could be seen. The first three reduction potentials determined by SSV are similar to those obtained by CV. The additional wave at -2.08 V vs. Fc/Fc⁺ actually corresponds to the reduction of an electrogenerated species.²⁴

Methanofullerene 12 essentially retains the cathodic electrochemical pattern of the parent fullerene but the reduction potentials are shifted to more negative values when compared to those of C_{60} (Table 1). This is the classical behavior of most fullerene derivatives, whose cyclic voltammograms are typically characterized by small shifts to more negative values as the saturation of a double bond on the C_{60} surfaces causes a partial loss of "conjugation".^{22,23}

The electrochemical behavior of fullerodendron 13 in both CV (Fig. 1) and SSV (Fig. 2) appears to be similar to that of compound 12. The reduction potentials are also quite similar (Table 1). This seems to indicate that the three methanofullerene units in 13 behave as independent redox centers. It should be noted that the wave amplitudes are only 2.4 times

Table 1 Electrochemical data on the reduction of C_{60} and fullerodendrons 12, 13 and 15 determined by CV and SSV on a glassy carbon working electrode in $CH_2Cl_2 + 0.1 \text{ M Bu}_4\text{NPF}_6$ at room temperature

	CV ^a			SSV ^b			
	E ₁	E_2	E ₃	E ₁	E_2	E ₃	E_4
C ₆₀ ^c 12 13 15	$\begin{array}{r} -0.98(59) \\ -1.03(85) \\ -1.05(90) \\ -1.06(80) \end{array}$	$-1.37(61) \\ -1.41(80) \\ -1.41(80) \\ -1.41(80)$	$\begin{array}{r} -1.83(60) \\ -1.84(110) \\ -1.85(120) \\ -1.85(100) \end{array}$	-1.04(60) -1.06(70) -1.07(65)	-1.42(70) -1.42(60) $^{0}/_{e}e$	-1.90(70) -1.90(80) ^{6}e	-2.08^{d} -2.08^{d} $^{0}/_{0}e^{e}$

^{*a*} Values for $(E_{pa} + E_{pc})/2$ in V vs. Fc/Fc⁺ and ΔE_{pc} in mV (in parentheses) at a scan rate of 0.1 V s⁻¹. ^{*b*} Values in V vs. Fc/Fc⁺ and slope in mV per log unit (in parentheses). ^{*c*} From ref. 22(*a*). ^{*d*} Small amplitude wave corresponding to an electrogenerated species obtained after the third reduction step. ^{*e*} Badly resolved, spread out wave.

Scheme 4 Preparation of fullerodendron 16.

Fig. 1 Cyclic voltammetry of fullerodendrons (a) 12, (b) 13 and (c) 15 on a glassy carbon electrode at v = 0.1 V s⁻¹ in CH₂Cl₂ + 0.1 M Bu_4NPF_6 in the presence of ferrocene used as internal reference.

larger for 13 than for 12 at the same analytical concentration despite 13 containing three reducible methanofullerene units. This is mainly due to the large difference in diffusion coefficients. The limiting current at a rotating disk electrodes is given by the Levich equation:²⁴ $I_d = 0.62 \cdot nFACD^{2/3} v^{-1/6}$ $\omega^{1/2}$ where n is the number of electrons exchanged, F the Faraday constant, A the electrode area in cm^2 , C the analytical concentration in mol L^{-1} , D the diffusion coefficient in cm² s⁻¹, v the cinematic viscosity in cm² s⁻¹, and ω the rotation speed in rad s⁻¹. The limiting current ratio I_{d2}/I_{d1} (where I_{d2} stands for 13 and I_{d1} for 12) reduces to: $I_{d2}/I_{d1} = (n_2/n_1) \cdot (D_2/D_1)^{2/3}$.

In this equation, the diffusion coefficient is given by the Stokes–Einstein equation and can be reduced to D = csts.(d/d) $(M)^{1/3}$ where d is the density of the electroactive species and M its molecular weight.²⁵ Under these conditions, assuming similar *d* values, the expected current ratio becomes: $I_{d2}/I_{d1} = (n_2/n_1) \cdot (M_1/M_2)^{1/3}$ and is equal to 2.25. Within

Fig. 2 SSV of (a) 12 and (b) 13 recorded at the same concentration $(0.39 \text{ mmol } L^{-1})$ in $CH_2Cl_2 + 0.1 \text{ M } Bu_4NPF_6$ on a glassy carbon rotating electrode ($\omega = 209 \text{ rad s}^{-1}$).

In addition, wave analysis by plotting E vs. log $I/(I_d - I)$ where I is the current, I_d the limiting current and E the applied potential, gave straight lines for both 12 and 13. Taking into account the fact that the slopes of the waves are similar, the present results prove that the three methanofullerene units in 13 behave effectively as independent redox centers.²⁶

By CV, fullerodendron 15 behaves like the above depicted species [Fig. 1(c)]. By SSV, only one clearly defined reduction step could be observed, the further reductions being less well defined and the wave spreading out along the potential axis. However, the slope of the first reduction wave as well as the observed amplitude are characteristic of a simultaneous reduction of the seven independent methanofullerene redox centers in 15. Since a hepta-anionic species is generated after the first reduction step, the poor resolution of the further waves could be due to the poor solubility of this highly charged species in CH_2Cl_2 .

