

Titanocene(III) chloride mediated radical induced addition-elimination route to the synthesis of racemic and optically active trisubstituted tetrahydrofurans: Formal synthesis of magnofargesin and 7'-epimagnofargesin

P CHAKRABORTY^a, S K MANDAL^b and S C ROY^{a,*}

^aDepartment of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India ^bDepartment of Chemistry, Saldiha College, Saldiha, Bankura 722 173, India e-mail: ocscr@iacs.res.in

MS received 25 February 2016; revised 19 April 2016; accepted 26 April 2016

Abstract. Titanocene(III) Chloride mediated radical induced synthesis of 4-benzylidene substituted tetrahydrofuran, a typical lignan skeleton, has been accomplished in good yield through addition-elimination route in racemic as well as in optically active forms. The method has been applied to the synthesis of furano lignans, magnofargesin (1) and 7'-epimagnofargesin (2) in optically active forms.

Keywords. Titanocene(III) chloride; radical; tetrahydrofurans; synthesis; furano lignans.

1. Introduction

Radical induced addition-elimination process has been used as a tool for the synthesis of bioactive natural products due to mild and simple reaction conditions along with a vast substrate tolerance. The early report¹ by Kharasch *et al.*, has further been developed² by Heiba and Dessau describing an unexpected cascade radical cyclization initiated by intermolecular addition of carbon-centered trichloromethyl radical to alkynes. Interestingly, Baldwin et al., synthesized³ the cyclopentanoid isonitrile, the core skeleton of antibiotic metabolites of fungi in the genus trichoderma, via a novel radical addition-elimination method. Harris and Weiler⁴ prepared stereospecific exocyclic alkene by a consecutive radical cyclization-elimination process in 1987. In the same year, Pattenden and his group developed⁵ a cobalt-mediated addition-elimination protocol for the synthesis of carbon-carbon double bond. Baichi and Bosch⁶ used the identical protocol for the synthesis of bicyclic β -lactams. Naito *et al.*, successfully applied the addition-elimination process for asymmetric synthesis of (-)- α -Kainic acid^{7a} and a concise formal synthesis of (-)-martinellic acid.7b Some strained functionalized alkylidene-cyclobutanes^{8a} and fused spirocyclic imines^{8b} were also prepared using this technique. Banwell used this technique as a key step for the synthesis of aromatic erythrina alkaloids^{9a} and chemoenzymatic approach towards the total synthesis of (+)-Brunsvigine.^{9b} Such a useful technique in the field of radical chemistry has neither been cultivated nor used extensively¹⁰ by using titanocene(III) species as a radical initiator specially for the synthesis of natural products.^{11a,b} Herein, we depict a novel methodology for the synthesis of benzylidene substituted tetrahydrofurans using Cp₂TiCl induced radical based additionelimination strategy that has been implemented to the total synthesis of two furano lignans, magnofargesin (1) and its isomer 7'-epimagnofargesin (2).^{11c} The radical initiator titanocene(III) chloride (Cp2TiCl) was prepared from commercially available Cp₂TiCl₂ and Zn dust in THF under argon atmosphere.¹²

^{*}For correspondence

2. Experimental

¹H NMR were recorded in CDCl₃ on 300, 400 and 500 MHz and ¹³C NMR were recorded on 75, 100 and 125 MHz spectrometer respectively using TMS as an internal standard. IR spectra were recorded on a Shimadzu FTIR-8300 instrument. High-resolution mass spectra (HRMS) were obtained using a Qtof Micro YA263 instrument. Ethyl acetate was dried over anhydrous calcium chloride. Petroleum ether of boiling range 60-80°C and diethyl ether were dried over sodium. Silica gel of 60-120 mesh was used for column chromatography. THF used for radical cyclisation was super dried by distilling twice with sodium. DCM solvent was used after freshly distilling over P₂O₅. All the reactions were carried out either in argon or nitrogen atmosphere with oven-dried glass apparatus. Most of the compounds described are already reported in the literature and are characterized by NMR, IR and MASS spectral studies and have been compared with authentic samples.

Allylic alcohols $4a-g^{13}$ and the epoxides $5a-g^{14c,15-17}$ were prepared following the standard literature procedures.

