

Fig. 1.—Infrared spectra: curve A, symmetrical diphenyl dithiolphthalate; curve B, unsymmetrical diphenyl dithiolphthalate; curve C, mixture of symmetrical and unsymmetrical diphenyl dithiolphthalate; curve D, symmetrical di-(p-nitrophenyl) dithiolphthalate; curve E, unsymmetrical di-(p-nitrophenyl) dithiolphthalate; curve F, mixture of symmetrical and unsymmetrical di-(p-nitrophenyl) dithiolphthalate. All spectra were determined in solid potassium bromide.

ride. The mixture was stirred mechanically at 25° for 18 hours. After the methylene chloride was removed by distillation under reduced pressure, the residue was taken up in 40 ml. of benzene and extracted with successive 40-ml. portions of 5% hydrochloric acid, 5% sodium bicarbonate and water. After drying and removal of the solvent, the residue was crystallized from 10 ml. of absolute ethanol; 0.40 g. (75%), m.p. 109-110°. One recrystallization raised the melting point to 112-113°.

The mixed melting point with authentic ethyl phthalimidoacetate was undepressed

Treatment of Tryptophan Ethyl Ester with Symmetrical Di-(p-nitrophenyl) Dithiolphthalate.—Triethylamine (0.6 Di-(p-nitrophenyl) Dithiolphthalate.—Triethylamine (0.6 ml., 4.6 mmoles) in 20 ml. of methylene chloride was added dropwise with stirring to a solution of 0.66 g. (2.3 mmoles) of tryptophan ethyl ester hydrochloride and 0.50 g. (2.3 mmoles) of symmetrical di-(p-nitrophenyl) dithiolphthalate in 45 ml. of methylene chloride. The mixture was stirred for 12 hours at 25°. After the methylene chloride was evaporated under reduced pressure, the residue was taken up in 50 ml. of benzene and extracted successively with 50-ml. portions of water, 5% hydrochloric acid and finally again with water. After drying and removal of the solvent, the residue was crystallized from benzene; 0.60 g. (60%), m.p. 191-192.5°. An analytical sample was prepared by two recrystallizations from benzene.

Anal. Calcd. for $C_{20}H_{12}N_2O_6S_2$: C, 54.55; H, 2.75. Found: C, 54.46; H, 3.04.

The infrared spectrum has only the carbonyl stretching frequency at 1760 cm.⁻¹ characteristic of a γ -lactone. The mixed melting point of I and II, R = p-C₆H₄NO₂, was

160-165° (depressed)

Treatment of Glycine with Symmetrical Di-(p-nitro-phenyl) Dithiolphthalate.—A mixture of 0.85 g. (1.15 millimoles) of glycine, 0.50 g. (1.15 mmoles) of the sym-metrical isomer I (R = p-C₆H₄NO₂), and 0.096 g. (1.15 mmoles) of sodium bicarbonate in a solution of 50 ml. of dioxane and 3.0 ml. of water was stirred at 25° for 18 hours. Hydrogen peroxide (0.30 ml. of 30%) was added with continued stirring for 1 hour. After the solvent was evaporated under reduced pressure, the residue was treated with 20 ml. of warm water and the yellow solid was collected by filtration. One recrystallization from benzene gave fine, yellow needles; 0.2 g. (40%), m.p. 191-192.5°. The aqueous filtrate was distilled under reduced pressure, the colorless solid remaining was recrystallized from water; 0.052 g. (24%), m.p. 193-194°

The mixed melting point with authentic phthaloylglycine

(m.p. 194°) was undepressed. The infrared spectrum of the yellow, crystalline product