Mass spectrometry

Whereas the FAB-MS spectrum of methanofullerene 12 showed the expected molecular ion peak, no characteristic peaks could be observed for the fullerodendrons of higher generations 13 and 15. In fact, due to condensation reactions resulting probably from fullerene-fullerene interactions under the high energy of the FAB gun or due to fullerene aggregation in the matrix, the FAB-MS analysis yields only fragmentations. Furthermore, the molecular mass of compound 15 (8466.85 Da) is quite high for FAB analysis. Finally, no protonation or deprotonation sites are available in 12, 13 and 15, which usually prevents FAB analysis. We have already described the characterization of C₆₀ by ESMS, using a new approach based on its redox properties.¹⁰ Radical anions (negative mode) can be generated during the ES process, owing to the ability of the ES source to behave like an electrolysis cell.¹¹ In the present case, from the electrochemical data compounds 12, 13 and 15 appear to be good candidates for this ESMS characterization method. The compound under study (12, 13 or 15) was dissolved in anhydrous CH₂Cl₂ and stirred at room temperature for 5 min. Direct analysis of this solution yielded no observable ions. Therefore, the solution was then carefully degassed under nitrogen in order to remove oxygen from the sample. Indeed, in the case of reduction reactions, oxygen may be reduced before the analyte, thus preventing the reduction, and therefore the detection with ESMS, of the studied fullerene derivative. The degassed solution was directly analyzed by ESMS in the negative mode (reduction mode) and spectra with intense ion peaks were observed.

The ES mass spectrum obtained with 12 is depicted in Fig. 3 and shows one singly charged peak at m/z = 1283.2 (calculated m/z = 1283.41), corresponding to the expected radical anion or in other words to the mono-reduced compound. The isotopic pattern of this ion corresponds to the theoretical one and confirms the charge state of the peak.

The ES mass spectrum obtained in the negative mode with fullerodendron 13 shows three peaks (Fig. 4): the expected peak at m/z = 1226.3, corresponding to the radical tri-anion (calculated m/z = 1225.95), and two other peaks at m/z = 1839.7 and 3680.2. Since the three fullerenes behave as independent redox centers, only the radical tri-anion was expected. However, partial protonation of the generated tri-anion occured, giving rise to the two other peaks corresponding to the mono-protonated (m/z = 1839.7) and to the di-protonated (m/z = 3680.2) species of the radical tri-anion. These protonations are confirmed by the m/z values and are

Fig. 3 ES mass spectrum of 12 recorded in the negative mode; the inset shows the isotopic pattern of the anion at m/z = 1283.2.

certainly due to the presence of residual quantities of water in the solvent. Indeed, when a more concentrated solution of 13 is analyzed by ESMS under the same conditions, a more intense peak at m/z = 1226.3 is observed, showing the correlation between the quantity of residual water in the solvent and the presence of protonated species.

The ES mass spectrum obtained with 15 also showed three peaks (Fig. 4): the expected radical hepta-anion at m/z = 1209.6 (calculated m/z = 1209.55), the mono-protonated compound at m/z = 1411.1 and the di-protonated compound at m/z = 1693.1.

Other experiments using pre-ionized compounds have also been carried out by ESMS. Indeed, the reduced species are relatively stable and can be generated by a classical electrochemical reaction. The studied anions were generated by intensiostatic reduction using tetra(*n*-butyl)ammonium hexafluorophosphate (TBA-PF₆) at 10^{-2} M as supporting electrolyte and analyzed by ESMS. Unfortunately, it was not possible to obtain a very informative spectrum; the presence of salts disturbs spray formation and a dramatic loss of intensity is observed.

Conclusion

The synthesis of fullerene-functionalized dendritic branches containing C_{60} spheres at each branching unit has been carried out by a convergent approach using successive ester-

Fig. 4 ES mass spectra of 13 (top) and 15 (bottom).

ification and deprotection steps. The *tert*-butyl-protected fullerodendrons containing one, three or seven methanofullerene subunits have been characterized by ESMS, exploiting their reduction in the electrospray source. The MS analysis of the reduced species also confirmed that all the methanofullerene subunits in the fullerodendrons of highest generation behave as independent redox centers, as suggested by their electrochemical behavior. This new ionization strategy of uncharged fullerene derivatives appears to be very efficient and offers new perspectives in the characterization of complex molecular architectures larger than 10 kDa.

Experimental

Materials and methods

Reagents and solvents were purchased as reagent grade and used without further purification. tert-Butyl 2-hydroxyacetate was prepared according to the literature.¹⁶ All reactions were performed in standard glassware under an inert Ar atmosphere. Evaporation and concentration was carried out at water aspirator pressure and drying in vacuo at 10^{-2} torr. Column chromatography: silica gel 60 (230-400 mesh, 0.040-0.063 mm) was purchased from E. Merck. Thin layer chromatography (TLC) was performed on glass sheets coated with silica gel 60 F254 purchased from E. Merck, visualization by UV light. UV/Vis spectra were measured on a Hitachi U-3000 spectrophotometer. IR spectra were measured on an ATI Mattson Genesis Series FTIR instrument. NMR spectra were recorded on a Bruker AC 200 (200 MHz) or a Bruker AM 400 (400 MHz) with solvent peaks as reference. Elemental analyses were performed by the analytical service at the Institut Charles Sadron, Strasbourg.

Electrochemistry. The electrochemical studies were carried out in CH_2Cl_2 (Fluka, spectroscopic grade used without further purification) containing 0.1 M Bu₄NPF₆ (Merck, electrochemical grade) as supporting electrolyte. A classical threeelectrode cell was connected to an Autolab (Eco Chemie B.V. Utrecht, Holland) computerized electrochemical device. The working electrode was a glassy carbon disk (3 mm in diameter), the auxiliary electrode a platinum wire and the reference electrode an aqueous Ag/AgCl reference electrode. All potentials are given vs. Fc/Fc⁺ used as internal standard.