2.1 Preparation of the epoxy ether 6a

To a stirred suspension of NaH (53 mg, 50% dispersion, 1.1 mmol) in dry THF (1 mL) was added dropwise a solution of epoxy alcohol 5a (75 mg, 0.50 mmol) in dry THF (5 mL) at 0°C under nitrogen. After the liberation of hydrogen gas ceased (approx. 25 min), a solution of dibromo compound 12 (166 mg, 0.60 mmol) in dry THF (7.5 mL) was added dropwise at 0°C over 10 min. The reaction mixture was stirred at RT for 3h and then carefully quenched with ice water. After removal of most of the solvent under reduced pressure, the resulting residue was extracted with diethyl ether (4 \times 25 mL). The combined ether extract was successively washed with water (2 \times 10 mL) and brine $(1 \times 10 \text{ mL})$ and finally dried (Na_2SO_4) . Solvent was removed under reduced pressure and the crude mass obtained was purified by column chromatography over silica gel to furnish 2-(-2-bromo-3-phenylallyloxy)(phenyl)methyl)oxirane (6a, 146 mg, 85%) as a viscous liquid and as an inseparable mixture of two isomers in approx. 3:1 ratio. IR (Neat): 3058, 2854, 1598, 1490, 1257, 1068, 756, 694 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 2.66 (dd, J = 2.4, 4.8 Hz, 0.75H), 2.75-2.83 (m, 1.25H), 3.23-3.24 (m, 0.25H), 3.27-3.30 (m, 0.75H), 4.21-4.52 (complex multiplets, 2.75H), 4.64 (d, J = 4.4 Hz, 0.25H), 7.29-7.43 (m, 10H (aromatic hydrogens) + 1H (olefinic hydrogen); ¹³C NMR (75 MHz, CDCl₃): δ 44.3, 45.2, 54.2, 55.0, 55.2, 57.1, 79.4, 81.9, 84.8, 84.9, 86.5, 86.7, 122.6, 122.7, 127.2, 127.4, 127.7, 128.2, 128.3, 128.5, 128.6, 128.8, 129.1, 131.8, 137.4; HRMS: calcd. for $C_{18}H_{17}BrO_2$ [M+Na]⁺ 367.0304; found: 367.0300.

Compounds **6b-6g** were prepared following the similar procedure used for the preparation of **6a**.

2.2 2-(-2-Bromo-3-phenylallyloxy)(4-chlorophenyl) methyl)oxirane (**6b**)

Viscous liquid as an inseparable mixture of two isomers in approx. 1.5:1 ratio. Yield 88%. IR (Neat): 3055, 1596, 1488, 1257, 1078, 1014, 756, 690 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 2.62-2.65 (m, 0.60H), 2.72-2.78 (m, 1H), 2.81-2.84 (m, 0.40H), 3.18-3.26 (m, 1H), 4.20-4.52 (complex multiplets, 2.60H), 4.60 (d, J = 6 Hz, 0.40H), 7.28-7.44 (m, 9H (aromatic hydrogens) + 1H (olefinic hydrogen); ¹³C NMR (75 MHz, CDCl₃): δ 44.28, 45.3, 54.0, 54.8, 57.2, 57.3, 78.9, 81.0, 84.5, 84.6, 86.8, 87.0, 122.5, 122.6, 128.4, 128.6, 128.8, 128.9, 129.0, 129.1, 131.8, 131.9, 134.5, 135.9; HRMS: calcd. for C₁₈H₁₆BrClO₂ [M+Na]⁺ 400.9914; found, 400.9912.

2.3 2-(-2-Bromo-3-phenylallyloxy)(p-tolyl)methyl) oxirane (**6**c)

Viscous liquid as an inseparable mixture of two isomers in approx. 2:1 ratio. Yield 84%. IR (Neat): 2921, 1514, 1490, 1263, 1076, 756, 692 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 2.36 (2s merged, 3H), 2.63-2.65 (m, 0.67H), 2.74-2.82 (m, 1.33H), 3.21-3.23 (m, 0.33H), 3.26-3.29 (m, 0.67H), 4.14-4.48 (complex multiplets, 2.67H), 4.61 (d, J = 4.5Hz, 0.33H), 7.10-7.63 (m, 9H (aromatic hydrogens) + 1H (olefinic hydrogen); ¹³C NMR (125 MHz, CDCl₃): δ 21.3, 44.4, 44.5, 45.1, 74.4, 74.6, 79.7, 82.5, 121.9, 127.2, 127.4, 127.6, 127.8, 128.2, 128.3, 128.4, 128.5, 128.6, 129.1, 129.2, 129.3, 129.4, 129.5, 131.9, 134.6, 135.2, 138.5; HRMS: calcd. for C₁₉H₁₉BrO₂ [M + Na]⁺ 381.0466; found, 381.0465.

2.4 2-(-2-Bromo-3-phenylallyloxy)(4-methoxyphenyl) methyl)oxirane (**6d**)

Viscous liquid as an inseparable mixture of two isomers in approx. 1:1 ratio. Yield 85%. IR (Neat): 2997, 1610, 1512, 1249, 1074, 757, 692 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 2.63 (dd, J = 2.5, 5.0 Hz, 0.50H), 2.74-2.76 (m, 1H), 2.82 (dd, J = 4.0, 5.0 Hz 0.50H), 3.22-3.24 (m, 0.50H), 3.26-3.28 (m, 0.50H), 3.81 (s, 3H), 4.18-4.48 (complex multiplets, 2.50H), 4.60 (d, J = 4.0 Hz, 0.50H), 6.92 (d, J = 8.0 Hz, 2H), 7.29-7.34 (m, 6H), 7.41-7.43 (m, 2H); ¹³C NMR (100 MHz,

81.4, 84.9, 85.0, 86.4, 86.6, 113.7, 114.0, 114.1, 122.6, 122.7, 128.3, 128.4, 128.5, 128.7, 129.1, 129.2, 129.3, 131.8, 159.9; HRMS: calcd. for $C_{19}H_{19}BrO_3$ [M+Na]⁺ 397.0415; found: 397.0417.