The infrared spectrum of the yellow, crystalline product shows only the band for the γ -lactone and a mixed melting point with the original symmetrical isomer was depressed. **Isomerization of I to II** ($\mathbf{R} = p$ -C₄H₄NO₂),—A solution of 0.50 g. (1.14 mmoles) of symmetrical di-(p-nitrophenyl) dithiolphthalate and 3.0 ml. (1.14 mmoles) of triethylamine in 30 ml. of methylene chloride was stirred mechanically for 18 hours at 25°. The solution was extracted with two 30-ml. portions of 5% hydrochloric acid and once with 30 ml. of water After drying the methylene chloride was evanoof water. After drying, the methylene chloride was evaporated under reduced pressure and the residual yellow solid recrystallized from benzene; 0.15 g. (30%) of fine, yellow needles was obtained, m.p. 188-189°. The mixed melting point with starting material was undepressed. The infrared spectra were identical.

The benzene mother liquor, on storage in a refrigerator, for one week deposited 0.20 g. (40%) of yellow needles, m.p. 158–163°. The infrared spectrum has strong bands in the carbonyl absorption region corresponding to I (1670 cm.⁻¹) and II (1760 cm.⁻¹).

CAMBRIDGE 39, MASSACHUSETTS

[CONTRIBUTION FROM ABBOTT LABORATORIES]

VI.¹ Local Anesthetics. Alkamine Ethers of Alkyl Hydroxybenzoates

By M. B. MOORE AND MAYNETTE VERNSTEN

RECEIVED JULY 5, 1956

The synthesis of alkamine ethers of the three isomeric series of hydroxybenzoic esters is reported. The lower alkyl esters have local anesthetic properties, and the higher esters are fungistatic.

Only a few carboalkoxyphenyl alkamine ethers have been reported in the literature² and none of

(1) Paper V, THIS JOURNAL, 76, 4396 (1954).

(2) (a) C. Rohmann and A. Koch, Arch. Pharm., 276, 154 (1938): (b) R. Fusco, S. Chiavarelli, G. Palazzo and D. Bovet, Gazz. chim. ital., 78, 951 (1948); C. A., 43, 6592a (1949).

these include cyclic aminoalkyl ethers. In view of the advantages of the 4-morpholinyl group in aminoalkyl aryl ethers,1 it appeared desirable to study its effect when combined with a carboalkoxy on the ring. The lower members first prepared were shown to exhibit local anesthetic effect, and

