

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry

Bioorganic & Medicinal Chemistry 14 (2006) 6288-6306

A generic building block for C- and N-terminal protein-labeling and protein-immobilization

Anja Watzke,^{a,b} Marta Gutierrez-Rodriguez,^{a,b} Maja Köhn,^{a,b} Ron Wacker,^c Hendrik Schroeder,^{c,f} Rolf Breinbauer,^{a,b} Jürgen Kuhlmann,^d Kirill Alexandrov,^e Christof M. Niemeyer,^{c,f} Roger S. Goody^{e,*} and Herbert Waldmann^{a,b,*}

^aMax-Planck-Institut für molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany ^bUniversität Dortmund, Fachbereich Chemie, Chemische Biologie, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany

^cChimera Biotec GmbH, Emil-Figge-Strasse 76a, 44227 Dortmund, Germany

^dMax-Planck-Institut für molekulare Physiologie, Abteilung Strukturelle Biologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany ^eMax-Planck-Institut für molekulare Physiologie, Abteilung Physikalische Biochemie,

Otto-Hahn-Strasse 11, 44227 Dortmund, Germany

^fUniversität Dortmund, Fachbereich Chemie, Biologisch-Chemische Mikrostrukturtechnik, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany

> Received 8 March 2006; revised 2 May 2006; accepted 2 May 2006 Available online 24 May 2006

Abstract—Expressed protein ligation (EPL) and bioconjugation based on the maleimide group (MIC-conjugation) provide powerful tools for protein modification. In the light of the importance of site-selectively modified proteins for the study of protein function, a flexible method for the introduction of tags and reporter groups into the C-terminus of proteins employing EPL and MIC-conjugation was developed. We describe the solid-phase synthesis of a generic building block, equipped with fluorescence markers or different functional groups. This generic building block allows for a flexible incorporation of different tags into proteins and was used for the introduction of fluorescence markers into the C-terminus of Rab and Ras GTPases by EPL or MIC-conjugation techniques. In addition, a building block appropriately modified for the incorporation of an azide into proteins was synthesized. Azide-functionalized Ras protein was immobilized on a phosphane-modified surface by means of Staudinger ligation providing a highly chemoselective ligation method for the immobilization of proteins. © 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Proteins equipped with moieties such as fluorophores are efficient probes for the study of protein function. In vitro ligation methods¹ provide powerful tools for the introduction of such small organic molecules into proteins. Expressed protein ligation² (EPL) is a broadly applicable method for the site-specific modification of proteins. Small organic molecules made accessible by organic synthesis can be ligated by EPL to the C-terminus of proteins. Most frequently, modified peptides corresponding to the C-terminus of proteins have been used in this semi-synthetic approach to yield functionalized proteins.³ In the light of the increasing interest in the use of precisely modified proteins as probes for the study of protein function, we have developed a flexible and general method for the synthesis of functional building blocks to be used for protein-modification.

As proteins of interest Rab GTPases, which play an important role in regulating vesicular transport processes,⁴ and Ras GTPases, which are membranebound signal transducers occupying a central position in the MAP-kinase signal transduction pathway,⁵ were chosen. Chemical labeling of Rab and Ras GTPases is a invaluable tool for the elucidation of the biological function of these small GTPases.

Because of the central role of Ras proteins in signal transduction the identification of Ras interaction

Keywords: Chemical biology; Protein modification; Solid-phase synthesis; Protein immobilization.

^{*} Corresponding authors. Tel.: +49 231 133 2400; fax: +49 231 133 2499; e-mail addresses: roger.goody@mpi-dortmund.mpg.de; herbert. waldmann@mpi-dortmund.mpg.de

partners or small molecules interfering with Ras-protein interactions is of utmost importance.⁶ For the study of protein–protein interactions protein-immobilization is a powerful technique, reflected by an increasing interest in protein-microarray technology.⁷

For the application of protein arrays in proteomics research^{7–10} site- and chemoselective immobilization of proteins via regions of the macromolecules that are not involved in interactions with other molecules is preferable or even required. Recently, chemo- and regioselective expressed protein ligation was employed for this purpose.¹¹

We describe the use of the generic building block for the site-selective immobilization of Ras. Our approach to a generic building block for protein-modification and immobilization includes the introduction of an azide into the C-terminus of the Ras-protein by means of EPL allowing for the immobilization of azide-modified Ras on phosphane-functionalized surfaces by means of Staudinger ligation. The Staudinger ligation has been applied to protein immobilization by Raines and co-workers¹² and Bertozzi and co-workers¹³ by non-covalent binding of a protein to an immobilized peptide sequence. The use of the Staudinger ligation in living cells by Bertozzi and co-workers¹⁴ and for the preparation of small molecule microarrays¹⁵ demonstrates its potential as powerful coupling strategy and its tolerance of a diverse array of functionalities. Here, we report that the Staudinger ligation provides a new chemoselective method for immobilization of proteins equipped with an azide to a phosphane-modified surface.¹⁶

2. Design of a triply substituted building block

A benzene derivative equipped with a triply orthogonal set of functional groups was chosen as core structure. It should contain a linker group for its introduction into proteins, so that the remaining two functional groups can be equipped with tags, labels or reporter groups of interest. Consequently, the desired building block was equipped with a cysteine or a maleimidocaproyl (MIC)-group which is required for introduction into proteins by expressed protein ligation or MIC-conjugation, respectively. Substituted benzene derivatives as shown in Scheme 1 represent suitable building blocks bearing one amino group for the attachment of the required cysteine or a MIC-group and a second amino group for the introduction of reporter groups. An additional carboxylic acid group may be further transformed into a thioester which would allow an N-terminal attachment to proteins containing an N-terminal cysteine by means of EPL. Such a functionalized building block would provide the possibility for protein-modification at well-defined sites.

We note that a suitably functionalized amino acid, for example, lysine or glutamic acid equipped with three orthogonally stable protecting groups, would be an alternative to the aromatic building block developed by us. Since the chemistry for the functionalization of amino acids with appropriate protecting groups is well established and since arene chemistry might offer alternatives in terms of reactivity, stability and applicable reaction types and conditions, we decided to explore an aromatic building block instead of a more established approach based on a trifunctional amino acid.

3. Synthesis of building blocks used for protein-labeling

For the development of a flexible synthesis of differently modified core molecules we aimed at a solid-phase synthesis. In order to establish a suitable protocol for the synthesis of the desired building block, we decided to explore first a solution-phase strategy.

Starting from the commercially available dimethyl-5nitro-isophthalate 1 one methyl ester was reduced to the corresponding alcohol 2 which was subsequently protected and converted to azide 4 (Scheme 2). The azide was reduced to amine 5, which was then coupled to an Mmtand Trt-protected cysteine derivative. The obtained intermediate 6 could be further modified. Reduction of the nitro group with palladium on charcoal under a hydrogen atmosphere, followed by attachment of the fluorescent 5-N,N-(dimethylamino)-naphthalene-1-sulfonyl(dansyl)group, yielded fluorescently labeled benzene derivative 8 with good to excellent yield.

For the development of a solid-phase synthesis of the building block based on these reaction conditions the choice of the linker for connecting the core molecule to the solid phase had to be considered. To make this approach more broadly applicable, cleavage of the desired compounds from the resin should be possible

Scheme 1. Design of a triply orthogonally substituted benzene derivative as generic building block for protein labeling.

Scheme 2. Synthesis of fluorescently labeled building block 8 in solution. Reagents and conditions: (a) 2.5 equiv DIBAL-H, THF, -70 °C; (b) 1.5 equiv MsCl,10 equiv Et₃N, CH₂Cl₂, 30 min, 0 °C; (c) 5 equiv NaN₃, DMF, 50 °C, 6 h; (d) 6 equiv HS–(CH₂)₃–SH, 4 equiv Et₃N, MeOH, 12 h, rt; (e) Trt-Cys(Mmt)-OH, 1.2 equiv HOBt, 1.1 equiv HBTU, 2 equiv Et₃N, CH₂Cl₂, 12 h, rt; (f) Pd/C, H₂, MeOH; (g) 1.5 equiv dansylCl, 0.5 equiv DMAP, 3 equiv Py, CH₂Cl₂, 12 h, rt.

under very mild conditions giving the opportunity for further modification. These requirements are fulfilled by the oxidation-sensitive hydrazide linker.¹⁷ Therefore, 4-Fmoc-hydrazinobenzoyl AM NovaGel (Novabiochem) was employed for the synthesis, drawing from previous experience on the synthesis of Ras- and Rab-peptides.⁴ This linker allows for release of the immobilized compounds as carboxylic acids, methyl esters or amides making this approach desireably flexible.

The solid-phase synthesis started with the immobilization of the azide to the solid support (Scheme 3). The 4-Fmoc-hydrazinobenzoyl AM NovaGel resin was deprotected by agitating it twice with a solution of 30% piperidine in DMF for 10 min. After saponification of the methyl ester building block, 4 was attached to the resin using DIC/HOBt as coupling reagents in dichloromethane, yielding resin 9 after 12 h of agitation. The introduction of the protected cysteine derivative was achieved by activating the amino acid with DIC/HOBt for 20 min and treating resin 9 with the activated cysteine in the presence of tributylphosphine for amide bond formation. The resin was further treated with a 1 M solution of SnCl₂·2H₂O in DMF for the reduction of the nitro group. Afterwards, the dansyl group was attached to the resin by using dansyl chloride in the presence of DMAP and pyridine. The desired compound 11

was released from the resin by oxidation of the hydrazide to the acyldiazene with copper acetate and oxygen followed by treatment with methanol. After cleavage, the copper salts could be removed by column chromatography to give compound **11** in 55% overall yield.

After removal of the Fmoc-group from compound 11, fluorescently labeled compound 12 was ligated to truncated Ypt1 Δ 3-thioester¹⁸ (the yeast analogue of human Rab7) by expressed protein ligation (Scheme 4). For the ligation reaction thioester-tagged Ypt1 Δ 3 was mixed with 5-fold molar excess of compound 12 and incubated for 12 h at room temperature. The ligation reaction did not depend on the presence of a detergent due to the good solubility of the building block in the buffer solution.

The reaction mixtures were resolved on an SDS–PAGE gel and the obtained gel was examined under UV light. Figure 1A shows that a fluorescent product could be detected at the position corresponding to the semi-synthetic Ypt1 protein. Figure 1B shows the mass spectrum of the semi-synthetic and fluorescently-labeled Ypt1-protein.

Additionally, the solid-phase synthesis of a fluorescently labeled MIC-modified building block allowing chemical

Scheme 3. Synthesis of the fluorescently labeled building block 11 on the solid phase. Reagents and conditions: (a) 1.5 equiv NaOH, H₂O/dioxane; (b) 3 equiv DIC, HOBt, Et₃N, CH₂Cl₂, hydrazide resin, 12 h, rt; (c) 3 equiv Fmoc-Cys(S-*t*-Bu)-OH, DIC, HOBt, THF, 20 min, rt; (d) 3 equiv Bu₃P, 12 h, rt, (e) SnCl₂:2H₂O, DMF, 2 h, rt; (f) 3 equiv dansylCl, 3 equiv pyridine, 0.5 equiv DMAP, 2 h, rt; (g) 0.005 M Cu(OAc)₂, pyridine, MeOH, CH₂Cl₂, O₂, 3 h, rt.

Scheme 4. Ligation of the fluorescently labeled building blocks 11 after Fmoc-deprotection to Ypt1 Δ 3-thioester. Reagents and conditions: (a) EtNH₂/CH₂Cl₂ (1:4); (b) a—50 mM Na₂HPO₄/NaH₂PO₄, pH 7.5, 0.1 mM MgCl₂, 2 μ M GDP, 150 mM 2-mercaptoethanesulfonic acid (MESNA), 12 h, rt.

labeling of proteins via MIC-conjugation and of a fluorescently labeled thioester allowing an N-terminal introduction of a fluorescence marker into the protein was carried out. To this end, amine 4 was protected with the Boc-group and after saponification compound 14 was immobilized on the solid support (Scheme 5). The immobilized building block 15 could be further modified on the solid phase. After removal of the Boc group, the amine was coupled to the dansyl group. The second amino group was generated by reduction of the nitro group and used for the introduction of the MIC-group. The desired compound 17 was cleaved from the resin and after purification by column chromatography obtained with a yield of 63%. The analogous solution-phase synthesis of desired fluorescent-labeled compound 17 provided a lower overall yield of 23%.