Electrospray mass spectrometry. Samples for ESMS were prepared by dissolving the compound under study in anhydrous CH₂Cl₂ at a concentration of 10⁻⁴ M. After stirring at room temperature for 5 min, the solution was intensively degassed under nitrogen to remove oxygen from the sample. The degassed solution was then directly analyzed by ESMS. Negative ES mass spectra were obtained on a Quattro II (Micromass, Altrincham, UK) ES triple quadrupole mass spectrometer. The ES source was heated to 45 °C. The sampling cone voltage (V_c) was at 100 V; at this voltage no fragmentation processes were detected and reproducible spectra were obtained. Sample solutions were introduced into the mass spectrometer source with a syringe pump (Harvard type 55 1111: Harvard Apparatus Inc., South Nattick, MA, USA) with a flow rate of 4 μ l min⁻¹. Calibration was performed using protonated horse myoglobin. Scanning was performed in the MCA (multi channel analyzer) mode and several scans were summed to obtain the final spectrum.

Syntheses

Compound 2. Freshly prepared Ag_2O (29.4 g, 126.92 mmol) was added to a stirred solution of 1,6-hexanediol (10 g, 84.61

mmol) and PMBCl (14.57 g, 156.61 mmol) in CH₂Cl₂ (250 mL) at room temperature. After 4 h, the reaction mixture was filtered and evaporated to dryness. Column chromatography (SiO₂, CH₂Cl₂-2% MeOH) yielded **2** (11.82 g, 58%). Colorless oil; ¹H-NMR (CDCl₃, 200 MHz): $\delta = 1.36-1.60$ (m, 8H), 3.43 (t, J = 6 Hz, 2H), 3.61 (t, J = 6 Hz, 2H), 3.80 (s, 3H), 4.42 (s, 2H), 6.88 (d, J = 8 Hz, 2H), 7.27 (d, J = 8 Hz, 2H); ¹³C-NMR (CDCl₃, 50 MHz): $\delta = 25.32$, 25.68, 29.34, 32.27, 54.94, 62.09, 69.75, 72.18, 113.42, 129.02, 130.23, 158.77. C₁₄H₂₂O₃ (238.3): calcd C 70.56, H 9.30; found C 70.15, H 9.11.

Compound 3. PPh₃ (1.91 g, 5.77 mmol) was added to a stirred solution of **2** (1.1 g, 4.61 mmol) and CBr₄ (1.91 g, 5.77 mmol) in dry THF (20 mL) at room temperature. After 30 min, the reaction mixture was poured into water. The aqueous layer was extracted with CH₂Cl₂ (3 ×). The combined organic layers were dried (MgSO₄), filtered and evaporated to yield **3** (1.1 g, 79%), which was used without further purification. Colorless oil; ¹H-NMR (CDCl₃, 200 MHz): $\delta = 1.38$ (m, 4H), 1.62 (m, 2H), 1.86 (m, 2H), 3.41 (t, J = 7 Hz, 2H), 3.45 (t, J = 6.5 Hz, 2H), 3.81 (s, 3H), 4.43 (s, 2H), 6.89 (d, J = 8 Hz, 2H); 7.24 (d, J = 8 Hz, 2H); ¹³C-NMR (CDCl₃, 50 MHz): $\delta = 25.32$, 27.88, 29.47, 32.65, 33.81, 55.16, 69.78, 72.44, 113.64, 129.12, 130.58, 159.01. C₁₄H₂₁O₂Br (301.23): calcd C 55.82, H 7.03; found C 55.86, H 7.02.

Compound 4. A mixture of 3 (6.3 g, 20.91 mmol), 3,5-dihydroxybenzyl alcohol (1.37 g, 9.96 mmol), and K₂CO₃ (5.78 g, 41.82 mmol) in DMF (150 mL) was stirred for 20 h at 80 °C. After cooling, the resulting mixture was filtered and evaporated to dryness. The brown residue was taken up in Et_2O . The organic layer was washed with a saturated aqueous NaCl solution $(2 \times)$, dried (MgSO₄), filtered and evaporated. Column chromatography (SiO₂, CH₂Cl₂-AcOEt 8:2) yielded 4 (3.00 g, 52%). Colorless oil; ¹H-NMR (CDCl₃, 200 MHz): $\delta = 1.45 - 1.78$ (m, 16H), 3.47 (t, J = 6 Hz, 4H), 3.80 (s, 6H), 3.95 (t, J = 6 Hz, 4H), 4.42 (s, 4H), 4.60 (s, 2H), 6.37 (t, J = 2 Hz, 1H), 6.50 (d, J = 2 Hz, 2H), 6.90 (d, J = 8 Hz, 4H), 7.27 (d, J = 8 Hz, 4H); ¹³C-NMR (CDCl₃, 50 MHz): $\delta = 25.72, 25.80, 29.03, 29.49, 55.04, 64.93, 67.66, 69.81, 72.32,$ 100.20, 104.76, 113.54, 129.06, 130.29, 143.29, 158.90, 160.21; IR (CH_2Cl_2) : $v = 3599 \text{ cm}^{-1}$ (OH). $C_{35}H_{48}O_7 \cdot 0.5 H_2O_7$ (589.77). calcd C 71.28, H 8.37; found C 71.55, H 8.33.