		(-																															
		Nitrogen Calcd. Found	5 06		4.04 4.4 2	4.58	4.10 4.21	3.91	4.00 3.92	4.26	3.77	3 96	4.03	3.68				6.19	5.50	5.60	5.15 4 48	5.75								00 V	4.87	4.78	4. 1 0
			5 014	4.44	4.78	4.56	4.07 4.36	3.91 1 96	3.91	4.18	3.77	4.31	4.01	3.85				6.27	5.39	5.57	5.28 4.64	5.90								с У П	4.78	4.56	4.30 4.18
		s, % gen Found		5	7.27	8.18	7.43 8.49	7.81	7.72	8.73	8.11 0 22	0.00 8.49	8.71	9.36	9.12	9.43	9.52	7.84	6.95	8.25	8 72 8 23	7.90	8.30	7.74	8.26	8.03	7.92	7.99		7 31	7.50	8.42	o.#
		Analyses, % Hydrogen Calcd. Found		200	7.34	8.20	7.62 8.47	7.89	7.89	8.71	8.15 8.71	8.94	8.94								8.71 8.01							16.7				8.20 17	
		puno		РО <u>1</u> 0	09.04 58.55	66.41	67.02	60.15 67 20	60.49	68.13 61 60	01.00 68.38	69.23	68.94	69.38	70.28	71.07	71.13	64.79	55.40	66.97	67.60 59.78	65.48	64.15	60.50	63.20			56.19		64 44		66.56 67.00	68.40
		Carbon Caled. F		0 22 20		66.42 6		60.41 6 67 96 6		68.00 6 61 96 6											67.89 67 59.69 51		64.12 64					56.01 56		64 48 G		66.42 6(67 11 6'	
		(ð		10	58 28	99 1	99 67	60 67	60	89 5	10 88	3 8	68	69	69	70	12	64	95 9	99 20	20 20	65	$^{+9}$	60						64	65	66 67	68
		Formula	~	Dt HCI	04.HCI	04 04	04-ны	O4-HCI	C ₁₈ H _{z7} NO ₄ ·HCl	C ₁₉ H ₂₉ NO ₄	0.ncl	్రి	0,	0,	04	04	04	03	D ₃ .HCI	റ്റ	03-HCI	ം	O ₃ ·HCl	D4-HCI	D ₃ ·HCI	C19H30N2O3-2HCI	C ₁₈ H ₂₇ NO ₄ HCl	C ₁₉ H ₃₀ N ₂ O ₃ ·2HCI		č	ۍ ۲	ੇ ਦੇ	0
	COOR	For	CicH.,NO4	C ₁₅ H ₂₁ NO ₄ HCl	CleH23INO4	C ₁₇ H ₂₅ NO4 C H NO HCI	C17H25INU4 C18H27NO4	C ₁₈ H ₂₇ NO4 HCI CHNO.	H27	C ₁₉ H ₂₉ NO ₄	CigH29NO4	C ₂₀ H ₃₁ NO4	$C_{20}H_{31}NO_4$	C21H33NO4	C ₂₂ H ₃₅ NO ₄	C23H37NO4	$C_{24}H_{39}NO_4$	C ₁₂ H ₁₇ NO ₃	C ₁₉ H ₁₇ NO ₃ ·HCI	$C_{14}H_{21}NO_3$	CIA123NO3 CI5H23NO3-HCI	C ₁₃ H ₁₉ NO ₃	C ₁₉ H ₂₉ NO ₃ ·HCl	C ₁₈ H ₂₇ NO ₄ ·HCI	C ₁₈ H ₂₇ NO ₃ ·HCI	H ₃₀ H ₃₀ N	M_{27} NG	19H30N		C. H. NO.	C16H33NO4	C ₁₇ H ₂₅ NO4 C_H_NO4	CIBLENO
	- H ₃ -0-	$_{\%}^{ m Yield},$	37.5 C							-			U	-		Ū	-			-		-	-	-		-		-		Ŭ		ະດຸ -	ũ
	R3-0	Yi				8	25	7 57		64	56			42	27	20	18	11		29	00 0	36	59	56	67	63	32	21		45	99	10	•
	R. N	*	25.5			27		7 76 2		25	06		27					25			- 29	25							ies	26		26 26	