2.5 2-(-2-Bromo-3-phenylallyloxy)(naphthalen-6-yl) methyl)oxirane (**6**e)

Viscous liquid as an inseparable mixture of two isomers in approx. 2:1 ratio. Yield 89%. IR (Neat): 3056, 1598, 1488, 1078, 910, 757 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 2.72-2.73 (m, 0.66H), 2.74-2.80 (m, 0.67H), 2.84-2.88 (m, 0.67H), 3.34-3.36 (m, 0.33H), 3.39-3.41 (m, 0.67H), 4.27-4.61 (complex multiplets, 2.67H), 4.84 (d, *J* = 4.0 Hz, 0.33H), 7.31-7.33 (m, 3H), 7.43-7.48 (m, 2H), 7.52-7.62 (m, 3H), 7.82-7.87 (m, 5H); ¹³C NMR (125 MHz, CDCl₃): δ 44.4, 45.3, 54.2, 55.0, 57.1, 57.2, 79.7, 82.0, 84.9, 122.6, 124.9, 125.1, 126.3, 126.4, 126.8, 127.3, 127.8, 128.1, 128.3, 128.5, 128.6, 131.8, 133.3, 134.8; HRMS: calcd. for C₂₂H₁₉BrO₂ [M+Na]⁺ 417.0461; found: 417.0464.

2.6 2-(-2-Bromo-3-phenylallyloxy)(oxiran-2-yl) methyl)-3a,7a-dihydrobenzo[d][1,3]dioxole (**6**f)

Viscous liquid as an inseparable mixture of two isomers in approx. 2:1 ratio. Yield 85%. IR (Neat): 2995, 1614, 1519, 1249, 1080, 768, 690 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 2.54-2.56 (m, 0.67H), 2.64-2.74 (m, 1.33H), 3.10-3.16 (m, 1H), 4.09-4.47 (complex multiplets, 2H), 5.10-5.12 (m, 0.67H), 5.25-5.29 (m, 0.33H), 5.88 (2s merged, 2H), 6.70-6.79 (m, 2H), 6.83-6.84 (m, 1H), 7.16-7.35 (m, 6H), ¹³C NMR (125 MHz, CDCl₃): δ 44.4, 45.3, 54.2, 55.1, 56.8, 75.4, 79.2, 81.5, 84.8, 84.9, 86.6, 86.7, 107.9, 108.0, 108.3, 108.4, 115.1, 115.4, 121.1, 121.6, 122.6, 122.7, 126.4, 127.8, 128.2, 128.3, 128.4, 128.5, 128.6, 129.1, 129.2, 131.1, 131.3, 131.8, 131.9, 140.4, 142.7, 147.9, 148.1; HRMS: calcd. for C₁₉H₁₇BrO₄ [M+Na]⁺ 411.0208; found: 411.0206.

2.7 2-(1-(-2-bromo-3-phenylallyloxy)pentyl)oxirane (**6**g)

Viscous liquid as an inseparable mixture of two isomers in approx. 4:1 ratio. Yield 84%. IR (Neat): 2929, 1507, 1490, 1255, 1083, 756, 691 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 0.80 (t, J = 7.0 Hz , 3H), 1.17-1.62 (m, 6H), 2.45 (dd, J = 3.0, 4.5 Hz, 0.80H), 2.70 (t, J = 4.5 Hz, 0.80H), 2.74 (d, J = 3.5 Hz, 0.40H), 2.84-2.87 (m, 0.20H), 2.92-2.94 (m, 0.80H), 3.12-3.16 (m, 0.80H), 3.36-3.40 (m, 0.20H), 4.37 (d, J = 4.0 Hz, 0.20H), 4.48 (AB_q, J = 15.5 Hz, 0.80H), 7.18-7.23 (m, 4H), 7.33-7.37 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 14.1, 22.7, 24.9, 25.2, 31.9, 32.0, 32.3, 32.8, 43.3, 45.7, 53.3, 54.8, 58.1, 58.2, 80.2, 85.6, 85.8, 122.9, 128.3, 128.4, 128.5, 131.8; HRMS: calcd. for C₁₆H₂₁BrO₂ [M+Na]⁺ 347.0623; found: 347.0627.

2.8 Typical Cp_2TiCl mediated addition-elimination procedure for the synthesis of benzylidene substituted furan derivative **7a**