Apart from the higher yield of the solid-phase synthesis, a direct comparison of the solution phase and solidphase routes revealed that in terms of efficiency, speed and flexibility the solid-phase technique is superior. Thioester 18 was generated in a similar way (Scheme 5). Due to problems encountered using thiols as nucleophiles for the final cleavage step we decided to apply a strategy used for the synthesis of peptide thioesters on the hydrazine support.¹⁹ After oxidation of the hydrazide linker with NBS, glycine-S-ethyl-thioester was used as a nucleophile for the final cleavage of thioester 18 from the solid phase. The nitro group was reduced to the amine before cleavage from the resin to increase the polarity of the compound required for the ligation reaction in ligation buffer. Ligation of 18 to Rab6Aprotein was achieved with a yield of ca. 10-20% of fluorescently labeled, semi-synthetic protein. Non-ligated Rab6A-protein was found to be difficult to seperate from the ligation product.

MIC-conjugation of 17 to truncated ¹⁻¹⁸¹N-Ras²⁰ was carried out successfully using only a very small excess of compound 17 (Fig. 2A). The ligation was complete

Figure 1. (A) SDS–PAGE gel of the fluorescently labeled semi-synthetic $^{1-203}$ Ypt1-protein. The gel was photographed either in UV-light or visible light after Coomassie blue staining. (B) Deconvoluted MS-spectrum of the semi-synthetic protein. Calculated mass: 23,454 Da [M+H]⁺.

Scheme 5. Synthesis of the fluorescently labeled building block 17 for MIC-conjugation and thioester 18 for N-terminal EPL. Reagents and conditions: (a) Boc₂O, Et₃N, THF, 0 °C; (b) 1.5 equiv NaOH, H₂O/dioxane; (c) hydrazide resin, 3 equiv HOBt, DIC, Et₃N, CH₂Cl₂, 12 h, rt; (d) 50% TFA/CH₂Cl₂; (e) 3 equiv dansyl-Cl, pyridine, 0.5 equiv DMAP, 3 h, rt; (f) 1 M SnCl₂·2H₂O, DMF, 2 h, rt; (g) NBS, pyridine; (h) 10 equiv H₂N-Gly-SEt, Et₃N, DMF; (i) 2 equiv MIC, HOBt, HBTU, DIPEA, DMF, 12 h, rt; (k) 0.005 M Cu(OAc)₂, MeOH, pyridine, O₂.

6293

Figure 2. (A) Ligation of the fluorescently labeled derivative 17 with truncated ^{1–181}N-Ras. Reagents and conditions: (a) 50 mM Tris-buffer, pH 7.4, 0.1 mM NaCl, 2 μ M GDP, 12 h, rt. (B) SDS–PAGE gel of the crude ligation mixture. (C) MALDI-TOF spectra of the purified semi-synthetic protein. Calculated mass: 21,005 Da [M+H]⁺. The deviation of the observed molecular mass from the calculated values is within the error range of the mass spectrometer. Matrix: sinapinic acid.

after 12 h and the semi-synthetic product was purified by gel filtration. Figure 2C shows the MALDI-TOF spectrum of the fluorescently labeled N-Ras protein.

4. Immobilization of N-Ras-protein

Encouraged by the successful ligation of the fluorescently labeled building block to the C-terminus of truncated Rab- and Ras-proteins, we aimed at the synthesis of an azide-tagged Ras-protein suitable for immobilization on a phosphane-functionalized surface by means of Staudinger ligation (Fig. 3). The hypervariable C-terminal region of the signal-transducing Ras oncoproteins is believed to primarily mediate protein-membrane interactions and to be less important for Ras-effector interactions than other regions of the protein.^{5c} Therefore, immobilization of Ras via the C-terminus is desirable.

For visualization of proteins on the surface Cy5 was also coupled to the building block as suitable fluorescence marker.

For immobilisation experiments, benzene derivative **15** was appropriately functionalized (Scheme 6). The modification of the building block with Cy5 was achieved on the solid support. Due to its high polarity, Cy5 adhered to the resin and could hardly be removed from the solid

Linker: cysteine or MIC-group

Figure 3. Concept for immobilization of functionalized proteins on phosphine-modified glass-slides via Staudinger ligation.

Scheme 6. Synthesis of different functionalized benzene derivatives on the solid phase. Reagents and conditions: (a) $SnCl_2 2H_2O$, DMF, 2 h, rt; (b) 3 equiv MIC, HOBt, DIC, 12 h, rt; (c) 50% TFA/CH₂Cl₂, 30 min; (d) 6 equiv Cy5, HOBt, HBTU, Et₃N, 12 h, rt; (e) NBS, pyridine; (f) MeOH/ CH₂Cl₂; (g) 3 equiv N₃-(CH₂)₅-CO₂H, HOBt, DIC, DIPEA, CH₂Cl₂, 12 h, rt; (h) 3 equiv Fmoc-Cys(S-*t*-Bu)-OH, 3 equiv HOBT, HBTU, DIPEA, 4 h, rt; (i) H₂O/THF; (m) 4 equiv Cy5-Et-NH₂, 4 equiv HOBt, HBTU, DIPEA, 12 h, rt; (j) 4 equiv Trt-Cys(Mmt)-OH, 4 equiv HOBT, HBTU, DIPEA, 4 h, rt; (k) 4 equiv H₂N-(CH₂)₆-N₃, THF; (l) 4 equiv Cy5-Et-NH₂, 4 equiv HOBt, HBTU, DIPEA, 12 h, rt; (m) 3 equiv Cy5, 8 equiv HOBt, HBTU, 4 equiv DIPEA; (n) 10% piperidine/DMF, 5 min.

support. To solubilize the fluorophore, methanol had to be used as solvent which, however, leads to insufficient swelling of the resin. Therefore, compound **19** was obtained with only 5% yield. To overcome this problem, we decided to synthesize triply substituted building block **21**. To this end, azide- and cysteine-functionalized carboxylic acid **20** was cleaved from the solid support by using a mixture of water and THF. Cy5 could then be coupled to **20** as amide to yield the desired triply functionalized compound **21**, which was purified by preparative HPLC. The amino derivative of Cy5 employed in this sequence was synthesized as shown in Scheme 6. Ethylenediamine derivative **23** was deprotected and then coupled to Cy5 yielding **24** in moderate yield. In the final step the Fmoc-group was removed under basic conditions, which are in general tolerated by Cy5.

Figure 4. (A) Ligation of **19** to truncated $^{1-181}$ N-Ras-protein. Reagents and conditions: (a) 50 mM Tris-buffer, pH 7.4, 0.1 mM NaCl, 2 μ M GDP, 12 h, rt. (B) Deconvoluted MS-spectrum of the semi-synthetic protein (calculated mass: 21,411 Da [M+H]⁺) and SDS–PAGE gel of the purified semi-synthetic protein. The gel was photographed either in UV-light or visible light after Coomassie blue staining.

The Cy5-labeled compound **19** was ligated to truncated $^{1-181}$ N-Ras by MIC-conjugation (Fig. 4A). Only a slight excess of compound **19** was required for a successful ligation reaction yielding the semi-synthetic and Cy5-labeled Ras-protein quantitatively. Figure 4B shows the mass spectrum of the labeled N-Ras-protein after purification and the SDS–PAGE gel of the purified ligation product.

The azide-modified building block 22 was generated on solid phase by using one amino group of the building block 15 for the introduction of the cysteine, whereas the desired azide was introduced in the final cleavage step (Scheme 6). To avoid the formation of undesired complexes formed by copper-salts and azides, NBS was used to oxidize the hydrazide linker. By proper selection of the cleavage nucleophile, a further function-alization could be achieved. For synthesis of compound 22, 6-azido-hexylamine was used as nucleophile. The cleavage proceeded smoothly, although in contrast to methanol, the excess of amine could not be removed by straightforward evaporation or extraction. However, simple column chromatography sufficed to purify the desired compound 22.

To introduce an azide into the C-terminus of N-Ras, intermediate **22** was deprotected and afterwards ligated to truncated ¹⁻¹⁸⁰N-Ras-thioester by expressed protein ligation (Fig. 5A). After incubation of the thioestertagged N-Ras-protein with the azide-modified building block for 12 h at room temperature, the obtained semi-synthetic N-Ras-protein was purified by gel filtration using DEAE-column chromatography. Figure 5B shows the LC/MS trace of the semi-synthetic N-Ras. It is important to note that the ligation reaction with azide-carrying building block is efficient in the presence of excess thiol, that is, the azide is not reduced to the amine under these conditions.

The reduction of alkyl azides by mono- and dithiols has been investigated before. Thus, the monothiol mercaptoethanol reduces alkyl azides much slower than, for example, 1,4-dithiothreitol.²⁰ Accordingly, azide **4** is efficiently reduced by propane-1,3-dithiol (Scheme 4) whereas the monothiol mercaptoethanesulfonic acid does not reduce the alkyl azide under the conditions described above.

For the immobilization of the azide-functionalized Rasprotein glass-slides initially modified with an intermediate layer of generation 4 PAMAM dendrimers were chosen as carriers to achieve maximum surface coverage.¹⁵ For covalent attachment of the protein by means of Staudinger ligation the surface of the slides had to be decorated with an appropriately functionalized phosphine.^{14a} This phosphane has been used for in vivo studies applying the Staudinger ligation.14c Phosphane groups on surfaces in general are prone to oxidation, the phosphine used here was developed by Bertozzi et al. to limit air oxidation.²¹ For the spotting experiments, the azide-modified protein (positive control; PC) as well as the non-modified Ras-protein as a negative control (NC) were dissolved in phosphate buffer at 200–100 µM by means of a piezo-driven spotting robot.²² Subsequent to the spotting process the slides were washed with buffer and blocked with bovine serum

Figure 5. (A) Ligation of compound 22 after removal of all protection groups to $^{1-180}$ N-Ras-thioester. (B) Deconvoluted LC-MS spectra of the purified semi-synthetic protein. Calculated mass: 20,747 Da [M+H]⁺.

albumin (BSA)-containing blocking solution to prevent non-specific binding of protein reagents. The slides were then treated with Cy5-labeled Ras-antibody (50 nM, 1 h at room temperature). The fluorescent signals were recorded and quantified after removal of excess reagent. This preliminary result for the immobilization of

Figure 6. Preliminary results of immobilization of azide-functionalized N-Ras-protein (2, 4 and 6) as positive control (PC) and non-modified N-Rasprotein (1, 3 and 5) as negative control (NC) with various concentrations.

Figure 7. Influence of different buffers on the immobilization of azide-modified N-Ras-protein (PC). Reagents and conditions: Buffer 1: 20 mM Tris/ Cl, 5 mM MgCl₂, 150 mM NaCl, pH 7.4 + 0.05% Tween 20. Buffer 2: 20 mM Tris, 5 mM MgCl₂, pH 7.4 + 0.05% Tween 20. Buffer 3: 10 mM Hepes, 150 mM NaCl, 5 mM MgCl₂, pH 7.4 + 0.05% Tween 20. Buffer 4: 20 mM Tris, 5 mM MgCl₂, 2 mM DTE, pH 7.6 + 0.05% Tween 20. Buffer 5: 50 mM Na₂HPO₄, 2 mM NaCl, 2 mM MgCl₂, pH 7.5 + 0.05% Tween 20. NC: non-modified N-Ras-protein.

Figure 8. Time course and concentration dependence of immobilization by Staudinger ligation.

azide-modified Ras-protein is shown in Figure 6. The immobilization of azide-modified protein (PC) gave clear fluorescent signals, whereas no significant signals were obtained at any concentration for the negative control (NC). Encouraged by these findings we aimed at the study of the influence of different buffers, reaction time and concentration dependence of immobilization of azide-modified Ras-protein by Staudinger Ligation. The influence of different buffers on the immobilization of azide-modified N-Ras-protein (PC) is shown in Figure 7. No significant differences were observed between buffer 1, 2, 3 and 5. Buffer 4 gave inferior results, that is, the use of DTE leads to a decrease of immobilized protein. The immobilization was carried out at pH 7.4-7.6 due to the pH-dependent stability of the Ras-protein. We note, however, that the Staudinger ligation proceeds well over a relatively wide pH range (5-8.5).²³

The time course and concentration dependence of immobilization by Staudinger ligation was studied using different concentrations of azide-modified N-Ras-protein (PC) and non-modified N-Ras-protein (NC) in phosphate buffer (Buffer 5: 50 mM Na₂HPO₄, 2 mM NaCl, 2 mM MgCl₂, pH 7.5 + 0.05% Tween 20) for 1–16 h as shown in Figure 8. After incubation with Cy5-labeled Ras-antibody (50 nM, 1 h), the fluorescence signals were recorded and quantified. The minimum concentration for acceptable levels of immobilization was found to be ca. 50 μ M. An immobilization time of 4 h was sufficient for obtaining clear and reproducible signals.