		иD	<i>ortho</i> series 1.5248	6103 1	0170.1	1.5137		1 5138		1.5118	1 5143	1.5089	1.5092	1.5020	1.5065	1.5044	1.5030	1.5174		1.5103	1.0049	1.5100							meta series	1.5277	1.5197	1.5163	AFTA-1
•	une Et	2.5	orth	161	154	196	091	105	76	8	R								1.40		107		110.5	115	8	215	101	202					
	Alkam	M.P., °C.		167–161	152-154	194 196	134-	103-105	74-76	00 00	000								139-140		106-107		108.5-110.5	113-115	86-88	213 - 215	99-101	200-202					
	BENZOIC ESTER ALKAMINE ETHERS,	Мш.	1C	0	0	œ		ţ		0.3		0.5	11.	.15	6.	.15	. 32	.18	1	15	.10	.18									1.1-1.3	0.7-0.5	
	ENZOIC	B.p.	2.5	0	5	0.8	က	0 25-0 4	ì	0.	-	+ O				•	. '	•		•		,								0.5	1.1-		
	В	°C. I	188-190			168-170	196-200	164-171		4	184-186	1	0	7	7	195-196	20			, i	0									-	202 - 205	206-208 216	224-226
			18	149	Ő,	16	19	16	1	184	18	191	150	177	217	61	205	101	;		611	106				, ,		, , ,		201	20:	206- 216	55
		х ₂	۰0	. °	2	⁵ 0"	${}^{4}O^{a}$	"O")	$^{\dagger}O^{a}$	υ ^υ	tOa		$^{4}O^{a}$	4Oª	${}^{4}O^{a}$	ίOα	2		⁵¹	5	5	، <i>۴</i> , ۶	ر" د ر	Ç.4	NCII3	0	NCH3		$^{u}O^{u}$	${}^{4}O^{a}$	ڻ ٿِ ٻ	°0"
		$-N < R_1 \\ R_2$	N(CH _a) ₄ 0"	DO L'HOIN		N(CH_)40"	N(CH ₂)4O ⁴	ν(CH.)ν		N(CH ₂)40°	N(CH_),O ^a	N(CH ₂)40ª		N(CH ₂) ₄ O ^a	$N(CH_2)_4O^a$	N(CH ₂) ₄ O ^a	N(CH ₂) ₄ O ^a	N(CH ₃) ₂		N(C ₂ H ₅) ₂	N(C2H5)2	$N(CH_3)_2$	N(CH2)	$N(CH_2)_4O^{a,J}$	N(CH ₂)4 ^{5,1}	N(CH ₂), NCII ₃ ^{4,1}	N(CH ₂)404"-	N(CH ₂) ₄ NCH ₃ ^{d,J}		N(CH ^a) ⁴ O ^a	$N(CH_2)_4O^a$	N(CH ₂)40" N(CH ₂).0"	N(CH ₂)40 ^a
		Я	(CH.)3	(HJ)		$(CH_2)_3$	$(CH_2)_3$	(CH _a),	2	(CH ₂) ₃	(CH")"	(CH ₂)				Ū	Ť	$(CH_2)_2$	t	$(CH_2)_2$	$(CH_2)_2$	$(CH_2)_2$	$(CH_2)_b$	$(CH_2)_5$	$(CH_2)_{5}$	$(CH_2)_5$	5	(CH ₂)6		(CH ₃) ₃	(CII ₂) ³	(CH ₂) ₃	(CH ₂)
		ы	CH3	нı	(2115 	i-C ₃ H ₇	i-C4H9	"-C.H.	6	<i>i</i> -C ₅ H ₁₁	и-С.Н.,	n-C ₆ H ₁₃		n-C ₇ H ₁₅	<i>n</i> -C ₈ H ₁₇	n-C ₉ H ₁₉	$n-C_{10}H_{21}$	CH3		CH ₃	C2H5	C_2H_5	C_2H_5	C_2H_5	C_2H_5	$C_{2}H_{5}$	CH3	СН3		CH,	C_2H_5	n-C ₃ H ₇ n-C.H.	n-C _b H ₁₁
		A-No.	0 1688			7335 1	7123 i	7330 *		7334 1	7650 →							9937 (1066	1-0096 (1-0285 (1-0371 (7686 (7792 n 7797 n	
		1		20	4	~	2	~ N		i	- 12	- 15-		7	2	80	<u>56</u> -	ď.		š	5	Ó	Q.	Q.	φ.	Ϋ́	<u> </u>	÷		$\overline{56}$	7687	22	1