A solution of titanocene dichloride (564 mg, 2.28 mmol) in dry THF (10 mL, strictly deoxygenated) was stirred with activated zinc dust (360 mg, 5.5 mmol) for 1h under argon (activated zinc dust was prepared by washing 20g of commercially available zinc dust with 60 mL of 4M HCl and thorough washing with water and finally with dry acetone and then dried in vacuum). The resulting green solution was then added dropwise to a stirred solution of the epoxy ether 6a (345 mg, 1.0 mmol) in dry THF (20 mL) at RT under argon during 1h. The reaction mixture was stirred for 6 hours and was quenched with a saturated solution of sodium dihydrogen phosphate (5 mL). Most of the solvent was removed under reduced pressure and the residue was extracted with diethyl ether (4 \times 30 mL). The combined ether layer was washed with saturated NaHCO₃ (2 \times 25 mL) and finally dried over Na₂SO₄. After removal of the solvent under reduced pressure the crude residue obtained was purified by column chromatography over silica gel to afford the substituted furan compound (2S,3R)-4-benzylidene-tetrahydro-2phenylfuran-3-yl)methanol (E:Z =1:2) (7a, 192 mg, 72%) as a mixture of two isomers in 1:2 ratio. IR (Neat): 3330, 1598, 1488, 1078, 910, 757 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 3.00-3.01 (m, 0.33H), 3.45-3.49 (m, 0.67H), 3.76-3.79 (m, 1H), 3.81-3.85 (m, 0.50H) 3.93-3.97 (m, 0.50H), 4.61-4.95 (complex multiplets, 2.33H), 5.22 (d, J = 3.6 Hz, 0.67H), 6.45 (q, J = 2.0Hz, 0.33H), 6.49 (d, J = 2.0 Hz, 0.67H), 7.16-7.45 (m, 10H); ¹³C NMR (125 MHz, CDCl₃): δ 52.1, 55.9, 61.9, 63.1, 70.3, 73.2, 82.3, 84.6, 122.1, 126.1, 126.3, 127.1, 127.2, 127.7, 127.9, 128.1, 128.2, 128.6, 128.7, 136.6, 136.9, 140.6, 141.4, 141.6; HRMS: calcd. for $C_{18}H_{18}O_2$ [M+Na]⁺ 289.1204; found: 289.1205.

Compounds **7b-7g** were prepared following the similar procedure used for the preparation of **7a**.

2.9 (2S,3R)-4-Benzylidene-2-(4-chlorophenyl) tetrahydrofuran-3-yl)methanol (E:Z=1:1) (7b)

IR (Neat): 3363, 2871, 1596, 1490, 1213, 1062, 825, 756 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 2.87 (d, J =

5.5 Hz, 0.50H), 3.33 (s, 0.50H), 3.64-3.76 (m, 1.50H), 3.86-3.89 (m, 0.50H), 4.56 (q, J = 7.5 Hz, 1H), 4.68-4.86 (complex multiplets, 1.50H), 5.12 (d, J = 3.5 Hz, 0.50H), 6.37 (d, J = 1.5 Hz, 0.50H), 6.42 (d, J = 1.0Hz, 0.50H), 7.07-7.31 (m, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 52.1, 56.0, 61.8, 63.0, 70.3, 73.1, 81.6, 83.9, 116.3, 122.4, 122.5, 127.2, 127.4, 127.5, 127.7, 128.0, 128.2, 128.7, 128.8, 133.4, 133.6, 136.4, 136.8, 140.0, 140.8, 141.0; HRMS: calcd. for C₁₈H₁₇ClO₂ [M+Na]⁺ 323.0815; found: 323.0815.

2.10 (2S,3R)-4-Benzylidene-tetrahydro-2-p-tolylfuran-3-yl)methanol (E:Z=1:1) (7c)

IR (Neat): 3360, 2921, 1598, 1512, 1269, 1176, 813, 696 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 2.33 and 2.34 (2 s, 3H), 2.99 (d, J = 6.0 Hz, 0.50H), 3.45 (d, J = 3.5 Hz, 0.50H), 3.76 (d, J = 6.0 Hz, 0.5H), 3.82 (dd, J = 5.0, 11.0 Hz, 0.50H), 3.91-3.97 (m, 1H), 4.64 (ABq, J = 13.0 Hz, 1H), 4.74-4.93 (complex multiplets, 1.50H), 5.17 (d, J = 3.5 Hz, 0.50H), 6.45 (brs, 0.5H), 6.49 (brs, 0.50H), 7.05-7.47 (m, 9H); ¹³C NMR (75 MHz, CDCl₃): δ 21.2, 52.0, 55.8, 56.1, 56.3, 61.8, 63.0, 70.2, 73.1, 82.2, 84.5, 109.1, 110.5, 122.0, 126.1, 126.4, 127.1, 127.2, 128.1, 128.2, 128.7, 129.3, 129.6, 136.6, 137.0, 137.4, 137.7, 138.2, 139.0, 140.8, 141.8; HRMS: calcd. for C₁₉H₂₀O₂ [M+Na]⁺ 303.1361; found: 303.1362.

2.11 (2S,3R)-4-Benzylidene-tetrahydro-2-(4-methoxyphenyl)(furan3-yl)methanol (E:Z=1:2) (7d)

IR (Neat): 3417, 2934, 1612, 1513, 1248, 1175, 1033, 756, 695 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 2.96-3.00 (m, 0.33H), 3.42-3.45 (m, 0.67 H), 3.74 (d, J = 6.0 Hz, 1H), 3.79-3.82 (m, 3.67H), 3.92-3.95 (m, 0.33H), 4.60 (ABq, J = 13.5 Hz, 1H), 4.75-4.89 (complex multiplets, 1.33H), 5.14 (d, J = 4.0 Hz, 0.67H), 6.45(d, J = 2.5 Hz, 0.33H), 6.49 (d, J = 2.5 Hz, 0.67H), 6.86-6.89 (m, 2H), 7.16-7.38 (m, 7H); ¹³C NMR (75 MHz, CDCl₃): δ 51.9, 55.4, 55.6, 61.8, 63.0, 70.2, 72.9, 82.1, 84.3, 114.0, 114.1, 121.9, 122.0, 127.1, 127.2, 127.5, 127.8, 128.1. 128.2, 128.7, 133.2, 134.1, 136.6, 137.0, 140.9, 141.9, 159.3, 159.5; HRMS: calcd. for C₁₉H₂₀O₃ [M+Na]⁺ 319.1305; found: 319.1310.