Compound 5. A mixture of **4** (3.00 g, 5.16 mmol) and Meldrum's acid (0.75 g, 5.16 mmol) was heated at 110–120 °C for 3 h. After cooling, drying $(10^{-2} \text{ torr}, 24 \text{ h})$ provided **5** (3.40 g, 99%), which was used without further purification. Pale yellow oil; ¹H-NMR (CDCl₃, 200 MHz): $\delta = 1.44-1.80$ (m, 16H), 3.47 (t, J = 6 Hz, 4H), 3.48 (s, 2H), 3.80 (s, 6H), 3.93 (t, J = 6 Hz, 4H), 4.46 (s, 4H), 5.14 (s, 2H), 6.40 (t, J = 2 Hz, 1H), 6.48 (d, J = 2 Hz, 2H), 6.87 (d, J = 8 Hz, 4H), 7.26 (d, J = 8 Hz, 4H); ¹³C-NMR (CDCl₃, 50 MHz): $\delta = 25.71$, 25.76, 28.96, 29.38, 40.83, 55.10, 67.12, 67.80, 69.77, 72.28, 101.18, 106.14, 113.83, 129.24, 130.23, 137.10, 159.00, 160.27, 166.53, 169.40.

Compound 6. DCC (1.05 g, 5.10 mmol) and DMAP (0.10 g, 0.85 mmol) were added to **5** (3.40 g, 5.10 mmol) and *tert*-butyl 2-hydroxyacetate (0.56 g, 4.25 mmol) in CH₂Cl₂ (50 mL) at 0 °C. The mixture was allowed to slowly warm to room temperature (1 h) and, after stirring for 24 h, filtered and evaporated. Column chromatography (SiO₂, CH₂Cl₂) yielded **6** (3.03 g, 91%). Colorless oil; ¹H-NMR (CDCl₃, 200 MHz): $\delta = 1.33$ (s, 9H), 1.33–1.78 (m, 14H), 3.43 (t, J = 6 Hz, 4H), 3.51 (s, 2H), 3.80 (s, 6H), 3.93 (t, J = 6 Hz, 4H), 4.41 (s, 4H), 4.55 (s, 2H), 5.10 (s, 2H), 6.36 (t, J = 2 Hz, 1H), 6.46 (d, J = 2 Hz, 2H), 6.90 (d, J = 8 Hz, 4H), 7.27 (d, J = 8 Hz, 4H); ¹³C-NMR (CDCl₃, 50 MHz): $\delta = 25.77$, 25.86, 27.84, 29.05,

Published on 18 July 2000 on http://pubs.rsc.org | doi:10.1039/B003345F

Downloaded by Pennsylvania State University on 03 July 2012

29.56, 40.86, 55.10, 61.73, 67.16, 67.77, 69.85, 72.38, 82.54, 100.99, 106.29, 113.58, 129.08, 130.55, 137.06, 158.95, 160.26, 165.66, 166.04; IR (CH₂Cl₂): v = 1748 cm⁻¹ (C=O).

Compound 7. DBU (0.084 mL, 0.582 mmol) was added at room temperature to a solution of 6 (0.2 g, 0.254 mmol), C_{60} (0.168 g, 0.232 mmol), and I_2 (0.074 g, 0.291 mmol) in toluene (200 mL), and the mixture was stirred for 6 h. Filtration through a short plug of silica (CH₂Cl₂) followed by column chromatography (SiO₂, CH₂Cl₂-1% AcOEt) yielded 7 (106 mg, 30%). Dark red glassy product; ¹H-NMR (CDCl₃, 200 MHz): $\delta = 1.23-1.78$ (m, 16H), 1.53 (s, 9H), 3.43 (t, J = 6 Hz, 4H), 3.80 (s, 6H), 3.88 (t, J = 6 Hz, 4H), 4.42 (s, 4H), 4.82 (s, 2H), 5.47 (s, 2H), 6.38 (t, J = 2 Hz, 1H), 6.60 (d, J = 2 Hz, 2H), 6.87 (d, J = 8 Hz, 4H), 7.27 (d, J = 8 Hz, 4H); ¹³C-NMR $(CDCl_3, 50 \text{ MHz}): \delta = 26.02, 28.09, 29.23, 29.72, 51.80, 55.26,$ 63.11, 67.96, 69.13, 70.00, 71.25, 72.53, 83.09, 101.65, 107.37, 113.73, 129.21, 130.68, 136.61, 138.21, 139.88, 140.85, 141.85, 142.16, 142.97, 143.80, 144.45, 144.62, 144.91, 145.19, 159.05, 160.37, 163.07, 165.35; IR (CH₂Cl₂): $v = 1747 \text{ cm}^{-1}$ (C2O); UV/Vis (CH₂Cl₂): λ_{max} (ε) = 258 (108 000), 326 (33 200), 425 (2150), 482 (1210), 686 nm (140). $C_{104}H_{58}O_{12} \cdot 0.5CH_2Cl_2$ (1542.1): calcd C 81.39, H 3.86; found C 81.30, H 3.95.

Compound 1. DDQ (220 mg, 0.968 mmol) was added to a solution of 7 (660 mg, 0.44 mmol) in 18 : 1 CH₂Cl₂-H₂O (50 mL) and the mixture was stirred for 1 h. The resulting CH₂Cl₂ solution was washed with an aqueous NaHCO₃ solution, then with a saturated aqueous NaCl solution, dried (MgSO₄), filtered and evaporated. Column chromatography (SiO₂, CH₂Cl₂-2% MeOH) yielded 1 (462 mg, 84%). Dark red glassy product; ¹H-NMR (CDCl₃, 200 MHz): $\delta = 1.40-1.77$ (m, 16H), 1.58 (s, 9H), 3.68 (t, J = 6 Hz, 4H), 3.90 (t, J = 6 Hz, 4H), 4.85 (s, 2H), 5.50 (s, 2H), 6.40 (t, J = 2 Hz, 1H), 6.62 (d, J = 2 Hz, 2H); ¹³C-NMR (CDCl₃, 50 MHz): $\delta = 25.48$, 25.86, 28.00, 29.12, 32.57, 51.30, 62.72, 63.03, 67.84, 69.01, 71.15, 83.05, 101.57, 107.25, 136.56, 138.15, 139.77, 140.72, 140.80, 141.69, 141.79, 142.07, 142.75, 142.90, 143.67, 143.74, 144.35, 144.53, 144.76, 144.85, 145.09, 160.24, 162.82, 162.96, 165.31; IR (CH₂Cl₂): v = 3600 (OH), 1748 cm⁻¹ (C=O); UV/Vis (CH₂Cl₂): λ_{max} (ε) = 257 (136000), 326 (40600), 425 (2850), 482 (1540), 686 nm (200). $C_{88}H_{42}O_{10}$ (1259.3): calcd C 83.93, H 3.36; found C 83.55, H 3.46.