TABLE I

5634

Ν	ov. 5,	19	956	I							AL	KA	MIN	εЕ	THER	s of	ALKY	ζL	Ηı	/DR	ox	YBE	NZOATE:	5				5635
	Nitrogen Calcd. Found		5.10		4.12	4.01	71 6	F. 0		5.37	500 F	0.00 4 64	5.22				Found		5.06	4.48		19.69^{b}	^b Bro-					
			5.01	4.25	4.07	0.91	02 6	00.0		5.34		4.01 4 64	5.12				Nitrogen Calcd. Found		5.01	4.44		20.246]	Attempts to crystallize the hydrochloride were unsuccessful.					
	-Analyses, %				5 F						6.67		7.62								~ •		re unsuc					
	-Analys Hyc Calcd					62.1 96.0							7.36				-Analyses, %- Hydrogen Icd. Found	3 5.59				5.45 5.45	ride wei				(ह	2 8 0
	bon Found					61 00						50.73					Ca	ς.				1.30 5.36	rdrochlo				ydrogen d. Found	8 6.77 8 6.93 1 7.80
	Carbon Calcd. Found		64.48	58.26	59.38	60.41	17.70 60 00	00-00 63 89	60.09	63.38	55.72	28.30 50.60	57.03				Carbon d. Found	50.99			57.62	46.16	e the hy				Analyses, % Hydrogen ound Calcd. Fou	5 6.68 3 6.68 0 8.01
				HCI			50		HCI		HCI	55	HCI				Calcd.	50.29			57.82 21 20	01.20 45.61	rystalliz				Carbon Led. Found	54.35 54.43 64.10
	Formula		C ₁₅ H ₂₁ NO4	C ₁₆ H ₂₃ NO ₄ ·HCI	CITH25 NO4-HC			C21A33NO4-PCI	CIEH2INO2-HCI	C14H19NO4	ClaH ₁₉ NO4-HCI		ClaH19NO3-HCI	d B.			Ū						ipts to c				Calcd.	54.29 54.29 64.06
	<u>_</u>		C_{I_b}	•		ן בייבי			-	Ch	บี้ง	วิ่ง	C ^r	/ Method B.		N N N N	Formula	srNO4	jo,	C ₁₆ H ₂₁ NO ₄ ·HCl	C ₁₈ H ₂ NO ₅ HCI	C16H22N2U4 C15H20BrNO4·HCI	Attem				et	CHCI CHCI
	Vield, %		61	39	57.5	6/	01	10 68 5	67	59	ļ	01 81	ft m			0 (CH ₂) ₃		C ₁₅ H ₂₀ BrNO4	C ₁₅ H ₂₁ NO ₄	C ₁₆ H ₂₁ N	C ₁₈ H ₂₀ N	C15H22N2U4 C15H20BrNC	ulation.		FIDES,	(H)	Formula	C ₁₅ H ₂₁ NO ₃ S·HCl C ₁₅ H ₂₁ NO ₃ S·HCl C ₁₈ H ₂₇ NO ₃ S
inued)		S	27							25				ed in re			Yield,	small ^a	29		01 ,	0 72	g manip		INE SUL	'z'	, P	
TARLE I (Continued)	nD	para series	1.5350							1.5392				° Reported in ref. 2a.	TABLE III	RS,	25 7						er durin,	TABLE IV	BENZOIC ESTER ALKAMINE SULFIDES,	$-S(CH_2)_3$	D 700 D	
TARLE	M.P., °C.	Þ		148-149	130-132	124-120	071-071	127-132	190-191		200-202	14/-148			T	к Етне	24 24	:	1.5275				the est	H	C ESTER		n^{20} D	1.5508
	M°			148	130	124	121	161 1221	190		200	141-	151	^d 4-(1-Methylpiperazinyl).		SUBSTITUTED ESTER ETHERS,	M.P.,	i		160-161	145-147	12/ 181-183	hydrolysis of the ester during manipulation.		BENZOI	×,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	M.P.,	173-175 171-172
	Мш.		0.5							0.5				-Methyl		BSTITUT	ш М	1.6	2.5	1	Η.	Ĥ	ısy hydr				Mm.	0.18
	B.p.		94.5													Su	B.p.						o the ea				°C. ^{B.p.}	194–195
	ç.		191 - 194.5							164				olidinyl.				223-228	188-190				partly t				ō	
			a ر	, ,					v	5				 1-Pyrrolidinyl. 			Þ	4-Br	2-0CH3		2-0CH3	ə-ын ₂ 2-Br	ıtly due				Я	2-СН3 4-СН3 2-С4Н9(п)
	$-N \underbrace{\stackrel{R_1}{\swarrow}}_{R_2}$		N(CH ₂)40 ⁴	N(CH ₂)40 ⁴	N(CH ₂)40 ⁻	N(CH ₂)40 ⁻		N(CH ₂),O ⁴	N(CH _a) ^b , ¹	N(CH2)40ª		N(C2Hs)						4-	⁷			9 91 1	apparei				A-No.	6553 2 6564 4 7649 2
	1													^b 1-Piperidinyl.					, <u>°</u>		COOCH		go well				-Ρ	766
	R,		(CH ₂),	(CH ₂)	(CH2)3	$(CH_2)_3$	$(CH_2)_3$	(CH ₂).	(CH.),	$(CH_2)_2$		(CH ₂)	- - -				*	2-COOCH,	4-COOC ₂ H ₆		3-CH2CH2COOCH3	2-COUCH3 4-COOCH3	 The reaction did not go well apparently due partly to the easy ine analysis. 					
	я		CH_3	$C_{s}H_{s}$	$n-C_{3}H_{7}$	n-C4H9		n-C ₂ H	CH ₃	CH3			C ₂ H	^a 4-Morpholinyl.					-4-		9-C		reaction alysis.					
	A-No.					8/2/			_			9935 0026	9952 e	a 4-M			A-No	396	6740		9443	9401 1-0436	[•] The reacti mine analysis.					