2.12 (2S,3R)-4-Benzylidene-tetrahydro-2-(naphthalene-2-yl)furan-3-yl)methanol (E:Z=1:2) (7e)

IR (Neat): 3421, 2939, 1598, 1508, 1062, 819, 752, 696 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 3.09-3.11 (m, 0.33H), 3.54-3.58 (m, 0.67H), 3.81-3.89 (m, 1.50H),

3.98-4.02 (m, 0.50H), 4.67-4.79 (m, 1.33H), 4.82-5.03 (m, 0.67H), 5.12 (d, J = 6.4 Hz, 0.33H), 5.39 (d, J = 3.6 Hz, 0.67H), 6.47(d, J = 2.4 Hz, 0.33H), 6.52 (d, J = 1.6 Hz, 0.67H), 7.17-7.52 (m, 8H), 7.80-7.86 (m, 4H); ¹³C NMR (75 MHz, CDCl₃): δ 52.1, 55.9, 61.9, 63.1, 70.4, 73.3, 82.4, 84.7, 122.2, 122.3, 124.2, 124.8, 125.3, 126.0, 126.1, 126.2, 126.3, 127.1, 127.3, 127.7, 127.8, 128.1, 128.3, 128.5, 128.6, 128.7, 133.0, 133.4, 136.5, 137.0, 138.8, 139.5, 140.5, 141.5; HRMS: calcd. for C₂₂H₂₀O₂ [M+Na]⁺ 339.1356; found: 339.1361.

2.13 (2S,3R)-2-(Benzo[d][1,3]dioxol-6-yl)(4-benzylidene-tetrahydrofuran-3-yl)methanol (E:Z=1:2) (7f)

IR (Neat): 3411, 2885, 1488, 1444, 1247, 1037, 933, 756, 694 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 2.86-2.87 (m, 0.33H), 3.32-3.33 (m, 0.67H), 3.63-3.68 (m, 1H), 3.71-3.74 (m, 0.50H), 3.83-3.87 (m, 0.50H), 4.54 (ABq, J = 13.0 Hz, 1H), 4.64-4.83 (complex multiplets, 1.33H), 5.03 (d, J = 3.5 Hz, 0.67H), 5.85 and 5.86 (two singlets, 2H), 6.36 (brs, 0.33H), 6.41 (brs, 0.67H), 6.67-6.82 (m, 3H), 7.08-7.30 (m, 5H); ¹³C NMR (75 MHz, CDCl₃): δ 52.1, 55.7, 61.7, 62.9, 70.2, 73.1, 82.2, 84.5, 101.1, 106.7, 106.8, 108.2, 119.6, 120.0, 122.1,122.2, 127.1, 127.3, 128.1, 128.2, 128.7, 136.1, 136.5, 136.9, 140.5, 141.5, 147.1, 147.4, 148.0; HRMS: calcd. for C₁₉H₁₈O₄ [M+Na]⁺ 333.1103; found: 333.1106.

2.14 (2R,3R)-4-Benzylidene-2-butyl-tetrahydrofuran-3-yl)methanol (E:Z=1:2) (7g)

IR (Neat): 3414, 2930, 1723, 1449, 1038, 913, 754, 695 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 0.87-0.89 (m, 3H), 1.22-1.62 (m, 6H), 2.67-2.68 (m, 0.33H), 3.11 (m, 0.67H), 3.61-3.82 (complex multiplets, 2H), 3.92 (q, J = 5.5 Hz, 0.33H), 4.16-4.17 (m, 0.67H), 4.43-4.45 (m, 1.33H), 4.64 (ABq, J = 14.5 Hz, 0.67H), 6.44 (s, 1H), 7.13-7.36 (m, 5H); ¹³C NMR (75 MHz, CDCl₃): δ 14.1, 20.6, 22.7, 25.7, 31.9, 34.4, 34.6, 49.5, 53.3, 62.3, 64.0, 69.0, 71.8, 80.8, 83.3, 122.3, 126.9, 127.1, 128.0, 128.1, 128.6, 128.7, 136.8, 137.1, 141.2, 142.4; HRMS: calcd. for C₁₆H₂₂O₂ [M+Na]⁺ 269.1517; found: 269.1520.