These results demonstrate that the immobilization of the azide-modified Ras-protein onto the phosphane-modified glass-slides was successful.

5. Conclusion

In summary, a generic building block for protein modification was developed. It provides a flexible and generally applicable tool for the introduction of different functional groups of interest (e.g., fluorescent groups) into proteins. The benzene derivative equipped with a triply orthogonal set of functional groups could be easily modified on the solid phase in a controlled way and was successfully applied to the introduction of fluorescence markers into Rab and Ras GTPases.

Additionally, the building block was used for the covalent attachment of an azide into the C-terminus of the Ras-protein yielding azide-functionalized Ras, which could be further immobilized on phosphane-modified glass-slides via highly chemoselective Staudinger ligation. This new strategy for the site-specific immobilization of proteins onto a glass surface may be used for the creation of protein microarrays.

6. Experimental

6.1. General

Chemicals were obtained from Acros, Advanced Chemtech, Aldrich, Biosolve, Fluka or Novabiochem and used without further purification. Analytical chromatography was performed on Merck silica gel 60F₂₅₄ aluminium sheets and Merck aluminium oxide 60 F254 aluminium sheets. Chromatography was performed using Merck Silica gel 60 and Fluka aluminium oxide. Dichloromethane, triethylamine, diisopropylethylamine and piperidine were refluxed under argon over CaH₂, THF over Na/K, methanol over magnesium and freshly distilled prior to usage. ¹H and ¹³C NMR data were recorded on a Bruker DRX 500 spectrometer at room temperature. NMR spectra were calibrated to the solvent signals of CDCl₃ (7.26 and 77.00 ppm). ESI-MS was performed on a Agilent 1100 series binary pump together with a reversed-phase HPLC column (Macherey-Nagel) and a Finnigan Thermoquest LCQ. Preparative HPLC was preformed on Agilent 1100 series with a VP125/21 Nucleosil 120-7C4 column (Macherey-Nagel) run at a flowrate of 20.0 mL/min. eluant was monitored at 215 nm. FAB measurements were taken with a Jeol SX 102A spectrometer using 3-nitrobenzyl alcohol (3-NBA) as matrix. MALDI-TOF spectra were recorded with a Voyager-DE Pro BioSpectrometer from PerSeptive Biosystems using 2,5-dihydroxybenzoic acid (DHB) as matrix. Optical rotations were measured using a Schmidt+Haensch Polartronic HH8. Yield and scale

of the solid-phase reactions are given with respect to the Fmoc loading as supplied by Novabiochem. All reactions were carried out under an argon atmosphere in dry solvents unless otherwise noted.

6.2. General procedures for the solid-phase synthesis of building blocks using the phenylhydrazide linker

For all building blocks commercially available Fmoc-4hydrazinobenzoyl AM NovaGel resin from Novabiochem was used, (Fmoc loading of 0.56 mM/g). All reactions were carried out under an argon atmosphere in polyethylene syringe reactors equipped with a fritted disc. Agitation was achieved using an orbital shaker.

6.2.1. Loading of the resin (general procedure GP1). Swelling of the Fmoc-4-hydrazinobenzoyl NovaGel resin was carried out in dichloromethane. For Fmoc cleavage the resin was treated with a degassed solution of 35% piperidine in DMF for 7 min twice. The resin was subsequently washed six times with DMF and three times with dichloromethane. Afterwards 3 equiv of the acid to be coupled to the resin was preactivated for 5 min with 3 equiv HOBt, 3 equiv DIC and 3 equiv of Et_3N in dichloromethane. The solution was added to the resin and the mixture was agitated for 12 h at room temperature. The resin was subsequently washed six times with dichloromethane and three times with DMF.

6.2.2. Cleavage of the Boc-group (GP2). The Boc-protecting group was cleaved by agitating the resin once for 5 min with a solution of 50% TFA in dichloromethane. The resin was subsequently washed five times with dichloromethane and five times with DMF.

6.2.3. Reduction of the nitro group (GP3). The resin was treated for 2 h at room temperature with a solution of $1M \operatorname{SnCl}_2 \cdot 2H_2O$ in DMF and subsequently washed five times with dichloromethane, DMF and ethyl acetate.

6.2.4. Couplings (GP4). Method A. Amino acids were coupled using HBTU/HOBt as activating reagents. Three equivalents of amino acid was preactivated for 5 min with 3 equiv HBTU, 3 equiv HOBt and 3 equiv i-PrNEt₂ in dichloromethane. The solution was added to the resin and agitated for 4 h at room temperature. In order to suppress racemisation, cysteine derivatives were coupled using DIC/HOBt for activation. The resin was subsequently washed six times with dichloromethane and three times with DMF.

Method B. A solution of 3 equiv dansylchloride, 3 equiv pyridine and 0.5 equiv DMAP in DMF was added to the resin, and the mixture was left standing for 3 h at room temperature. The resin was afterwards subsequently washed six times with dichloromethane and three times with DMF.

6.2.5. Cleavage from the solid support (GP5). *Method A.* The resin was treated with a solution of $Cu(OAc)_2$ (5.4 mg, 29 µmol), pyridine (48 µL, 588 µmol) and methanol (240 µL, 5.9 mmol) in dichloromethane (7 mL) under an oxygen atmosphere for 3 h at room tempera-

ture. The resin was filtered off and the solvent was evaporated under reduced pressure.

Method B. The resin was treated with a solution of 0.02 M NBS (5 equiv), and 0.02 M pyridine (5 equiv) in dichloromethane for 45 min. The resin was filtered off and washed five times with dichloromethane. Cleavage was achieved by agitating the resin with a solution of methanol/dichloromethane (1:100) for 2 h. The resin was filtered off and the solvent was evaporated under reduced pressure.

6.3. 3-Hydroxymethyl-5-nitro-benzoic acid methyl ester (2)

To a solution of 7 g (0.029 mmol) 5-nitro-isophthalic acid dimethyl ester (1) in 200 mL THF, 2.5 equiv DIBAL-H (72.5 mL of 1 M-solution in toluene) was added slowly under an argon-atmosphere at -78 °C. The reaction mixture was allowed to warm to room temperature and 50 mL methanol were added. The solvent was evaporated under reduced pressure and the remaining residue was dissolved in ethyl acetate. The organic phase was washed once with each 1 N HCl and a saturated solution of NaCl and was dried over Na₂SO₄. The solvent was evaporated under reduced pressure and the crude product was purified by column chromatography (silica gel, cyclohexane/ethyl acetate 9:1, 7:3 (v/v)) yielding **2** as an offwhite solid (3.06 g, 1.45 mmol, 50%).

TLC: 0.36 (cyclohexane/ethyl acetate 1:1 (v/v)); mp = 75-76 °C.

¹H NMR (500 MHz, CDCl₃): $\delta = 8.74$ (s, 1H, arom CH-4), 8.43 (s, 1H, arom CH-6), 8.34 (s, 1H, arom CH-2), 4.88 (s, 2H, CH₂OH), 3.88 (s, 3H, CO₂CH₃), 2.14 (s, 1H, OH).

¹³C NMR (125 MHz, CDCl₃): δ = 164.99 (CO₂CH₃), 148.60 (C-5), 143.60 (C-3), 133.05 (C-2), 131.88 (C-1), 125.24 (C-4), 123.44 (C-6), 63.49 (CH₂OH), 52.83 (CO₂CH₃).

HR-FAB-MS (m/z): calcd for $[C_9H_{10}NO_5]^+$: 212.0559 $[M+H]^+$, found: 212.0576.

6.4. 3-Methanesulfonyloxymethyl-5-nitro-benzoic acid methyl ester (3)

To a solution of 1.50 g (7.11 mmol) 3-hydroxymethyl-5nitro-benzoic acid methyl ester (**2**) in 20 mL dichloromethane 10 equiv Et₃N (9.85 mL, 71.1 mmol) and 2 equiv mesyl chloride (1.10 mL, 14.22 mmol) was added slowly under argon at 0 °C. The reaction mixture was stirred for 15 min at 0 °C and subsequently treated with 10 mL of a saturated solution of NaCl. The organic phase was washed with 1 N KHSO₄ and a sat. solution of Na₂CO₃ and dried over Na₂SO₄. The solvent was evaporated under reduced pressure and the crude product was purified by column chromatography (silica gel, cyclohexane/ethyl acetate 9:1, 8:2 (v/v)) yielding **3** as a pale yellow solid (1.95 g, 6.75 mmol, 95%).

TLC: 0.32 (cyclohexane/ethyl acetate 1:1 (v/v)); mp = 82 °C.

¹H NMR (500 MHz, CDCl₃): δ = 8.84 (s, 1H, arom CH-6), 8.44 (s, 1H, arom CH-4), 8.37 (s, 1H, arom CH-2), 5.33 (s, 2H, CH₂O), 3.98 (s, 3H, CO₂CH₃), 3.08 (s, 3H, O₂SCH₃).

¹³C NMR (125 MHz, CDCl₃): δ = 164.35 (CO₂CH₃), 136.38 (C-3), 134.61 (C-2), 132.59 (C-1), 126.84 (C-4), 125.01 (C-6), 68.17 (CH₂O), 53.04 (CO₂CH₃), 38.19 (O₂SCH₃).

HR-FAB-MS (m/z): calcd for $[C_{10}H_{11}NO_7SNa]^+$: 312.0154 $[M+Na]^+$, found: 312.0142.

6.5. 3-Azidomethyl-5-nitro-benzoic acid methyl ester (4)

To a solution of 1.30 g (4.50 mmol) 3-methanesulfonyloxymethyl-5-nitro-benzoic acid methyl ester (3) in 20 mL DMF 5 equiv of sodium azide (1.46 g, 22.49 mmol) were added. The reaction mixture was stirred for 2 h at 50 °C. The solvent was evaporated under reduced pressure and the remaining residue was dissolved in ethyl acetate. The organic phase was washed once with water and a saturated solution of NaCl and was dried over Na₂SO₄. The solvent was evaporated under reduced pressure and the crude product was purified by column chromatography (silica gel, cyclohexane/ethyl acetate 9:1, 7:3 (v/v)) yielding 4 as a pale yellow solid (1.06 g, 4.5 mmol, quant.).

TLC: 0.83 (cyclohexane/ethyl acetate 1:1 (v/v)); mp = 69-72 °C.

¹H NMR (500 MHz, CDCl₃): δ = 8.75 (s, 1H, arom CH-6), 8.35 (s, 1H, arom CH-4), 8.29 (s, 1H, arom CH-2), 4.57 (s, 2H, CH_2N_3), 3.97 (s, 3H, CO_2CH_3).

¹³C NMR (125 MHz, CDCl₃): δ = 164.47 (CO₂CH₃), 148.47 (C-5), 138.38 (C-3), 134.23 (C-2), 132.31 (C-1), 126.37 (C-4), 124.00 (C-6), 53.25 (CH₂N₃), 52.83 (CO₂CH₃).

FAB/LR-MS (m/z): calcd for $[C_9H_8NO_4]^+$: 194.05 $[M-N_3]^+$, found: 194.00.

6.6. 3-Aminomethyl-5-nitro-benzoic acid methyl ester (5)

To a solution of 200 mg (0.85 mmol) 3-azidomethyl-5-nitro-benzoic acid methyl ester (4) in 5 mL methanol 4 equiv Et₃N (470 μ L, 3.39 mmol) and 6 equiv of propanedithiol (511 μ L, 5.08 mmol) were added under an argon atmosphere. The reaction mixture was stirred for 12 h at room temperature. The solvent was evaporated under reduced pressure and the crude product was purified by column chromatography (silica gel, dichloromethane/methanol 10:1 (v/v)) yielding **5** as a pale yellow solid (151.7 mg, 0.723 mmol, 85%).