TABLE II

Hydroxybenzoic Esters, HO

							N									
_									Analyses, %							
Posi-	-	B.F		М.р.,			Yield,		Carl	bon	Hydr	rogen				
tion	R	°C.	Mm,	°Ĉ. '	nD	t	%	Formula	Caled.	Found	Caled.	Found				
2	$C_6H_{13}^a$	109	0.7		1.5019	25	91	$C_{13}H_{18}O_{3}$	70.24	70.53	8.16	8.21				
2	$n - C_7 H_{15}$	113	,25		1.4980	27.5	69	$C_{14}H_{20}\mathrm{O}_3$	71.16	71.09	8.53	8.48				
2	$n-C_9H_{19}^b$	141 - 144	.7		1.4825	25	55	$\mathrm{C_{16}H_{24}O_{3}}$	72.69	75.04	9.15	10.32				
2	$n - C_{10} H_{21}^{b}$	144	.55		1.4918	22	46	$C_{17}H_{26}\mathrm{O}_3$	73.34	74.20	9.42	9.93				
3	$n-C_3H_7$	118 - 123	.1	32 - 33	1.5292	24	85	$C_{\iota 0}H_{\iota 2}\mathrm{O}_{3}$	66.65	66.46	6.73	6.51				
3	$n-C_4H_9$	152 - 154	.4		1.5233	24	90	$C_{11}H_{14}O_3$	68.02	68.07	7.27	7.11				
3	$n-C_{5}H_{11}$	172	. 1		1.5180	24.5	81	$C_{12}H_{16}O_3$	69.21	69.09	7.75	7.80				
3	$n - C_7 H_{15}^{b}$	185 - 186	1.0		1.5103	25.5	63	$C_{14}H_{20}O_{3}$	71.16	71.97	8.53	8,68				
4	$C_{6}H_{13}^{4}$	175 - 178	0.5		1.5178	26.5	87	$C_{13}H_{18}O_3$	70.24	70.75	8.16	8.50				
4	$n - C_8 H_{17}^{b}$	182 - 188	0.5	39 - 41			68	$C_{15}H_{22}O_3$	71.97	72.40	8.86	9.00				
					• •							_				

^a The hexyl alcohol used was a sample obtained from a German source; configuration not known. ^b Separation from a by-product, probably the dialkyl ether, was very difficult. The final products from these were satisfactory. Herz, THIS JOURNAL, 67, 2271 (1941), has reported a number of pure alkyl salicylates, including *n*-octyl.

the work was then extended to include the three isomeric series, higher alkyl esters and other cyclic and non-cyclic amines. In Table I are listed the compounds synthesized, with appropriate physical data. Table II gives similar data for those hydroxybenzoic esters not found in the literature. A limited study was made of the effect of other substituents in the ring, and such compounds are reported in Table III. Similar derivatives of paminosalicylic acid have recently been reported by Grimme and Schmitz.³

A few compounds in which sulfur replaces the ether oxygen are reported in Table IV.