Compound 9. A mixture of K₂CO₃(41.5 g, 300 mmol), 3,5dihydroxybenzyl alcohol (10 g, 71.36 mmol) and 1bromooctane (35.6 g, 142.78 mmol) in DMF (150 mL) was heated at 70 °C for 41 h, then cooled to room temperature. After filtration through celite (CH_2Cl_2) and evaporation, the residue was taken up in Et_2O . The organic layer was washed with a saturated aqueous NaCl solution $(2 \times)$, dried $(MgSO_4)$, filtered and evaporated. Column chromatography (SiO₂, CH₂Cl₂-hexane 1:1) yielded 9 (23.48 g, 90%). Colorless oil; ¹H-NMR (CDCl₃, 200 MHz): $\delta = 0.89$ (t, J = 6.5 Hz, 6H), 1.30 (m, 20H), 1.73 (m, 4H), 3.93 (t, J = 6.5 Hz, 4H), 4.60 (br s, 2H), 6.38 (t, J = 2 Hz, 1H), 6.49 (d, J = 2 Hz, 2H); ¹³C-NMR (CDCl₃, 50 MHz): $\delta = 14.05$, 22.61, 26.00, 29.22, 29.31, 31.77, 65.28, 67.99, 110.45, 104.96, 143.19, 160.43; IR (CH₂Cl₂): $v = 3604 \text{ cm}^{-1}$ (OH). C₂₃H₄₀O₃ (364.6): calcd C 75.78, H 11.06; found C 75.72, H 11.20.

Compound 10. A mixture of **9** (11 g, 30.16 mmol) and Meldrum's acid (4.35 g, 30.16 mmol) was heated at 110–120 °C for 3 h. After cooling, drying (10⁻² torr, 24 h) provided **10** (13.55 g, 99%), which was used without further purification. Pale yellow oil; ¹H-NMR (CDCl₃, 200 MHz): $\delta = 0.89$ (t, J = 6 Hz, 6H), 1.30 (m, 20H), 1.76 (m, 4H), 3.50 (s, 2H), 3.91 (t, J = 6 Hz, 4H), 5.14 (s, 2H), 6.42 (t, J = 2 Hz, 1H), 6.48 (d, J = 2 Hz, 2H); ¹³C-NMR (CDCl₃, 50 MHz): $\delta = 14.05$, 22.61, 25.99, 29.18, 29.31, 31.77, 40.73, 67.52, 68.05, 101.25, 106.42, 136.87, 160.42, 166.49, 171.22; IR (CH₂Cl₂): v = 1747 cm⁻¹ (C=O).

Compound 11. DCC (4.58 g, 22.19 mmol) and DMAP (450 mg, 3.69 mmol) were added to *tert*-butyl 2-hydroxyacetate (2.44 g, 18.49 mmol) and **10** (10 g, 22.19 mmol) in CH₂Cl₂ (150 mL) at 0 °C. The mixture was allowed to slowly warm to room temperature (1 h) and, after stirring for 24 h, filtered and evaporated. Column chromatography (SiO₂, CH₂Cl₂) yielded **11** (9.77 g, 93%). Colorless oil; ¹H-NMR (CDCl₃, 200 MHz): $\delta = 0.89$ (t, J = 6 Hz, 6H), 1.35 (m, 20H), 1.49 (s, 9H), 1.77 (m, 4H), 3.53 (s, 2H), 3.91 (t, J = 6 Hz, 4H), 4.55 (s, 2H), 5.10 (s, 2H), 6.41 (t, J = 2 Hz, 1H), 6.46 (d, J = 2 Hz, 2H); ¹³C-NMR (CDCl₃, 50 MHz): $\delta = 13.99$, 22.54, 25.93, 27.83, 29.12, 29.23, 31.70, 40.87, 61.71, 67.14, 67.90, 82.49, 101.00, 106.26, 137.09, 160.31, 165.66, 166.02; IR (CH₂Cl₂): v = 1748 cm⁻¹ (C=O). C₃₂H₅₂O₈ (564.8): calcd C 68.06, H 9.28; found C 68.27, H 9.40.

Compound 12. DBU (0.310 mL, 2.08 mmol) was added at room temperature to a solution of 11 (516 mg, 0.915 mmol), C_{60} (600 mg, 0.832 mmol), and I_2 (264 mg, 1.04 mmol) in toluene (600 mL), and the mixture was stirred for 6 h. Filtration through a short plug of silica (toluene) followed by column chromatography (SiO₂, toluene) yielded 12 (470 mg, 44%). Dark red glassy product; ¹H-NMR (CDCl₃, 200 MHz): $\delta = 0.89$ (t, J = 6 Hz, 6H), 1.28 (m, 20H), 1.54 (s, 9H), 1.74 (m, 4H), 3.90 (t, J = 6 Hz, 4H), 4.84 (s, 2H), 5.48 (s, 2H), 6.40 (t, J = 2 Hz, 1H), 6.62 (d, J = 2 Hz, 2H); ¹³C-NMR (CDCl₃, 50 MHz): $\delta = 14.12, 22.67, 26.09, 28.07, 29.25, 29.38,$ 29.66, 31.80, 51.80, 63.08, 68.09, 69.12, 71.25, 83.06, 101.64, 107.34, 136.58, 138.22, 139.84, 140.84, 141.79, 141.88, 142.15, 142.85, 142.94, 143.77, 143.83, 144.42, 144.46, 144.61, 144.85, 144.92, 145.20, 160.40, 162.92, 163.05, 165.32; IR (CH₂Cl₂): $v = 1748 \text{ cm}^{-1}$ (C=O); UV/Vis (CH₂Cl₂): λ_{max} (ε) = 258 (107 000), 326 (35 300), 425 (2320), 482 (1310), 688 nm (170); ESMS: see Fig. 3. C₉₂H₅₀O₈ (1283.4): calcd C 86.10, H 3.93; found C 86.56, H 3.83.