2.15 *Preparation of 1-((Z)-3-(1-(4-methoxyphenyl) allyloxy)-2-bromoprop-1-enyl)benzene (18)*

The compound **18** (316 mg, 88%) was prepared from compound **17** (164 mg, 1.0 mmol) following the similar procedure used for the preparation of compounds **6a**. IR (neat): 2993, 1610, 1512, 1247, 1068, 750, 692

cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 3.81 (d, J = 3.0 Hz, 3H), 4.27-4.39 (m, 2H), 5.05 (d, J = 6.5 Hz, 1H), 5.23-5.33 (m, 2H), 5.96-6.03 (m, 1H), 6.90 (d, J = 9.0 Hz, 2H), 7.30-7.36 (m, 6H), 7.43-7.45 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 55.4, 56.1, 73.9, 81.0, 81.6, 85.5, 86.2, 114.0, 116.7, 116.9, 122.6, 122.9, 128.2, 128.5, 128.7, 129.1, 131.9, 132.3, 132.5, 135.3, 138.4, 138.6, 159.5; HRMS: calcd. for C₁₉H₁₉BrO₂ [M+Na]⁺ 381.0466; found: 381.0465.

2.16 Preparation of the bromo ether 24

To a stirred suspension of NaH (53 mg, 50% dispersion, 1.1 mmol) in dry THF (1 mL) was added dropwise a solution of alcohol 22a (124 mg, 0.50 mmol) in dry THF (5 mL) at 0°C under nitrogen. After the evolution of hydrogen ceased (approx. 25 min), a solution of dibromo compound 12 (166 mg, 0.60 mmol) in dry THF (7.5 mL) was added dropwise at 0°C over 10 min. The reaction mixture was stirred at RT for 3h and then carefully quenched with ice water. After removal of most of the solvent under reduced pressure, the resulting residue was extracted with diethyl ether $(4 \times 25 \text{ mL})$. The combined ether extract was successively washed with water $(2 \times 10 \text{ mL})$ and brine $(1 \times 10 \text{ mL})$ mL) and finally dried (Na₂SO₄). Solvent was removed under reduced pressure and the crude mass obtained was purified by column chromatography over silica gel (30% ethyl acetate-petroleum ether) to furnish 24 (209 mg, 83%) as a viscous liquid. $[\alpha]_{D}^{25} = -156.24$ (c = 5.0, CHCl₃); IR (Neat): 2990, 1522, 1250, 1069, 750, 697 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 1.24-1.70 (m, 10H), 3.58 (dd, J = 7.0, 9.0 Hz, 1H), 3.68 (dd, J = 6.5, 8.5 Hz, 1H), 3.87-3.88 (m, 6H), 4.16 (d, J =16 Hz, 1H), 4.36-4.45 (m, 2H), 4.55 (d, J = 8.0 Hz, 1H), 6.83-6.91 (m, 3H), 7.25-7.30 (m, 4H), 7.39-7.41 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 23.9, 24.1, 25.2, 35.2, 35.3, 36.4, 55.8, 56.0, 56.6, 65.6, 65.9, 78.6, 78.7, 82.0, 85.3, 86.4, 110.6, 110.7, 110.8, 111.1, 120.5, 120.7, 122.9, 128.1, 128.2, 128.3, 128.4, 128.8, 129.1, 129.8, 130.0, 131.7, 131.8, 149.3, 149.4; HRMS: calcd. for C₂₆H₃₁BrO₅ [M+Na]⁺ 525.1253; found: 525.1255.

2.17 Preparation of compound 25

Compound 24 (503 mg, 1.0 mmol) was stirred with 80% aqueous acetic acid (2 mL) for 6 h at 40°C (monitored by TLC). After completion of the reaction, the reaction mixture was extracted with ethyl acetate (3 \times 30 mL) and the combined organic layer was washed with brine (5 mL) then dried over Na₂SO₄. Solvent was removed under reduced pressure and the residue obtained was purified by column chromatography over silica gel (40% ethyl acetate- petroleum ether) to furnish **25** (385 mg, 91%) as a viscous liquid. $[\alpha]_D^{25} =$ -133.84 (c = 9.2, CHCl₃); IR (neat): 3350, 1522, 1250, 1069, 750, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 3.37 (dd, J = 4.8, 11.6 Hz, 1H), 3.55 (dd, J = 3.2, 11.6 Hz, 1H), 3.81-3.91 (m, 7H), 4.13 (d, J = 16 Hz, 1H), 4.36 (d, J = 16 Hz, 1H), 4.57 (d, J = 8.0 Hz, 1H), 6.83-6.92 (m, 3H), 7.29-7.30 (m, 4H), 7.40-7.42 (m, 2H) ; ¹³C NMR (100 MHz, CDCl₃): δ 56.0, 56.7, 62.6, 75.5, 81.6, 84.8, 86.7, 110.3, 111.2, 120.6, 122.5, 128.4, 128.6, 129.5, 131.8, 149.4; HRMS: calcd. for C₂₀H₂₃BrO₅ [M+Na]⁺ 445.0627; found: 445.0627.