TLC: 0.3 (dichloromethane/methanol 10:1 (v/v)); $mp = 84 \text{ }^{\circ}C.$

¹H NMR (500 MHz, CDCl₃): δ = 8.61 (s, 1H, arom CH-6), 8.30 (s, 1H, arom CH-4), 8.21 (s, 1H, arom CH-2), 3.91 (s, 2H, CH₂NH₂), 3.86 (s, 3H, CO₂CH₃).

¹³C NMR (125 MHz, CDCl₃): $\delta = 164.97$ (CO₂CH₃), 148.31 (C-5), 144.60 (C-3), 133.80 (C-2), 131.72 (C-1), 125.87 (C-4), 122.88 (C-6), 52.55 (CH₂NH₂), 44.57 (CO₂CH₃).

HR-FAB-MS (m/z): calcd for $[C_9H_{11}N_2O_4]^+$: 311.0719 $[M+H]^+$, found: 211.0730 (in 3-NBA-Matrix).

6.7. 3-{Amino-[L-cysteine-(S- monomethoxytrityl)-N-trityl]-methyl}-5-nitro-benzoic acid methyl ester (6)

To a solution of 1.57 g (2.54 mmol) Trt-Cys(Mmt)-OH in 5 mL dichloromethane 389 mg (2.54 mmol) HOBt and 320 μ L (2.54 mmol) DIC were added. Activation of the amino acid to the active ester was controlled by TLC. Afterwards, a solution of 500 mg (2.12 mmol) 3-azidomethyl-5-nitro-benzoic acid methyl ester (5) in 1 mL dichloromethane was added to the reaction mixture. The reaction mixture was stirred for 12 h at room temperature. The solvent was evaporated under reduced pressure and the crude product was purified by column chromatography (silica gel, cyclohexane/ethyl acetate 8:2, 7:3 (v/v)) yielding **6** as a white solid (1.67 g, 2.01 mmol, 95%).

TLC: 0.5 (cyclohexane/ethyl acetate 7:3 (v/v)); mp = 118– 119 °C; $[\alpha]_D^{20}$ +55.7 (*c* 1.0, CHCl₃).

¹H NMR (500 MHz, CDCl₃): δ = 8.83 (s, 1H, arom CH-6), 8.39 (s, 1H, arom CH-4), 8.33 (s, 1H, arom CH-2), 7.98 (m, 1H, NH), 7.45–7.51 (m, 6H, 6× arom CH Trt, Mmt), 7.36–7.21 (m, 21H, 21× arom CH Trt, Mmt), 6.81 (d, *J* = 5.0 Hz, 2H, 2× arom CH Mmt), 4.57 (s, 2H, CH₂NH), 4.01 (s, 3H, CO₂CH₃), 3.90 (m, 1H, α-CH), 3.78 (s, 3H, OCH₃ Mmt), 2.81–2.85 (m, 2H, β-CH₂), 2.65 (m, 1H, NH).

¹³C NMR (125 MHz, CDCl₃): δ = 173.75 (CONH), 158.16, 148.43, 144.95, 144.59, 141.22, 136.41, 134.34, 131.76, 130.94, 129.49, 129.44, 128.83, 128.70, 128.01, 127.99, 127.92, 127.81, 127.78, 126.93, 126.77, 126.43, 123.3 (22× arom CH), 113.23 (2× arom CH Mmt), 71.44 (quart C Trt), 66.75 (quart C Mmt), 56.24 (OCH₃ Mmt), 55.12 (α-CH), 52.75 (CO₂CH₃), 42.26 (CH₂NH), 36.79 (β-CH₂).

ESI-MS+ m/z: calcd for $C_{51}H_{45}N_3O_6SNa$ [M+Na]⁺: 850.3, found: 850.4.

MALDI-TOF (DHB) calcd for $C_{51}H_{45}N_3O_6SNa$ $[M+Na]^+$: 850.3, found: 850.4.

FAB/LR-MS (m/z): calcd 828.30 $[M+H]^+$, found: 828.00.

6.8. 3-{Amino-[L-cysteine-(*S*-monomethoxytrityl)-*N*-trityl]-methyl}-5-amino-benzoic acid methyl ester (7)

To a solution of 50 mg (0.06 mmol) 3-{amino-[L-cysteine-(SMmt)-N-trityl]-methyl}-5-nitro-benzoic acid methyl ester (6) in 3 mL methanol 10 mg palladium on charcoal was added. The reaction mixture was stirred for 4 h under an hydrogen atmosphere at room temperature. The catalyst was filtered off and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography (silica, cyclohexane/ethyl acetate 1:1 (v/v)) yielding 7 as a white solid (47.8 mg, 0.06 mmol, quant.).

TLC: 0.44 (cyclohexane/ethyl acetate 1:1 (v/v)); mp = 124–126 °C; $[\alpha]_D^{20}$ +18.0 (*c* 1.0, CHCl₃).

¹H NMR (500 MHz, CDCl₃): δ = 7.95 (s, 1H, arom CH), 7.42–7.35 (m, 5H, 5× arom CH), 7.27–7.24 (m, 3H, 3× arom CH), 7.23–7.10 (m, 20H, 20× arom CH), 7.03 (s, 1H, arom CH), 6.65 (d, ³*J* = 10.8 Hz, 2H, 2× arom CH Mmt), 4.00– 3.98 (dd, ³*J*₁ = 15.0 Hz, ³*J*₂ = 7.1 Hz, 2H, C*H*₂NH), 3.82 (s, 3H, CO₂C*H*₃), 3.68 (s, 3H, OC*H*₃ Mmt), 3.66 (m, 1H, α-CH), 3.08 (m, 1H, β-CH_{2*a*}), 2.99 (m, 1H, β-CH_{2*b*}), 2.86 (br s, 2H, NH₂), 2.41–2.36 (m, 1H, NH).

¹³C NMR (125 MHz, CDCl₃): δ = 173.24 (CONH), 158.15, 145.31, 144.92, 144.87, 136.58, 130.95, 129.49, 129.46, 128.86, 127.98, 127.92, 127.86, 126.93, 126.78, 126.74 (15× arom CH), 113.44 (2× arom CH Mmt), 71.67 (quart C Trt), 66.58 (quart C Mmt), 56.79 (OCH₃ Mmt), 55.27 (α-CH), 52.29 (CO₂CH₃), 43.21 (CH₂NH), 36.97 (β-CH₂).

MALDI-TOF (DHB) calcd for $C_{51}H_{47}N_3O_4SNa$ [M+Na]⁺: 820.3, found: 820.6; calcd for $C_{51}H_{47}N_3O_4SK$ [M+K]⁺: 836.3, found: 836.6.

FAB/LR-MS (m/z): calcd: 798.33 $[M+H]^+$, found: 799.15.

6.9. 3-{Amino-[L-cysteine-(S-monomethoxytrityl)-N-trityl]-methyl}-5-(5-dimethylamino-naphthalen-1-sulfonylamino)-benzoic acid methylester (8)

To a solution of 770 mg (0.966 mmol) 3-{amino-[L-cysteine-(*S*Mmt)-*N*-trityl]-methyl}-5-amino-benzoic acid methyl ester (7) in 3 mL dichloromethane 1.5 equiv dansyl chloride (7.6 mg, 0.028 mmol), 3 equiv pyridine (4.46 mg, 0.056 mmol) and 0.5 equiv dimethylaminopyridine (1.7 mg, 0.015 mmol) were added. The reaction mixture was stirred for 4 h at room temperature. The solvent was evaporated under reduced pressure and the crude product was purified by column chromatography (silica, cyclohexane/ethyl acetate 8:2, 1:1 (v/v)) yielding **8** as a pale yellow solid (786.0 mg, 0. 763 mmol, 79%).

TLC: 0.58 (cyclohexane/ethyl acetate 1:1 (v/v)); mp = 120–121 °C; $[\alpha]_{D}^{20}$ –46.1 (*c* 1.0, CHCl₃).

¹H NMR (500 MHz, CDCl₃): $\delta = 8.46$ (d, ³*J* = 8.5 Hz, 1H, H-2 dansyl), 8.28 (d, ³*J* = 9.2 Hz, 1H, H-4 dansyl), 8.20 (d, ³*J* = 6.8 Hz, 1H, H-8 dansyl), 7.55–7.44 (m, 4H, 4× arom CH), 7.40–7.35 (m, 7H, 7× arom CH), 7.26– 7.04 (m, 22H, 22× arom CH), 6.65 (d, ³*J* = 8.0 Hz, 2H, 2× arom CH Mmt), 6.30 (br s, 1H, NH), 3.88–3.92 (dd, ³*J*₁ = 14.9 Hz, ³*J*₂ = 6.0 Hz, 2H, C*H*₂NH), 3.72 (s, 3H, CO₂C*H*₃), 3.66 (s, 3H, OC*H*₃ Mmt), 3.64 (m, 1H, α-CH), 3.12–3.05 (m, 2H, β-CH₂), 2.84 (s, 6H, N(C*H*₃)₂), 2.32 (dd, ³*J*₁ = 12.3 Hz, ³*J*₂ = 6.3 Hz, 1H, NH).

¹³C NMR (125 MHz, CDCl₃): δ = 172.98 (CONH), 165.85 (CO₂CH₃), 151.72, 144.89, 144.50, 139.42, 137.10, 136.27, 133.87, 130.98, 130.66, 130.61, 129.93, 129.54, 129.25, 129.16, 128.55, 128.36, 127.70, 127.55, 126.51, 126.69,

124.49, 123.94, 122.76, 119.69, 118.17, 115.02 (26× arom CH), 112.94 (2× arom CH Mmt), 69.63 (quart C Trt), 66.13 (quart C Mmt), 56.12 (OCH₃ Mmt), 54.85 (α -CH), 51.94 (CO₂CH₃), 45.07 (CH₂NH), 42.47 (N(CH₃)₂), 36.45 (β -CH₂).

ESI-MS+ m/z: calcd for C₆₃H₅₈N₄O₆S₂ [M]: 1030.3, found: 850.4 [M-Mmt+2Na+H].

MALDI-TOF (DHB) calcd for $C_{63}H_{58}N_4O_6S_2$ [M]: 1030.3, found: 811.31 [M-Mmt+Na+H].

HR-FAB-MS (*m*/*z*): calcd: 1031.3876 [M+H]⁺, found: 1031.3936.

6.10. 3-{Amino-[L-cysteine-(*S-tert*-butyl)-*N*-fluorenylmethoxy-carbonyl]-methyl}-5-(5-dimethylamino-naphthalene-1-sulfonyl-amino)-benzoic acid methyl ester (11)

The loaded resin (9) (50 mg, 0.05 mmol) was agitated in 2 mL dichloromethane. To a solution of 126.2 mg (0.2 mmol) Fmoc-Cys(S-t-Bu)-OH in 2 mL THF 30.6 mg (0.2 mmol) HOBt and 25.2 µL DIC (0.2 mmol) were added. Activation of the amino acid was controlled by TLC. The reaction mixture was stirred for 10 min and then added to the resin. To the resin 6 equiv Bu₃P (74 µL, 0.3 mmol) was added subsequently. After 12 h the resin was filtered off and washed five times with dichloromethane and five times with DMF. The reduction of the nitro group was carried out according to GP3. Afterwards, the resin was treated with 27 mg (0.1 mmol) dansyl chloride, 3 mg (2.5×10^{-5} mol) DMAP and 5 µL (0.06 mmol) pyridine as described in GP4 (method B). The cleavage from the resin was carried out according to GP5 (method A). The crude product was purified by column chromatography (silica gel, cyclohexane/ethyl acetate 6:4 (v/v)) yielding 11 as a yellow solid (22.7 mg, 0.027 mmol, 55%).

TLC: 0.64 (cyclohexane/ethyl acetate 1:1 (v/v)); mp = 112–113 °C; $[\alpha]_{D}^{20}$ –85.1 (*c* 1.0, CHCl₃).