The local anesthetic properties were studied by Dr. J. L. Schmidt and his group, and the fungistatic and bacteriostatic effects by Dr. W. E. Grundy and his group at Abbott Laboratories. The lower members exhibit local anesthetic effects of the procaine type. The higher members are markedly fungistatic, but their activity is vitiated by the presence of serum.

Experimental

Esters of Hydroxybenzoic Acids.—These were prepared in the usual way by refluxing with the appropriate alcohol in the presence of an acid catalyst. Sulfuric acid was used in most cases, but hydrogen chloride would probably be more desirable because of the formation of dialkyl ethers which are hard to separate in the case of the higher alcohols. From such a reaction, di-*n*-octyl ether was isolated, boiling at about 160° at 14 mm., n^{25} D 1.4249.

Anal. Caled. for C₁₆H₂₄O: C, 79.26; H, 14.14. Found: C, 79.56; H, 13.84.

Alkamine Ethers. A.—The sodium or potassium salt of the phenol was formed by reaction with an equivalent of the metal alcoholate in the appropriate alcohol. The alcohol was the same as that used to form the ester, thus avoiding any possibility of ester interchange. The aminoalkyl halide

(3) (a) W. Grimme and H. Schmitz, Chem. Ber., 84, 734 (1951);
(b) 87, 179 (1954).

was then added and the product refluxed, usually only a few hours, until a test showed the product no longer to be strongly alkaline. Most of the alcohol was removed under reduced pressure, and the residue partitioned between water and an appropriate organic solvent. The organic layer was separated, dried and distilled to remove the solvent and finally to purify the basic ether ester; in some cases the hydrochloride was formed in the organic solvent and further purified by recrystallization.

B.—Several of the alkamine ethers were prepared via the alkyl ω -bromoalkoxybenzoates. These bromides were synthesized by a modification of the method of Marvel and Tannenbaum, 4 using an alcohol as the solvent and replacing the sodium hydroxide by the appropriate sodium alcoholate. By distillation of the alcohol from the reaction mixture, extraction of the residue with ether and evaporation of the ether, a crude product was obtained. Solid methyl 4-(β -bromoethoxy)-benzoate was obtained by extraction of the crude material with hot petroleum ether. The liquid alkyl 2-(ω -bromoalkoxy)-benzoates were recovered by vacuum distillation of the crude oil. The products obtained in these cases were not analytically pure, but were suitable for reaction with an excess of the appropriate amine. Method B was used only for compounds as indicated in Table I.

In the case of esters with larger alkyl groups, difficulties were encountered because of the solubility of these alcohols in organic solvents and their boiling points close to those of the ether esters. In these cases repeated distillation of the bases, or recrystallization of the hydrochlorides was necessary to obtain the pure ether esters.

Acknowledgments.—The authors acknowledge the helpful coöperation of Doctors Richards and Schmidt and other members of the Pharmacology Department, Doctors Sylvester and Grundy and members of the Microbiology Department, and of Mr. E. F. Shelberg and members of the Microanalytical Department. Samples of some of the substituted hydroxy acids were kindly furnished by the Dow Chemical Co.

NORTH CHICAGO, ILLINOIS

(4) C. S. Marvel and A. L. Tannenbaum, "Organic Syntheses," Coll. Vol. I, John Wiley and Sons, Inc., New York, N. Y., 1941, p. 435.