2.18 Preparation of compound 26

A solution of compound 25 (423 mg, 1.0 mmol) in DCM (20 mL) was treated with pyridine (0.64 mL, 8.0 mmol) and TsCl (248 mg, 1.3 mmol) was added to it at 0°C and then stirred for overnight at RT. The mixture was poured into ice water, the organic layer was separated and the aqueous portion was extracted with DCM (3×50 mL). The combined organic layers were washed successively with 2M HCl solution (10 mL), water (10 mL) and brine (10 mL) and finally dried over Na₂SO₄.The solvent was removed under reduced pressure followed by column chromatography over silica gel (25% ethyl acetate-petroleum ether) to afford the monotosylated derivative 26 (514 mg, 89%) as a viscous oil. $[\alpha]_{D}^{25} = -86.49$ (c = 3.4, CHCl₃); IR (Neat): 3344, 2937, 1595, 1356, 1240, 1069, 754, 698 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 2.32 (s, 3H), 3.72-3.87 (m, 8H), 3.94 (dd, J = 3.0, 10.5 Hz, 1H), 4.03-4.08(m, 1H), 4.28 (d, J = 15.5 Hz, 1H), 4.50 (d, J =7.0 Hz, 1H), 6.75-6.81 (m, 3H), 7.19-7.25 (m, 6H), 7.33-7.35 (m, 2H), 7.66 (d, J = 8.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 21.7, 55.9, 56.0, 56.9, 70.0, 73.3, 80.4, 84.5, 86.9, 110.3, 111.3, 120.4, 122.4, 128.0, 128.4, 128.7, 129.9, 131.7, 131.8, 132.8, 144.9, 149.5; HRMS: calcd. for $C_{27}H_{29}BrO_7S$ [M+Na]⁺ 599.0715; found: 599.0715.

2.19 Preparation of compound 27

To a stirred suspension of sodium hydride (53 mg, 50% dispersion, 4.0 mmol) in dry THF (10 mL) at 0°C was added dropwise a solution of mono tosylate derivative **26** (865 mg, 1.50 mmol) in dry THF (10 mL) under N₂ for 30 min. The reaction mixture was stirred for 1 h at 0°C at RT for 3 h. It was then carefully quenched with ice-water. After removal of most of THF under reduced pressure, the resulting residue was extracted with diethyl ether (3 \times 50 mL). The combined ether

extract was washed with water (10 mL) and brine (10 mL) and finally dried (Na₂SO₄). Removal of the solvent under reduced pressure afforded a viscous liquid which was purified by column chromatography over silica gel (25% ethyl acetate-petroleum ether) to furnish 27 (510 mg, 84%) as a viscous liquid. $[\alpha]_{D}^{25} = -125.34$ (c = 2.6, CHCl₃); IR (Neat): 2967, 1545, 1389, 1276, 1023, 759, 688 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 2.66 (dd, J = 3.0, 5.0 Hz, 1H), 2.74-2.84 (m, 1H), 3.23-3.29 (m, 1H), 3.86-3.92 (m, 6H), 4.28-4.32 (m, 2H), 4.44-4.50 (m, 1H), 6.86-6.98 (m, 3H), 7.28-7.36 (m, 4H), 7.41-7.43 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 44.4, 54.2, 55.1, 56.0, 56.1, 56.9, 81.5, 85.0, 86.5, 110.2, 111.2, 120.1, 120.5, 122.7, 128.2, 128.3, 128.4, 128.5, 129.1, 129.9, 131.9, 149.4; HRMS: calcd. for $C_{20}H_{21}BrO_4$ [M+Na]⁺ 427.0521; found: 427.0520.

2.20 Preparation of compound 28

The compound 28 (246 mg, 73%) was prepared from compound 27 (400 mg, 0.98 mmol) by radical cyclization reaction following the similar procedure used for the preparation of compound 7a. The isolated compound was found to be an inseparable mixture of two isomers in a ratio of 1:1. IR (neat): 3440, 2958, 1560, 1299, 1276, 1033, 750, 678 $\rm cm^{-1};\ ^1H$ NMR (500 MHz, CDCl₃): δ 3.00-3.01 (m, 0.50H), 3.45-3.46 (m, 0.50H), 3.77-3.95 (complex multiplex including several singlets, 8H), 4.64 (q, J = 13 Hz, 1H), 4.75-5.08 (complex multiplets, 1.50H), 5.13 (d, J = 4.0 Hz, (0.50H), 6.47 (brs, 0.50H), 6.53 (d, J = 1.5 Hz, 0.50H), 6.84-6.90 (m, 1H), 6.93-6.97 (m, 2H), 7.18-7.40 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 51.9, 55.6, 56.0, 56.1, 61.7, 62.8, 70.36, 73.0, 82.3, 84.5, 109.5, 111.2, 118.6, 118.9, 122.0, 122.1, 127.1, 127.3, 128.1, 128.2, 128.7, 133.2, 134.1, 136.6, 137.0, 140.9, 141.9, 159.3, 159.5; HRMS: calcd. for C₂₀H₂₂O₄ [M+Na]⁺ 349.1416; found: 349.1417.

2.21 Preparation of (Z)-2-bromo-3-(4-methoxyphenyl) prop-2-en-1-ol (35az) and (Z)-2-bromo-3-(3,4-dime-thoxyphenyl)prop-2-en-1-ol (**35bz**)

Dibromo compounds **35az** and **35bz** were prepared following the standard literature procedure.^{18c,d}

Spectral data of **35bz**: IR (neat): 3492, 2933, 1515, 1465, 1271, 1143, 1024, 873 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 3.86 (s, 6H), 4.39 (s, 2H), 6.84 (d, J = 8.5 Hz, 1H), 6.99 (s, 1H), 7.15 (dd, J = 1.0, 7.5 Hz, 1H), 7.30-7.32 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 55.9, 69.6, 110.7, 110.8, 122.5, 123.4, 127.5, 127.6,

148.4, 149.0; HRMS: calcd, for C₁₁H₁₃BrO₃ [M+Na]⁺ 294.9946; found: 294.9946.