Compound 8. A mixture of **12** (2.00 g, 1.56 mmol) and CF₃CO₂H (25 mL) in CH₂Cl₂ (100 mL) was stirred at room temperature for 1 h. The reaction mixture was then washed with water (until pH was near neutrality), dried (MgSO₄), filtered and evaporated to yield **8** (1.86 g, 97%). Dark red glassy product; ¹H-NMR (CDCl₃, 200 MHz): $\delta = 0.88$ (t, J = 6 Hz, 6H), 1.28 (m, 20H), 1.75 (m, 4H), 3.90 (t, J = 6 Hz, 4H), 5.01 (s, 2H), 5.45 (s, 2H), 6.41 (t, J = 2 Hz, 1H), 6.60 (d, J = 2 Hz, 2H); IR (CH₂Cl₂): $\nu = 1748$ cm⁻¹ (C=O); UV/Vis (CH₂Cl₂): λ_{max} (ε) = 258 (115 200), 325 (35 600), 425 (3260), 488 (1855), 687 nm (180). C₈₈H₄₂O₈ (1227.3): calcd C 86.12, H 3.45; found C 86.09, H 3.71.

Compound 13. DCC (143 mg, 0.694 mmol) and DMAP (13.58 mg, 0.111 mmol) were added to 8 (852 mg, 0.694 mmol), 1 (350 mg, 0.277 mmol), and HOBt (catalytic amount) in CH₂Cl₂ (150 mL) at 0 °C. The mixture was allowed to slowly warm to room temperature (1 h) and, after stirring for 24 h, filtered and evaporated. Column chromatography $(SiO_2,$ CH₂Cl₂) yielded 13 (720 mg, 70%). Dark red glassy product; ¹H-NMR (CDCl₃, 200 MHz): $\delta = 0.88$ (t, J = 6 Hz, 12H), 1.20–1.43 (m, 52H), 1.53 (s, 9H), 1.77 (m, 12H), 3.86 (t, J = 6Hz, 4H), 3.90 (t, J = 6, 8H), 4.22 (t, J = 6 Hz, 4H), 4.84 (s, 2H), 4.94 (s, 4H), 5.46 (s, 6H), 6.33 (t, J = 2 Hz, 1H), 6.40 (t, J = 2Hz, 2H), 6.57 (d, J = 2 Hz, 2H), 6.60 (d, J = 2 Hz, 4H); ¹³C-NMR (CDCl₃, 50 MHz): $\delta = 14.14$, 22.65, 25.56, 25.82, 26.09, 28.05, 28.46, 29.10, 29.25, 29.37, 31.77, 51.22, 51.23, 62.57, 63.05, 65.71, 67.73, 68.05, 69.02, 71.12, 71.18, 83.02, 101.54, 107.15, 107.28, 136.52, 136.65, 138.12, 138.39, 139.73, 139.84, 140.83, 141.72, 141.82, 142.10, 142.75, 142.81, 142.91, 143.68, 143.76, 144.32, 144.40, 144.55, 144.79, 144.88, 145.10,

145.23, 160.24, 160.38, 162.89, 165.28, 166.40; UV/Vis (CH₂Cl₂): λ_{max} (ε) = 258 (340 000), 327 (107 700), 425 (9500), 482 (4500), nm 689 (570); ESMS: see Fig. 4. C₂₆₄H₁₂₂O₂₄ (3677.9): calcd C 86.22, H 3.34; found C 86.07, H 3.36.

Compound 14. A mixture of 13 (680 mg, 0.184 mmol) and CF₃CO₂H (25 mL) in CH₂Cl₂ (100 mL) was stirred at room temperature for 1 h. The reaction mixture was then washed with water (until pH was near neutrality), dried (MgSO₄), filtered and evaporated to yield 14 (660 mg, 98%). Dark red glassy product; ¹H-NMR (CDCl₃, 200 MHz): $\delta = 0.88$ (t, J = 6 Hz, 12H), 1.27–1.43 (m, 52H), 1.70 (m, 12H), 3.87 (t, J = 6 Hz, 4H), 3.89 (t, J = 6 Hz, 8H), 4.24 (t, J = 6 Hz, 4H), 4.95 (s, 4H), 4.98 (s, 2H), 5.43 (s, 2H), 5.46 (s, 4H), 6.35 (t, J = 2Hz, 1H), 6.40 (t, J = 2 Hz, 2H), 6.59 (d, J = 2 Hz, 2H), 6.61 (d, J = 2 Hz, 4H); ¹³C-NMR (CDCl₃, 50 MHz): $\delta = 14.15$, 22.67, 25.51, 25.80, 26.11, 28.44, 29.09, 29.25, 29.37, 29.58, 31.80, 51.10, 51.18, 62.09, 62.62, 65.79, 67.78, 68.08, 69.05, 71.09, 101.56, 107.17, 136.52, 136.65, 138.40, 138.50, 139.74, 140.80, 141.72, 141.81, 142.10, 142.81, 142.92, 143.76, 144.39, 144.55, 144.79, 144.89, 145.11, 160.27, 160.37, 162.77, 162.88, 162.97, 166.65; IR (CH₂Cl₂): v = 1748 cm⁻¹ (C=O); UV/Vis (CH₂Cl₂): λ_{max} (ε) = 258 (276 000), 326 (90 700), 425 (8880), 480 (4000) 686 nm (530); ESMS (negative mode): m/ $z = 1207.4 ([M^{3}]), 1810.8 ([M^{3} + H^{+}]).$