¹H NMR (500 MHz, CDCl₃): δ = 8.46 (d, ³*J* = 8.5 Hz, 1H, H-2 dansyl), 8.20 (d, ³*J* = 8.8 Hz, 1H, H-4 dansyl), 7.75–7.72 (m, 4H, H-8 dansyl, H-1, H-8 Fmoc, arom CH-4), 7.58–7.50 (m, 4H, H-4, H-5 Fmoc, H-3 dansyl, arom CH-6), 7.40–7.26 (m, H, H-6, H-7 dansyl, H-2, H-3, H-6, H-7 Fmoc), 7.12 (s, 1H, arom CH-2), 4.42– 4.18 (m, 5H, H-9, H-10 Fmoc, *CH*₂NH), 4.01 (t, ³*J* = 8.8 Hz, 1H, α-CH); 3.78 (s, 3H, OCH₃), 3.15–3.03 (m, 8H, β-CH₂ Cys, N(*CH*₃)₃), 1.33 (s, 9H, S-*t*-Bu).

ESI-MS+ m/z: calcd for C₄₃H₄₇N₄O₅S₃ [M+H]⁺: 827.2, found: 827.5, calcd for C₄₃H₄₆N₄O₅S₃Na [M+Na]⁺: 859.2, found: 859.5.

HR-FAB-MS (*m*/*z*): calcd: 827.2606 [M+H]⁺, found: 827.2552.

6.11. 3-[Amino-(*tert*-butyloxycarbonyl)-methyl]-5-nitrobenzoic acid methyl ester (13)

To a solution of 340 mg (1.61 mmol) 3-aminomethyl-5nitro-benzoic acid methyl ester (4) in 15 mL THF a solution of 2 equiv Et₃N (446 μ L, 3.22 mmol) and 1.5 equiv Boc₂O (457 mg, 2.09 mmol) in 5 mL THF was added at 0 °C. The reaction mixture was stirred for 12 h and the solvent was removed under reduced pressure. The crude product was purified by column chromatography (silica, cyclohexane/ethyl acetate 7:3 (v/v)) yielding **13** as a colourless oil (499 mg, 1.61 mmol, quant.).

TLC: 0.67 (cyclohexane/ethyl acetate 1:1 (v/v)).

¹H NMR (500 MHz, CDCl₃): δ = 8.73 (s, 1H, arom CH-6), 8.32 (s, 1H, arom CH-4), 8.27 (s, 1H, arom CH-2), 5.13 (br s, 1H, NH), 4.45 (s, 2H, CH₂NH), 3.97 (s, 3H, CO₂CH₃), 1.46 (s, 9H, O-*t*-Bu).

¹³C NMR (125 MHz, CDCl₃): δ = 164.87 (CO₂CH₃), 148.55 (C-5), 142.18 (C-3), 133.77 (C-2), 132.03 (C-1), 125.81 (C-4), 123.33 (C-6), 52.78 (CO₂CH₃), 43.67 (CH₂NH), 28.29 (O-*t*-Bu).

HR-FAB/MS (m/z): calcd for $[C_{14}H_{18}N_2O_6]^+$: 311.1243 $[M+H]^+$, found: 311.1241.

6.12. 3-[Amino-(*tert*-butyloxycarbonyl)-methyl]-5-nitrobenzoic acid (14)

To a solution of 140 mg (0.45 mmol) 3-[amino-(*tert*-butyl-oxycarbonyl)-methyl]-5-nitro-benzoic acid methyl ester (13) in 2 mL water/dioxane (1:1) 1.5 equiv NaOH (675 μ L of a 1 N solution, 0.675 mmol) was added over 1 h. The pH of the solution was adjusted to pH 2 with 1 N HCl. The reaction mixture was extracted three times with ethyl acetate. The combined organic phases were dried over Na₂SO₄. The solvent was removed under reduced pressure yielding pure 14 (133 mg, 0.45 mmol, quant.) as a colourless oil.

TLC: 0.2 (cyclohexane/ethyl acetate 1:1 (v/v)).

¹H NMR (500 MHz, CDCl₃): δ = 8.56 (s, 1H, arom CH-6), 8.25 (s, 1H, arom CH-4), 8.20 (s, 1H, arom CH-2), 4.29 (s, 2H, CH₂NH), 3.21 (s, 3H, CO₂H), 1.37 (s, 9H, O-*t*-Bu).

¹³C NMR (125 MHz, CDCl₃): δ = 164.18 (CO₂CH₃), 148.68 (C-5), 143.18 (C-3), 133.71 (C-2), 132.82 (C-1), 125.46 (C-4), 122.37 (C-6), 43.05 (CH₂NH), 27.61 (O-*t*-Bu).

HR-FAB/MS (m/z): calcd for [C₁₃H₁₆N₂O₅Na]⁺: 319.0906 [M+Na]⁺, found: 319.0901.

6.13. 3-[Amino-(5-dimethylaminonaphthalene-1-sulfonyl)methyl]-5- (maleimidocaproyl-amino)-benzoic acid methyl ester (17)

The loading of 150 mg Fmoc-4-hydrazinobenzoyl resin (0.56 mmol/g, 0.147 mmol) with compound **14** was carried out according to GP1. Removal of the Boc-group was carried out according to GP2. The resin was treated with 94 mg (0.348 mmol) dansyl chloride, 10.4 mg (0.085 mmol) DMAP and 17.4 μ L (0.348 mmol) pyridine as described in GP4 (method B). The nitro group was reduced according to GP3 and the resin was treated

with 61.3 mg (0.294 mol) maleimidocaproic acid, 91 mg (0.588 mol) HOBt, 336 mg (0.882 mol) HBTU and 52 μ L (0.294 mol) *i*-PrNEt₂ according to GP4 (method A). Cleavage from the resin was carried out according to GP5 (method A). The crude product was purified by column chromatography (silica gel, cyclohexane/eth-yl acetate 1:1, 4:6 (v/v)) yielding **17** as a colourless oil (49 mg, 0.081 mol, 63%).

TLC: 0.22 (cyclohexane/ethyl acetate 1:1 (v/v)).

¹H NMR (500 MHz, CDCl₃): $\delta = 8.40$ (d, ³*J* = 10.5 Hz, 1H, H-2 dansyl), 8.22 (d, ³*J* = 10.8 Hz, 1H, H-4 dansyl), 8.13 (d, ³*J* = 9.1 Hz, 1H, H-8 dansyl), 7.80 (s, 1H, arom CH-6), 7.53 (s, 1H, arom CH-4), 7.45 (t, ³*J* = 9.5 Hz, 1H, H-3 dansyl), 7.40 (t, ³*J* = 10.3 Hz, 1H, H-7 dansyl), 7.30 (s, 1H, arom CH-2), 7.09 (d, ³*J* = 10.0 Hz, 1H, H-6 dansyl), 6.62 (s, 2H, C*H*=C*H* Mic), 5.27 (s, 1H, NH), 4.00 (s, 2H, C*H*=C*H* Mic), 5.27 (s, 6H, N(C*H*₃), 2.25 (t, ³*J* = 9.5 Hz, 2H, α-CH₂), 1.64 (m, 2H, β-CH₂), 1.55 (m, 2H, δ-CH₂), 1.28 (m, 2H, γ-CH₂).

¹³C NMR (125 MHz, CDCl₃): δ = 172.02 (CONH), 170.91 (*C*O₂CH₃), 166.55 (OCN*C*O), 157.70, 138.39, 137.61, 134.88 (4× arom CH), 133.97 (*C*=*C*), 130.15, 130.01, 129.47, 129.39, 129.34, 128.01, 123.88, 123.49, 123.12, 119.77, 119.66, 115.09 (12× arom CH), 51.98 (CO₂CH₃), 46.37 (*C*H₂NH), 45.26 (N(*C*H₃)₂), 41.57 (ε-CH₂), 37.40 (α-CH₂), 28.50 (δ-CH₂), 26.07 (β-CH₂), 24.71 (γ-CH₂).

ESI-MS+ m/z: calcd for C₁₃H₃₅N₄O₇S [M+H]⁺: 607.2, found: 607.5.

MALDI-TOF (DHB) calcd for $C_{13}H_{34}N_4O_7SNa$ $[M+Na]^+$: 629.2, found: 629.6.

FAB/LR-MS (*m*/*z*): calcd: 607.21 [M+H]⁺, found: 607.84.

6.14. 3-[Amino-(5-dimethylaminonaphthalene-1-sulfonyl)methyl]-5-amino-benzoic acid-(glycine-*S*-ethylthio ester) amide (18)

The loading of 50 mg Fmoc-4-hydrazinobenzoyl resin (0.56 mmol/g, 0.05 mmol) with compound 14 was carried out according to GP1. Removal of the Boc-group was carried out according to GP2. The resin was treated with 40 mg (0.15 mmol) dansyl chloride, 3.4 mg (0.03 mmol) DMAP and 7.5 µL (0.15 mmol) pyridine according to GP4 (method B). The reduction of the nitro group was carried out according to GP3. The cleavage from the resin was carried out according to GP5 (method B). In the final cleavage step the resin was treated with a solution of 10 equiv glycine ethyl thioester (0.5 mmol, 250 mg) and 10 equiv *i*-PrNEt₂ (0.5 mmol, 86 µL) in 2 mL DMF for 3 h. The resin was filtered off and the solvent was removed under reduced pressure. The crude product was purified by column chromatography (silica gel, dichloromethane/methanol 50:1, 20:1 (v/v)) yielding 18 as a yellow solid (10.8 mg, 0.021 mol, 43%).

TLC: 0.50 (dichloromethane/methanol 20:1 (v/v)).

 ^{1}H NMR (500 MHz. CDCl₃): $\delta = 8.43$ (d. ${}^{3}J = 10.3$ Hz, 1H, H-2 dansyl), 8.21 (d, ${}^{3}J = 11.5$ Hz, 1H, H-4 dansyl), 8.14 (d, ${}^{3}J = 9.0$ Hz, 1H, H-8 dansyl), 7.48 (t, ${}^{3}J = 10.0$ Hz, 1H, H-3, dansyl), 7.43 (t, ${}^{3}J = 10.5 \text{ Hz}, 1\text{H}, \text{H-3}, \text{dansyl}, 7.10 \text{ (d, }{}^{3}J = 8.8 \text{ Hz},$ 1H, H-6 dansyl), 6.80 (s, 2H, arom CH-2), 6.72 (s, 2H, arom CH-6), 6.41 (s, 1H, arom CH-4), 6.30 (br s, 1H, NH), 4.17 (br s, 1H, NH), 3.91-3.87 (m, 2H, CH₂NH), 3.62–3.61 (m, 2H, CH₂ Gly), 3.41 (s, 2H, NH₂), 3.09–3.08 (m, 2H, CH₂CH₃), 2.81 (s, 6H, N(CH₃)₂), 1.18 (s, 3H, CH₂CH₃).

ESI-MS+ m/z: calcd for C₂₄H₂₈N₄O₄S₂ [M+H]⁺: 501.1, found: 501.4.

HR-FAB-MS (m/z): calcd: 501.1630 $[M+H]^+$, found: 501.1644.

6.15. 3-(Cy5-aminomethyl)-5-(maleimidocaproyl-amino)benzoic acid methyl ester (19)

Resin 15 (150 mg, 0.147 mmol) was agitated in 3 mL dichloromethane. Reduction of the nitro group was carried out according to GP3. The resin was afterwards treated with 93.0 mg (0.441 mmol) maleimidocaproic acid (MIC), 68.3 mg (0.441 mmol) HOBt and 69.1 µL (0.441 mmol) DIC according to PG4 (method A). Removal of the Boc-group was carried out according to GP2. Afterwards, the resin was treated with 576.8 mg (0.882 mmol) Cy5, 134.9 mg (0.882 mmol) HOBt, 330.8 mg (0.882 mmol) HBTU and 132.0 µL (0.882 mmol) Et₃N in 2 mL DMF for 12 h. Cleavage from the resin was carried out according to GP5 (method B). The crude product was purified by HPLC (linear gradient of water (solvent A) and CH₃CN (solvent B); 20-100 B% 15 min) yielding 19 as a blue solid (7.4 mg, 7.35×10^{-5} mol, 5%).