Compound 15. DCC (11.4 mg, 0.055 mmol) and DMAP (1 mg) were added to 14 (200 mg, 0.055 mmol), 1 (27.8 mg, 2.20.10⁻² mmol) and HOBt (catalytic amount) in CH₂Cl₂ (50 mL) at 0 °C. The mixture was allowed to slowly warm to room temperature (1 h) and, after stirring for 24 h, filtered and evaporated. Column chromatography (SiO₂, CHCl₃) yielded 15 (70 mg, 37%). Dark red glassy product; ¹H-NMR (CDCl₃, 400 MHz): $\delta = 0.88$ (t, J = 6 Hz, 24H), 1.20–1.46 (m, 116H), 1.54 (s, 9H), 1.56–1.79 (m, 28H), 3.85 (t, J = 6 Hz, 4H), 3.86 (t, J = 6 Hz, 8H), 3.91 (t, J = 6 Hz, 16H), 4.23 (t, J = 6 Hz, 4H), 4.24 (t, J = 6 Hz, 8H), 4.85 (s, 2H), 4.94 (s, 12H), 5.45 (s, 2H), 5.47 (s, 12H), 6.33 (t, J = 2 Hz, 1H), 6.35 (t, J = 2 Hz, 2H), 6.42 (t, J = 2 Hz, 4H), 6.56 (d, J = 2 Hz, 4H), 6.58 (d, J = 2Hz, 2H), 6.61 (d, J = 2 Hz, 8H); ¹³C-NMR (CDCl₃, 50 MHz): $\delta = 14.16, 22.68, 25.59, 25.87, 26.12, 28.10, 28.50, 29.26,$ 29.28, 29.40, 29.66, 31.80, 51.24, 51.50, 62.63, 65.74, 67.78, 68.09, 69.05, 71.15, 83.06, 101.56, 107.18, 136.56, 136.66, 138.12, 138.42, 138.43, 139.76, 139.77, 140.81, 140.82, 141.72, 141.84, 142.13, 142.83, 142.85, 142.94, 143.79, 144.71, 144.43, 144.57, 144.82, 144.91, 145.13, 160.30, 160.41, 162.89, 166.43; UV/Vis (CH₂Cl₂): λ_{max} (ε) = 258 (550 000), 326 (190 000), 425 (19 600), 690 nm (2000); ESMS: see Fig. 4. C₆₀₈H₂₆₆O₅₆·3 CHCl₃ (8824.9): calcd C 83.16, H 3.07; found C 83.09, H 3.18.

Compound 16. A mixture of **15** (25 mg, 2.96×10^{-3} mmol) and CF₃CO₂H (10 mL) in CH₂Cl₂ (50 mL) was stirred at room temperature for 3 h. The reaction mixture was then washed with water (until pH was near neutrality), dried (MgSO₄), filtered and evaporated to yield 16 (20 mg, 80%). Dark red glassy product; ¹H-NMR (CDCl₃, 200 MHz): $\delta = 0.88$ (t, J = 6 Hz, 24H), 1.26 (m, 116H), 1.74 (m, 28H), 3.92 (m, 28H), 4.22 (m, 12H), 4.94 (br s, 14H), 5.46 (br s, 14H), 6.33 (m, 3H), 6.40 (t, J = 2 Hz, 4H), 6.55 (m, 6H), 6.60 (d, J = 2 Hz, 8H); ¹³C-NMR (CDCl₃, 50 MHz): $\delta = 14.18$, 22.70, 25.60, 25.88, 26.15, 28.51, 29.30, 29.42, 29.89, 31.83, 51.80, 62.66, 65.82, 67.83, 68.12, 69.10, 71.15, 101.60, 107.22, 136.59, 136.60, 138.44, 138.46, 139.81, 140.85, 141.76, 141.88, 142.16, 142.95, 142.96, 142.97, 143.82, 144.45, 144.60, 144.85, 144.94, 145.15, 160.33, 160.43, 162.96, 162.98, 166.54, 166.56, 166.59; IR (CH₂Cl₂): $v = 1748 \text{ cm}^{-1}$ (C=O); UV/Vis (CH₂Cl₂): λ_{max} $(\varepsilon) = 259 (546\,000), 326 (187\,700), 425 (23\,830), 684 (1900) \text{ nm}.$

Acknowledgements

This work was supported by the CNRS. HN, EL and AVD

thank the TMR-Project EU Nr. ERBFMRXCT980226 on Nanometer Size Metallic Complexes for financial support of the ESMS work. H.N. thanks the Laboratoire P. Fabre for financial support. We are grateful to J.-D. Sauer for NMR measurements and to L. Oswald for technical help.