¹H NMR (500 MHz, CDCl₃): $\delta = 8.32-8.26$ (m, 2H, arom. CH Cy5), 8.05 (s, 1H, arom CH-6), 7.98-7.84 (m, 3H, H-4, 2× arom CH Cy5), 7.67 (s, 1H, arom CH-2), 7.34–7.29 (dd, ${}^{3}J_{1} = 10.3$ Hz, ${}^{3}J_{2} = 6.4$ Hz, 2H, 2× arom CH Cy5), 6.75 (s, 2H, HC=CH Mic), 6.67-6.60 C = CHCy5),(m, 1H, 6.34–6.27 (t, 2H, *H*C=C*H*Cy5), 4.38 $^{3}J = 16.6$ Hz, 2H, (s, CH_2NH), 4.14–4.12 (m, 4H, ϵ -CH₂, N⁺=C–CH=, C_{quart}=CH Cy5), 3.86 (s, 3H, CO₂CH₃), 3.47 (t, ${}^{3}J = 8.3 \text{ Hz}$, 2H, ε -CH₂ Mic), 2.35 (t, ${}^{3}J = 8.5 \text{ Hz}$, 2H, α -CH₂ Cy5), 2.29 (t, ${}^{3}J = 8.2 \text{ Hz}$, 2H, α -CH₂ Mic), 1.85–1.60 (m, 6H, β -CH₂, δ -CH₂ Mic, N– CH2-CH3 Cy5), 1.70 (s, 12H, 4× CH3 Cy5), 1.60 (t, ${}^{3}J = 8.5 \text{ Hz}, 2\text{H}, \delta\text{-CH}_{2} \text{ Cy5}, 1.50 \text{ (m, }2\text{H}, \gamma\text{-CH}_{2} \text{ Cy5}), 1.37 \text{ (t, }{}^{3}J = 9.0 \text{ Hz}, 2\text{H}, \gamma\text{-CH}_{2} \text{ Mic}), 1.33-$ 1.28 (m, 3H, NCH₂–CH₃ Cy5).

ESI-MS+ m/z: calcd for C₅₂H₆₂N₅O₁₂S⁺ [M]⁺ 1012.4, found: 1012.4.

FAB/LR-MS (m/z): calcd: 1013.38 $[M+H]^+$, found: 1013.52.

6.16. 3-{Amino-[L-cysteine-(*S-tert*-butyl)-*N*-fluorenylmethoxy-carbonyl]-methyl}-5-(6-azido-hexoyl-amino)benzoic acid (20)

Resin 15 (50 mg, 0.05 mmol) was agitated in 2 mL dichloromethane. The reduction of the nitro group was carried out according to GP3. According to GP4 (method A) a solution of 21.3 mg (0.15 mmol) 6-azidohexanoic acid, 22.9 mg (0.15 mmol) HOBt, 56.3 mg (0.15 mmol) HBTU and 20.2 µL (0.15 mmol) Et₃N in 2 mL dichloromethane was added to the resin. Removal of the Boc-protecting group was carried out according to GP2. According to PG4 (method A) the resin was treated with 126.2 mg (0.2 mmol) Fmoc-Cys(S-t-Bu)-OH, 30.6 mg (0.2 mmol) HOBt, 74.4 mg (0.2 mmol) HBTU and 34.5 µL (0.2 mmol) *i*-PrNEt₂ in 2 mL dichloromethane. The cleavage from the resin was carried out according to GP5 (method B). In the final cleavage step the resin was treated with 100 uL H₂O in 900 uL THF for 3 h. The resin was filtered off and the solvent was removed under reduced pressure. The crude product was purified by column chromatography (silica gel, dichloromethane/methanol 50:1, 20:1 (v/v)) yielding 20 as a white solid (8.9 mg, 0.021 mol, 25%).

TLC: 0.30 (dichloromethane/methanol 20:1 (v/v)); mp: 92–93 °C; $[\alpha]_{D}^{20}$ –54.9 (*c* 1.0, CHCl₃).

¹H NMR (500 MHz, CDCl₃): δ = 7.91 (br s, 1H, NH), 7.73 (d, ³*J* = 9.6 Hz, 2H, H-1, H-8 Fmoc), 7.69–7.63 (m, 3H, H-4, H-5 Fmoc, arom CH-6), 7.52 (m, 2H, H-2, H-7 Fmoc), 7.39–7.30 (m, 4H, H-3, H-6 Fmoc, 2× arom CH-4, CH-2), 4.49 (m, 1H, H-9 Fmoc), 4.39– 4.29 (m, 4H, H-10 Fmoc, C*H*₂NH), 4.12 (m, 1H, α-CH Cys), 3.17 (t, ³*J* = 8.0 Hz, 2H, C*H*₂N₃), 3.11–3.00 (m, 2H, β-CH₂ Cys), 2.26 (m, 2H, α-CH₂), 1.61 (m, 2H, β-CH₂), 1.51 (t, ³*J* = 8.8 Hz, 2H, δ-CH₂), 1.33– 1.28 (m, 2H, γ-CH₂), 1.24 (s, 9H, S-t-Bu).

¹³C NMR (125 MHz, CDCl₃): δ = 172.29 (CONH), 143.54, 141.08, 140.71, 128.16, 127.58, 126.96, 126.51, 126.01, 124.96, 119.78, 117.12, 110.78 (12× arom C), 66.34 (OCH₂ Fmoc), 51.07 (α-CH Cys), 48.09 (CH₂NH), 46.98 (CH₂N₃), 43.45 (β-CH₂ Cys), 42.64 (CH Fmoc), 36.71 (α-CH₂), 29.61 (S-*t*-Bu), 28.41(δ-CH₂), 26.15 (γ-CH₂), 24.82 (β-CH₂).

ESI-MS+ m/z: calcd for C₃₆H₄₃N₆O₆S₂ [M+H]⁺: 719.3, found: 719.2, calcd for C₃₆H₄₂N₆O₆S₂Na [M+Na]⁺: 741.3, found: 741.3.

HR-FAB-MS (m/z): calcd: 719.2675 [M+H]⁺, found: 719.2669.

6.17. 3-{Amino-[L-cysteine-(*S-tert*-butyl)-*N*-fluorenylmethoxy-carbonyl]-methyl}-5-(6-azido-hexoyl-amino)benzoic acid-(Cy5-ethyl) amide (21)

To a solution of 8.2 mg $(1.15 \times 10^{-5} \text{ mol})$ 3-{amino-[L-cysteine-(*S-tert*-butyl)-*N*-fluorenylmethoxycarbonyl]methyl}-5-(6-azido-hexoyl-amino)-benzoic acid (**25**) in 1 mL DMF a solution of 8 mg $(1.15 \times 10^{-5} \text{ mol})$ Cy5ethylamine (29), 7.0 mg $(4.58 \times 10^{-5} \text{ mol})$ HOBt, 17.4 mg $(4.58 \times 10^{-5} \text{ mol})$ HBTU and $4 \mu L$ $(2.29 \times 10^{-5} \text{ mol})$ *i*-PrNEt₂ was added. The reaction mixture was stirred for 12 h at room temperature. the solvent was removed under reduced pressure and the crude product was purified by HPLC (linear gradient of water (solvent A) and CH₃CN (solvent B); 20–100 B% 15 min) yielding **21** as a blue solid (7.2 mg, 5.18×10^{-6} mol, 45%).

 $[\alpha]_{\rm D}^{20}$ +32.6 (*c* 1.0, CHCl₃).

¹H NMR (500 MHz, CDCl₃): δ = 8.97 (s, 1H, arom CH-4), 8.29-8.27 (m, 2H, 2× arom. CH Cy5), 7.87 (d, ${}^{3}J = 6.8$ Hz, 2H, H-1, H-8 Fmoc), 7.82 (d, ${}^{3}J = 10.4$ Hz, 1H, NH), 7.75 (d, ${}^{3}J = 9.3$ Hz, 2H, H-4, H-5 Fmoc), 7.65–7.60 (m, 4H, 4× arom. CH Cy5), 7.42 (s, 1H arom. CH-2), 7.34-7.20 (m, 5H, H-2, H-3, H-6, H-7 Fmoc, arom CH-6), 6.63 (t, ${}^{3}J = 15.4$ Hz. $^{3}J = 21.0$ Hz, C = CHCv5), 6.27 (t, 1H. HC=CHCy5), 4.46-4.43 (m, 3H, H-9, H-10 Fmoc), 4.22 (t, ${}^{3}J = 5.8$ Hz, 1H, α -CH Cys), 4.13–4.10 (m, 2H, CH₂NH), 3.26–3.19 (m, 12H, β -CH₂ Cys, N⁺=C– CH= Cy5, C_{quart}=CHCy5, HN-CH₂-CH₂-NH, ϵ -CH₂Cy5, CH₂N₃), 2.31–2.27 (m, 2H, δ -CH₂ Cy5), 2.17 (t, ${}^{3}J = 19.5 \text{ Hz}$, 2H, α -CH₂Cy5), 1.70 (s, 12H, 4× CH₃Cy5), 1.67–1.59 (m, 6H, β -CH₂Cy5, 2× CH₂), 1.40–1.28 (m, 9H, NCH₂–CH₃Cy5, γ -CH₂Cy5, 2× CH₂), 1.32 (s, 9H, S-t-Bu).

ESI-MS+ m/z: calcd for C₇₁H₈₇N₁₀O₁₂S₄ [M]⁺: 1399.5, found: 1399.5 [M]⁺.

MALDI-TOF (DHB) calcd for $C_{71}H_{87}N_{10}O_{12}S_4$ [M]⁺: 1399.5, found: 1399.3 [M]⁺.

6.18. 3-{Amino-[L-cysteine-(S-monomethoxytrityl)-N-trityl]-methyl}-5-nitro-benzoic acid-(6-azido-hexyl) amide (22)

The loaded resin (15) (150 mg, 0. 147 mmol) was agitated in 2 mL dichloromethane. Removal of the Boc-protecting group was carried out according to GP2. According to GP4 (method A) the resin was treated with a solution of 283.5 mg (0.441 mmol) Trt-Cys(Mmt)-OH, 68.3 mg (0.441 mmol) HOBt, 69.1 μL (0.441 mmol) DIC and 66.0 µL (0.441 mmol) Et₃N in 2 mL dichloromethane. Cleavage from the resin was carried out according to GP5 (method B). In the final cleavage step the resin was treated with a solution of 4 equiv 6-azido-hexylamine (0.588 mmol, 83.5 mg) in 3 mL THF for 3 h. The resin was filtered off and the solvent was removed under reduced pressure. The crude product was purified by column chromatography (silica gel, cylohexane/ethyl acetate 6:4 (v/v)) yielding 22 as a white solid (79.5 mg, 0.085 mol, 58%).

TLC: 0.60 (cylohexane/ethyl acetate 1:1 (v/v)); mp: 115–116 °C; $[\alpha]_D^{20}$ +47.9 (*c* 1.0, CHCl₃).

¹H NMR (500 MHz, CDCl₃): δ = 8.47 (s, 1H, arom CH-6), 8.15 (s, 1H, arom CH-4), 7.94 (s, 1H, arom CH-2), 7.35–7.10 (m, 27H, 27× arom CH Trt, Mmt), 6.45 (br

s, 1H, NH), 4.14–4.11 (m, 2H, CH_2 NH), 3.79–3.68 (m, 1H, α -CH Cys), 3.66 (s, 3H, OCH₃), 3.34–3.22 (m, 6H, CH₂N₃, β -CH₂ Cys, CH₂NH), 2.33–2.22 (m, 2H, CH₂), 1.55 (t, ³J = 9.2 Hz, 2H, CH₂), 1.33–1.26 (m, 4H, 2× CH₂).

¹³C NMR (125 MHz, CDCl₃): δ = 174.85 (CONH), 164.93 (CONH), 158.24, 148.45, 146.78, 144.93, 145.81, 144.61, 141.25, 136.39, 136.36, 131.92, 130.84, 129.43, 129.40, 129.19, 128.80, 128.73, 128.65, 128.50, 128.38, 128.13, 128.03, 128.00, 127.98, 127.90, 127.84, 127.82, 127.71, 127.55, 127.41, 127.26, 127.16, 127.08, 126.94, 126.85, 126.82, 124.75, 120.83, 113.28, 113.14 (39× arom C), 71.47 (quart C Trt), 66.80 (quart C Mmt), 56.30 (OCH₃), 55.12 (α-CH Cys), 51.28 (CH₂NH), 42.35 (CH₂N₃), 40.14 (CH₂NH), 36.79 (β-CH₂ Cys), 28.66 (CH₂), 26.88 (CH₂), 26.41 (CH₂), 26.32 (CH₂).

ESI-MS+ m/z: calcd for C₅₆H₅₅N₇O₅SNa [M+Na]⁺: 960.4, found: 960.3.

MALDI-TOF (DHB) calcd for $C_{56}H_{55}N_7O_5S$ [M]: 937.40, found: 704.1 [M-Mmt+H+K]⁺.

FAB/LR-MS (m/z): calcd: 937.40 [M+H]⁺, found: 937.26.

6.19. 1-*N*-Fluorenylmethoxycarbonyl-2-*N*-(*tert*-butyloxy-carbonyl)-ethane-1,2-diamine (23)

To a solution of *N*-(*tert*-butyloxycarbonyl)-ethane-1,2diamine (100 mg, 0.625 mmol) in 5 mL dichloromethane/methanol (1:1) 316.2 mg (0.938 mmol) Fmoc-OSu and 173.2 μ L (1.25 mmol) Et₃N were added at 0 °C. The reaction mixture was stirred for 12 h at room temperature and the organic phase was washed with a solution of 1 N NaHSO₄ and NaHCO₃. The combined organic phases were dried over MgSO₄. The solvent was removed under reduced pressure yielding pure **23** (186 mg, 0.487 mmol, 78%) as a white solid.

TLC: 0.50 (cyclohexane/ethyl acetate 1:1 (v/v)); mp: $158-159 \ ^{\circ}C$.

¹H NMR (500 MHz, CDCl₃): $\delta = 7.76$ (d, ³J = 9.5 Hz, 2H, H-1, H-8 Fmoc), 7.58 (d, ³J = 9.0 Hz, 2H, H-4, H-5 Fmoc), 7.40 (t, ³J = 9.5 Hz, 2H, H-2, H-7 Fmoc), 7.31 (t, ³J = 9.0 Hz, 2H, H-3, H-6 Fmoc), 4.40 (d, ³J = 8.0 Hz, 2H, OCH₂ Fmoc), 4.21 (t, ³J = 8.0 Hz, 1H, CH Fmoc), 3.27 (m, 4H, 2× NHCH₂), 1.45 (s, 9H, C(CH₃)₃).

¹³C NMR (125 MHz, CDCl₃): δ = 156.71 (CO₂NH), 143.90, 141.31, 127.76, 127.02, 119.94 (4× CH Fmoc), 66.68 (OCH₂ Fmoc), 47.26 (CH Fmoc), 41.60 (NCH₂), 40.56 (NCH₂), 28.35 (C(CH₃)₂).

ESI-MS+ m/z: calcd for C₂₂H₂₆N₂O₄Na [M+Na]⁺: 405.2, found: 405.2.

MALDI-TOF (DHB) calcd for $C_{22}H_{26}N_2O_4Na$ [M+Na]⁺: 405.2, found: 405.5. HR-FAB-MS (m/z): calcd: 383.1893 $[M+H]^+$, found: 383.1998.

6.20. 1-*N*-Fluorenylmethoxycarbonyl-2-*N*-(Cy5)-ethane-1,2-diamine (24)

For removal of the Boc-group 43.5 mg (0.114 mmol) 1-N-fluorenylmethoxycarbonyl-2-N-(tert-butyloxycarbonyl)-ethane-1,2-diamine (23) was dissolved in 1 mL of a solution of 50% TFA in dichloromethane. The reaction mixture was stirred for 10 min at room temperature and the solvent was coevaporated with toluene (10 mL). The crude product was used without further purification. To a solution of 50 mg (7.615 \times 10⁻⁵ mol) Cy5 in 2 mL DMF 8 equiv HOBť (93.2 mg, 0.5 mmol), 8 equiv DIC (94.4 μ L, 0.610 mmol) and 4 equiv Et₃N (42.0 μ L, 0.304 mmol) were added. The reaction mixture was stirred for 20 min at room temperature. The crude 1-N-fluorenvlmethoxycarbonyl-ethane-1.2-diamine (32 mg. 0.114 mmol) was added and the reaction mixture was stirred for 48 h. The solvent was evaporated under reduced pressure and the crude product purified by HPLC (linear gradient of water (solvent A) and CH₃CN (solvent B); 20-100 B% 15 min) yielding 24 as a blue solid (20 mg, 0.217 mol, 29%).

¹H NMR (500 MHz, CDCl₃): $\delta = 8.30-8.23$ (m, 2H, 2× arom. CH), 7.97 (m, 4H, 4× arom. CH), 7.74 (d, ³J = 9.1 Hz, 2H, H-1, H-8 Fmoc), 7.60 (d, ³J = 9.3 Hz, 2H, H-4, H-5 Fmoc), 7.36–7.26 (m, 4H, H-2, 3, 6, 9 Fmoc), 6.63 (m, 1H, C=CH), 6.28 (t, ³J = 17.0 Hz, 2H, HC=CH), 4.30 (d, ³J = 8.5 Hz, 2H, N⁺=C–CH=, C_{quart}=CH), 4.19–4.12 (m, 2H, H-10 Fmoc), 4.02 (t, ³J = 6.8 Hz, 1H, H-9 Fmoc), 3.28–3.20 (m, 6H, HN– CH₂–CH₂–NH, ε-CH₂), 2.18 (t, ³J = 9.0 Hz, 2H, α-CH₂), 1.73 (m, 2H, δ-CH₂), 1.71 (s, 12H, 4× CH₃), 1.65 (t, ³J = 9.5 Hz, 2H, δ-CH₂), 1.42–1.39 (m, 2H, γ-CH₂), 1.35 (t, ³J = 8.8 Hz, 2H, NCH₂–CH₃).

ESI-MS+ m/z: calcd for C₅₀H₅₇N₄O₉S₂ [M]⁺: 921.36, found: 921.7.

MALDI-TOF (DHB) calcd for $C_{50}H_{57}N_4O_9S_2$ [M]⁺: 921.36, found: 921.7; calcd for $C_{50}H_{57}N_4O_9S_2Na$ [M+Na]⁺: 943.4, found: 943.7.

6.21. Cy5-ethylamine (25)

A solution of $12 \text{ mg} (1.346 \times 10^{-5} \text{ mol})$ 1-*N*-fluorenylmethoxycarbonyl-2-*N*-(Cy5)-ethane-1,2-diamine (**24**) in 700 µL DMF was cooled to 0 °C with an ice-bath. To the solution 300 µL piperidine was added at 0 °C and the reaction mixture was allowed to warm up to room temperature. The reaction mixture was stirred for 1 h and the solvent was evaporated under reduced pressure. The crude product was purified by HPLC yielding (linear gradient of water (solvent A) and CH₃CN (solvent B); 20–100 B% 15 min) **25** as a blue solid (8 mg, 1.144 × 10⁻⁵ mol, 85%).

¹H NMR (500 MHz, CDCl₃): δ = 8.29–8.27 (m, 2H, 2× arom. CH), 7.89–7.85 (m, 4H, 4× arom. CH), 7.33 (t, ³*J* = 12.5 Hz, 1H, NH), 6.69 (t, ³*J* = 15.1 Hz, 1H, C=C*H*),

6.34 (t, ${}^{3}J$ = 18.8 Hz, 2H, *H*C=C*H*), 4.58 (br s, 1H, NH), 4.18–4.14 (m, 2H, N⁺=C-C*H*=, C_{quart}=C*H*), 3.35 (m, 4H, HN-C*H*₂-C*H*₂-NH), 2.90 (m, 2H, ε-CH₂), 2.21 (t, ${}^{3}J$ = 8.5 Hz, 2H, α-CH₂), 1.83 (m, 2H, δ-CH₂), 1.73 (s, 12H, 4× CH₃), 1.65 (t, ${}^{3}J$ = 9.0 Hz, 2H, β-CH₂), 1.39–1.36 (m, 5H, NCH₂-C*H*₃, γ-CH₂).

ESI-MS+ m/z: calcd for C₃₅H₄₇N₄O₇S₂ [M]⁺: 699.3, found: 699.7.

MALDI-TOF (DHB) calcd for $C_{35}H_{47}N_4O_7S_2$ [M]⁺: 699.3, found: 699.7; calcd for $C_{35}H_{47}N_4O_7S_2Na$ [M+Na]⁺: 721.3, found: 721.6.

FAB/LR-MS (m/z): calcd: 700.29 [M+H]⁺, found: 700.07.

6.22. Protein expressions and ligation reactions

6.22.1. Cloning, expression and purification of ^{1–203} **Ypt1** Δ **3-MESNA.** Ypt1 truncated by three-amino-acid residues was C-terminally fused to an intein/chitin-binding domain assembly as implemented in the pTWIN-1 vector (New England Biolabs). Protein expression in *Escherichia coli* and purification of thioester-tagged protein were performed as described earlier.^{3c} The resulting Ypt1 Δ 3-MESNA thioester protein was desalted on a PD-10 column (Amersham) equilibrated with 10 mM Na-phosphate, pH 7.5, 0.1 mM MgCl₂, 2 mM GDP and concentrated.

6.22.1.1. Ligation of compound 12 to $^{1-203}$ Ypt1A3-MESNA. In the ligation reaction 10 µL $^{1-203}$ Ypt1-MESNA (12 mg/mL) was mixed with 5 equiv of 30 mM compound **12** (dissolved in H₂O/acetonitrile 1:4) in 50 µL of 50 mM Na₂HPO₄/NaH₂PO₄, pH 7.5, 0.1 mM MgCl₂, 2 µM GDP and 10 µL of 150 mM 2-mercaptoethane-sulfonic acid (MESNA) and allowed to react overnight at room temperature with vigorous agitation. The reaction mixture was centrifuged (1 min at 13,000 rpm) to remove protein and peptide precipitate. The pellet was washed with methanol, methylene chloride (4 times), methanol (4 times) and distilled water (4 times). Semi-synthetic protein obtained was quantitatively determined by HPLC–MS (calculated mass: 23454 [M+H]⁺, found: 23455).

6.22.2. Cloning, expression and purification of ¹⁻¹⁸¹N-Ras. Truncation of the full-length N-Ras cDNA (Accession No. X02751) was achieved using high-fidelity *Pfu* DNA polymerase (Stratagene). For the truncated version of N-Ras two stop codons were introduced at positions 182 and 183 of the N-Ras cDNA. The resulting fragment N-Ras Δ 181 was purified and digested with EcoRI and SmaI, and was subcloned into the ptac expression vector. The plasmid was sequenced to prove PCR fidelity and correct mutagenesis, and transformed into the *E. coli* strain CK600K (Stratagene).

Escherichia coli carrying the expression plasmid for N-Ras Δ 181 was cultivated in LB-medium containing 100 µg/mL ampicillin and 25 µg/mL canamycin at 37 °C. Expression was induced at a cell density absor-

bance of $A_{600} = 0.6$ with 500 µM of isopropyl β -D-thiogalactoside and incubation was continued at 30 °C overnight. Pellets were resuspended in 20 mM Tris (pH 7.4), 5 mM MgCl₂, and 2 mM DTE (buffer A). Phenylmethvlsulfonyl fluoride (PMSF) to 0.1 mM and 0.5 mg DNase I were added and the cells were lysed using a microfluidizer (Microfluidics). Following centrifugation, the clear supernatant was applied to a DEAE-Sepharose column equilibrated with buffer A. After washing with 2 column volumes, the protein was eluted over 5 column volumes using a linear gradient of 0-1 M NaCl in buffer A. Fractions containing N-Ras were determined by SDS-PAGE, pooled and concentrated by precipitation with 3 M ammonium sulfate (final concentration) for 30 min. After centrifugation, the precipitate was resuspended in gel filtration buffer (buffer A containing 200 mM NaCl, 10 µM GDP) and applied to a gel filtration column (HiLoad Superdex 200, Amersham Pharmacia Biotech). Fractions containing N-Ras were pooled and again concentrated by ammonium sulfate precipitation. All purification steps were carried out at 4 °C. Purified protein was stored at -80 °C.

6.22.2.1. Conjugation of MIC-labeled compound 17 to ¹⁻¹⁸¹N-Ras. In the conjugation reaction 10 μ L ¹⁻¹⁸¹N-Ras (50 mg/mL) was mixed with 1.2 equiv of 40 mM compound 17 (dissolved in H₂O/acetonitrile 1:4) in 50 μ L of 50 mM Tris-buffer, pH 7.4, 0.1 mM NaCl and 2 μ M GDP and allowed to react overnight at room temperature with vigorous agitation. The reaction mixture was centrifuged (1 min 13,000 at rpm) to remove protein and peptide precipitate.