References

- A. Hirsch, The Chemistry of the Fullerenes, Thieme, Stuttgart, 1994; F. Diederich, L. Isaacs and D. Philp, Chem. Soc. Rev., 1994, 23, 243; F. Diederich and C. Thilgen, Science, 1996, 271, 317; H. Imahori and Y. Sakata, Adv. Mater., 1997, 9, 537; Y. Rubin, Chem. Eur. J., 1997, 3, 1009; F. Diederich, Pure Appl. Chem., 1997, 69, 395; M. Prato and M. Maggini, Acc. Chem. Res., 1998, 31, 519; T. Chuard and R. Deschenaux, Chimia, 1998, 52, 547; N. Martin, L. Sanchez, B. Illescas and I. Perez, Chem. Rev., 1998, 98, 2527; A. L. Balch and M. M. Olmstead, Chem. Rev., 1998, 98, 2123; H. Imahori and Y. Sakata, Eur. J. Org. Chem., 1999, 2445; F. Diederich and R. Kessinger, Acc. Chem. Res., 1999, 32, 537; F. Diederich and M. Gomez-Lopez, Chem. Soc. Rev., 1999, 28, 263; J. L. Segura and N. Martín, Chem. Soc. Rev., 2000, 29, 13.
- 2 S. K. Srivastava, G. Jong, S. Leifer and W. Saunders, Rapid Commun. Mass Spectrom., 1993, 7, 610.
- 3 D. C. Brune, Rapid Commun. Mass Spectrom., 1999, 13, 384.
- 4 C. G. Juo, L. L. Shiu, C. K.-F. Shen, T. Y. Luh and G. R. Her, Rapid Commun. Mass Spectrom., 1995, 9, 604.
- 5 J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong and C. M. Whitehouse, *Science*, 1989, 246, 64.
- 6 H. Rogniaux, A. Van Dorsselaer, P. Barth, J.-F. Biellmann, J. Barbanton, M. van Zandt, B. Chevrier, E. Howard, A. Mitschler, N. Potier, L. Urzhumtseva, D. Moras and A. Podjarny, J. Am. Soc. Mass Spectrom., 1999, 10, 635.
- 7 (a) E. Leize, A. Van Dorsselaer, R. Krämer and J.-M. Lehn, J. Chem. Soc., Chem. Commun., 1993, 990; (b) K. C. Russel, E. Leize, A. Van Dorsselaer and J.-M. Lehn, Angew. Chem., Int. Ed. Engl., 1994, 34, 209; (c) G. Hopgartner, C. Piguet, J. D. Henion and A. F. Williams, Helv. Chim. Acta, 1993, 76, 1759.
- 8 S. R. Wilson and Y. Wu, J. Am. Soc. Mass Spectrom., 1993, 4, 596.
- 9 (a) S. Fujimaki, I. Kudaka, T. Sato, K. Hiraoka, H. Shinohara, Y. Saito and K. Nojima, *Rapid Commun. Mass Spectrom.*, 1993, 7, 1077; (b) G. Khairallah and J. B. Peel, *Int. J. Mass Spectrom.*, 2000, **194**, 115.
- 10 A. Dupont, J.-P. Gisselbrecht, E. Leize, L. Wagner and A. Van Dorsselaer, *Tetrahedron Lett.*, 1994, 33, 6083.
- 11 A. T. Blades, M. G. Ikonomou and P. Kebarle, Anal. Chem., 1991, 63, 2109.
- 12 J.-F. Nierengarten, D. Felder and J.-F. Nicoud, *Tetrahedron* Lett., 2000, **41**, 41.
- 13 C. Hawker and J. M. J. Fréchet, J. Chem. Soc., Chem. Commun., 1990, 1010; G. R. Newkome, C. N. Moorefield and F. Vögtle, Dendritic Molecules: Concepts, Synthesis, Perspectives, VCH, Weinheim, 1996.
- 14 A. Bouzide and G. Sauvé, Tetrahedron Lett., 1997, 38, 5945.
- 15 B.-C. Chen, Heterocycles, 1991, 32, 529.
- 16 J. Jurayj and M. Cushman, Tetrahedron, 1992, 48, 8601.
- 17 C. Bingel, Chem. Ber., 1993, 126, 1957.
- 18 (a) J.-F. Nierengarten, V. Gramlich, F. Cardulo and F. Diederich, Angew. Chem., Int. Ed. Engl., 1996, 35, 2101; (b) X. Camps and A. Hirsch, J. Chem. Soc., Perkin Trans. 1, 1997, 1595.
- 19 J.-F. Nierengarten, A. Herrmann, R. R. Tykwinski, M. Rüttimann, F. Diederich, C. Boudon, J.-P. Gisselbrecht and M. Gross, *Helv. Chim. Acta*, 1997, 80, 293.
- 20 P. J. Kocienski, *Protecting Groups*, Thieme, Stuttgart, 1994, pp. 52–54.
- 21 J.-F. Nierengarten and J.-F. Nicoud, Tetrahedron Lett., 1997, 38, 7737.
- (a) C. Boudon, J.-P. Gisselbrecht, M. Gross, L. Isaacs, H. L. Anderson, R. Faust and F. Diederich, *Helv. Chim. Acta*, 1995, **78**, 1334; (b) M. Keshavarz, B. Knight, R. C. Haddon and F. Wudl, *Tetrahedron*, 1996, **52**, 5149; (c) D. Armspach, E. C. Constable, F. Diederich, C. E. Housecroft and J.-F. Nierengarten, *Chem. Eur. J.*, 1998, **4**, 723.
- 23 L. Echegoyen and L. E. Echegoyen, Acc. Chem. Res., 1998, 31, 593.
- 24 A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley, New York, 1980.
- 25 A. J. Fry, Synthetic Electrochemistry, Harper, New York, 1972.
- 26 F. Ammar and J. M. Savéant, J. Electroanal. Chem., 1973, 47, 215

Published on 18 July 2000 on http://pubs.rsc.org | doi:10.1039/B003345F

Downloaded by Pennsylvania State University on 03 July 2012