The ligation mixture was purified afterwards on a DEAE-gel filtration column (FPLC-system), eluted with a linear gradient of 20 mM Tris/HCl, pH 7.4, and 5 mM MgCl₂. The solution of purified, semi-synthetic protein was concentrated to 40 g/L (yield: 98%, calculated mass: 23,454 $[M+H]^+$, found: 23,455 by MALDI-TOF).

6.22.2.2. Conjugation of MIC-labeled compound 19 to $^{1-181}$ N-Ras. In the conjugation reaction 10 µL $^{1-181}$ N-Ras (40 mg/mL) was mixed with 1.2 equiv of 30 mM compound 19 (dissolved in H₂O) in 50 µL of 50 mM Tris-buffer, pH 7.4, 0.1 mM NaCl and 2 µM GDP and allowed to react overnight at room temperature with vigorous agitation. The reaction mixture was centrifuged (1 min at 13,000 rpm) to remove protein and peptide precipitate.

The ligation mixture was purified afterwards on a DEAE-gelfiltration column (FPLC-system), eluted with a linear gradient of 20 mM Tris/HCl, pH 7.4 and 5 mM MgCl₂. The solution of purified, semi-synthetic protein was concentrated to 30 g/L (yield: 98%, calculated mass: 21411 [M+H]⁺, found: 21414 by HPLC–MS).

6.22.3. Cloning and expression of $^{1-180}$ H-Ras and generation of the corresponding MESNA-thioester. To produce the protein core for native chemical ligation, the DNA sequence coding for truncated H-Ras (amino residues 1–180) was cloned into the IMPACT (Intein-Mediated Purification with an Affinity Chitin-binding

Tag) vector pTYB2 (New England Biolabs). E. coli Bl21(DE3) were transformed with the Ras-intein plasmid and expression of the protein was performed at 20 °C due to strong aggregation of the fusion protein at higher temperatures. After harvesting of the bacteria, the cells were lysed by ultrasonification and the soluble fraction was applied to a chitin-modified affinity column. The Ras-MESNA thioester was formed on column by application of 200 mM 2-mercaptoethanesulfonic acid for 30 min at 4 °C and concentrated by size-exclusion filtration. After aliquotation, the protein was shock-frozen and stored at -80 °C.

The synthesized building block **22** was treated with 40% TFA/CH₂Cl₂. After complete deprotection (followed by TLC), the solvent was removed under reduced pressure and deprotected compound **22** was ligated to $^{1-180}$ N-Ras-MESNA.

In the ligation reaction 10 μ L N-Ras-thioester (77.2 mg/ mL) was mixed with 5 equiv of 40 mM deprotected compound **22** (dissolved in H₂O/acetonitrile 1:5) in 50 μ L of 50 mM Na₂HPO₄/NaH₂PO₄, pH 7.5, 0.1 mM MgCl₂, 2 μ M GDP and 10 μ L of 150 mM 2-mercaptoethane-sulfonic acid and allowed to react overnight at room temperature with vigorous agitation. The reaction mixture was centrifuged (1 min at 13,000 rpm) to remove protein and peptide precipitate.

The ligation mixture was purified on a DEAE-gel filtration column (FPLC-system), eluted with a linear gradient of 20 mM Tris/HCl, pH 7.4 and 5 mM MgCl₂. The solution of purified, semi-synthetic protein was concentrated to 13 g/L (yield: 95%, calculated mass: 20747 $[M+H]^+$, found: 20747 by HPLC–MS).

6.23. Preparation of the phosphine-functionalized slides

Dry N,N-dimethylformamide (60 mL) (DMF), N,Ndiisopropylethyl amine (4.8 mM) (DIPEA), 1-hydroxvbenzotriazole (4.8 mM) (HOBt) and N.N'-diisopropylcarbodiimide (4.8 mM) (DIC) were added to N-Fmocprotected aminocaproic acid (4.8 mM) and stirred for 10 min under argon to activate the acid. Then, the solution was transferred into a Schlenk flask containing four NH₂-terminated polyamidoamine-dendrimer-coated glass slides (Chimera Biotec, Dortmund) mounted on a Teflon rack. The mixture was stirred overnight under argon, the supernatant solution was removed and the slides were rinsed twice with DMF, then stirred twice for 20 min in DMF for washing and rinsed again with DMF. Afterwards, they were treated twice for 20 min with 60 mL of a 20% piperidine solution in DMF for deprotection. The washing procedure was repeated adding a 15 min stirring step in dichloromethane (DCM) as well as rinsing with DCM. During the whole procedure the slides were kept in the Schlenk flask under argon. The slides were then dried in vacuo. In the following step, the phosphane reagent carrying the free acid function (5.2 mM), dry DMF (65 mL), HOBt (5.2 mM), DIPEA (10.4 mM) and DIC (5.2 mM) were added subsequently under argon to the slides. The mixture was stirred overnight and the supernatant solution was again

removed followed by a washing procedure consisting of rinsing twice with dry DMF, stirring in dry DMF/DCM (1:1) twice for 20 min and rinsing again twice with dry DMF. While stirring, the solution was degassed three times. Afterwards, the slides were treated twice for 10 min with a solution of acetic anhydride (4.8 mM) and pyridine (43.2 mM) in dry DMF (60 mL). After removing the supernatant, the slides were rinsed with dry DMF and dry DCM, stirred twice for 20 min in dry DCM, rinsed again with dry DCM, dried in vacuo and stored under argon until usage. Again, the solution was degassed three times while stirring as mentioned above.

6.24. Spotting process

The spotting process of $10-200 \,\mu\text{M}$ protein solution in different buffers (50 mM Na₂HPO₄, 2 mM NaCl and 2 mM MgCl₂, pH 7.5) was carried out using a GeSiM Nanoplotter (Gesim, Dresden, Germany) by spotting 0.25 nL droplets of protein solutions (spot size 400 μm diameter) followed by incubation overnight.

The slides were incubated with bovine serum albumin (BSA) blocking-buffer (Chimera Biotec, Dortmund) for 30 min and subsequently washed twice with phosphate buffer (50 mM Na₂HPO₄, 2 mM NaCl, 2 mM MgCl₂ and 0.05 vol % Tween 20) for 30 min. The slides were incubated with 50 nM Ras-antibody (50 μ M TETBS, Tween, EDTA and Tris-buffer, pH 7.4) for 45 min and afterwards washed with phosphate buffer (50 mM Na₂HPO₄, 2 mM NaCl and 2 mM MgCl₂) for 30 min.

Acknowledgments

This work was supported by the Fonds der Chemischen Industrie, the Deutsche Forschungsgemeinschaft and the Volkswagen-stiftung.

References and notes

- (a) Hofmann, R. M.; Muir, T. W. Curr. Opin. Biotechnol. 2002, 13, 297–303; (b) Blaschke, U. K.; Silberstein, J.; Muir, T. W. Methods Enzymol. 2000, 328, 478–496; (c) Tolbert, T. J.; Wong, C. H. J. Am. Chem. Soc. 2000, 122, 5421–5428; (d) Tam, J. P.; Xu, J. X.; Eom, K. D. Biopolymers 2001, 60, 194–205.
- (a) Kochendoerfer, G. G.; Kent, S. B. H. *Curr. Opin. Chem. Biol.* **1999**, *3*, 665–671; (b) Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. H. *Science* **1994**, *266*, 776– 779.
- (a) Brunsveld, L.; Watzke, A.; Durek, T.; Alexandrov, K.; Goody, R. S.; Waldmann, H. *Chem. Eur. J.* 2005, *11*, 2756–2772; (b) Durek, T.; Alexandrov, K.; Goody, R. S.; Hildebrand, A.; Heinemann, I.; Waldmann, H. *J. Am.*

Chem. Soc. **2004**, *126*, 16368–16378; (c) Ludolph, B.; Waldmann, H. *Chem. Eur. J.* **2003**, *9*, 3683–3691.

- Block, J. B.; Matern, H. T.; Peden, A. A.; Schneller, R. H. Nature 2001, 409, 839–841.
- (a) Clarke, S. Annu. Rev. Biochem. 1992, 61, 355–386; (b) Hancock, J. F.; Magee, A. I.; Childs, J. E.; Marshall, C. J. Cell 1989, 57, 1167–1177; (c) Wittinghofer, A.; Waldmann, H. Angew. Chem., Int. Ed. 2000, 39, 4192–4214.
- Becker, C. F.; Hunter, C. L.; Seidel, R. P.; Kent, S. B. H.; Goody, R. S.; Engelhard, M. *Chem. Biol.* 2001, *8*, 243– 252.
- (a) Zhu, H.; Snyder, M. Curr. Opin. Chem. Biol. 2001, 5, 40–45; (b) Zhu, H.; Snyder, M. Curr. Opin. Chem. Biol. 2003, 7, 55–63; (c) Phizicky, E.; Bastiaens, P. I.; Zhu, H.; Snyder, M.; Fields, S. Nature 2003, 422, 208–215.
- (a) Templin, M. F.; Stoll, D.; Schwenk, J. M.; Pötz, O.; Kramer, S.; Joos, T. O. *Proteomics* 2003, *3*, 2155–2166; (b) Schweitzer, B.; Prediki, P.; Snyder, M. *Proteomics* 2003, *3*, 2190–2199.
- 9. MacBeath, G.; Schreiber, S. L. Science 2000, 289, 1760-1763.
- 10. Tomizaki, K.-Y.; Usui, K.; Mihara, H. ChemBioChem 2005, 6, 1–18.
- Camarero, J. A.; Kwon, Y.; Coleman, M. A. J. Am. Chem. Soc. 2004, 126, 14730–14731.
- Soellner, M. B.; Dickson, K. A.; Nilsson, B. L.; Raines, R. T. J. Am. Chem. Soc. 2003, 125, 11790–11791.
- (a) Hang, H. C.; Yu, C.; Kato, D. L.; Bertozzi, C. R. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 14846–14851; (b) Hang, H. C.; Yu, C.; Pratt, M. R.; Bertozzi, C. R. J. Am. Chem. Soc. 2004, 126, 6–7.
- (a) Saxon, E.; Bertozzi, C. R. Science 2000, 287, 2007– 2010; (b) Luchansky, S.; Hang, H. C.; Saxon, E.; Grunwell, J. R.; Yu, C.; Dube, D. H.; Bertozzi, C. R. Methods Enzymol. 2003, 362, 249–272; (c) Prescher, J. A.; Dube, D. H.; Bertozzi, A. R. Nature 2004, 430, 873–877.
- (a) Köhn, M.; Wacker, R.; Peters, C.; Schroeder, H.; Breinbauer, R.; Niemeyer, C. M.; Waldmann, H. Angew. Chem., Int. Ed. 2003, 42, 5830–5834; (b) Köhn, M.; Breinbauer, R. Angew. Chem. 2004, 116, 3168–3178; (c). Angew. Chem., Int. Ed. 2004, 43, 3106–3116.
- For a preliminary account of our results, see: Watzke, A.; Köhn, M.; Gutierrez-Rodriguez, M.; Wacker, R.; Schröder, H.; Breinbauer, R.; Kuhlmann, J.; Alexandrov, K.; Niemeyer, C. M.; Goody, R. S.; Waldmann, H. *Angew. Chem., Int. Ed.* 2005, *45*, 1408–1412.
- 17. Stieber, F.; Greter, U.; Waldmann, H. Angew. Chem. 1999, 111, 1142–1145.
- Rak, A.; Pylypenko, O.; Durek, T.; Watzke, A.; Kushnir, S.; Brunsveld, L.; Waldmann, H.; Goody, R. S.; Alexandrov, K. *Science* 2003, *302*, 646–650.
- Camarero, J. A.; Hackel, B. J.; Yoreo, J. J.; Mitchell, A. R. J. Org. Chem. 2004, 69, 4145–4151.
- Handlan, A. L.; Oppenheimer, N. J. Pharm. Res. 1988, 5, 297–299.
- Kiich, K.; Saxon, E.; Tirrell, D. A.; Bertozzi, C. R. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 19–24.
- 22. The spotting process was carried out using a GeSiM Nanoplotter (Gesim, Dresden, Germany) by spotting 0.25 nL droplets of protein solutions (in buffer; spot size 400 mm diameter) followed by incubation overnight.
- Saxon, E.; Luchansky, S. J.; Hang, H. C.; Yu, C.; Lee, S. C.; Bertozzi, C. R. J. Am. Chem. Soc. 2002, 124, 14893–14902.