2.22 *Preparation of 1-((Z)-2,3-dibromoprop-1-enyl)-4-methoxybenzene (36a)*

A solution of PBr₃ (0.12 mL, 1.3 mmol) in diethyl ether (10 mL) was added dropwise to the compound **35az** (243 mg, 1.0 mmol) at 0°C and the solution was stirred for 1h. After completion of the reaction (monitored by TLC) the solution was then neutralized by aqueous saturated NaHCO₃ solution and extracted with dihloromethane (3 × 10 mL). The combined organic extract was washed with brine (10 mL) and dried over anhydrous Na₂SO₄. Removal of the solvent under reduced pressure afforded the dibromo compound **36a** (70%) which was directly used in the next step without any further purification.

2.23 *Preparation of 4-((Z)-2,3-dibromoprop-1-enyl)-1,2-dimethoxybenzene (36b)*

The compound **36b** (72%) was prepared from **35bz** following the same protocol which was used for the preparation of compound **36a** and was directly used in the next step without any further purification.

2.24 *Preparation of 2-(((Z)-2-bromo-3-(4-methoxy-phenyl)allyloxy)(phenyl)methyl)oxirane (37a)*

The compound 37a (292 mg, 78%) was prepared from 5a (150 mg, 1.0 mmol) and 36a (366 mg, 1.2 mmol) following the similar procedure used for the preparation of compounds 6a-g. IR (neat): 3001, 1606, 1510, 1249, 1178, 910, 732 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 2.89 (dd, J = 3.0, 5.0 Hz, 0.50H), 2.98-3.03 (m, 1H), 3.06 (dd, J = 3.5, 6.0 Hz, 0.50H), 3.46-3.47 (m, 0.40H), 3.51-3.53 (m, 0.60H), 4.03-4.06 (m, 3H), 4.41-4.73 (m, 2.70H), 4.87 (d, J = 4.5 Hz, 0.30H), 7.06-7.08 (m, 1H), 7.13-7.17 (m, 1H), 7.57-7.67 (m, 7H), 7.84-7.88 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 44.3, 44.4, 45.1, 45.3, 54.2, 55.1, 55.2, 55.3, 57.2, 74.9, 79.4, 81.8, 82.3, 83.4, 113.6, 114.0, 119.7, 127.2, 127.3, 127.4, 127.6, 127.7, 128.6, 128.7, 128.8, 129.0, 129.8, 130.6, 133.3, 133.4, 137.5, 137.7, 159.6, 159.9; HRMS: calcd. for $C_{19}H_{19}BrO_3$ [M+Na]⁺ 397.0415; found: 397.0417.

2.25 *Preparation of (4-(4-methoxybenzylidene)-tetrahydro-2-phenylfuran-3-yl) (38a)*

The compound **38a** (107 mg, 68%) was prepared from **37a** (200 mg, 0.53 mmol) as a mixture of two isomers in

0.60H), 3.75-3.82 (m, 4H), 3.93 (dd, J = 6.0, 11.0 Hz, 1H), 4.59-4.67 (m, 1H), 4.73-4.94 (complex multiplets, 1.40H), 5.20 (d, J = 3.5 Hz, 0.60H), 6.38 (d, J = 2.0Hz, 0.40H), 6.43 (d, J = 1.0 Hz, 0.60H), 6.84 (d, J =8.5 Hz, 2H), 6.91 (d, J = 11.5 Hz, 1H), 7.10 (d, J =9 Hz, 1H), 7.24-7.40 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 52.0, 55.3, 55.4, 55.9, 61.9, 63.1, 70.3, 73.2, 82.3, 84.6, 114.1, 114.2, 121.5, 121.7, 126.1, 126.3, 127.6, 127.9, 128.6, 129.2, 129.3, 129.5, 129.8, 138.4, 139.0, 141.5, 142.2, 158.7; HRMS: calcd. for C₁₉H₂₀O₃ [M+Na]⁺ 319.1310; found: 319.1312.

2.26 *Preparation of (R)-(3,4,5-trimethoxyphenyl)* ((*R)-oxiran-2-yl)methanol (41a)*

Activated powdered 4-Å molecular sieves (150 mg, 25 wt %) in dry CH₂Cl₂ (5 mL) were placed in a flamedried two-necked round-bottom flask under an argon atmosphere. It was cooled to -20°C and a solution of (-)-DET (104 mg, 0.505 mmol) in dry CH₂Cl₂ (2 mL) [previously stirred with 4-Å molecular sieves (50 mg) for 20 min] and a solution of $Ti(i-PrO)_4$ (0.1 mL, 0.337 mmol) in dry CH₂Cl₂ (2 mL) [previously stirred with 4-Å molecular sieves (50 mg) for 20 min] were cannulated sequentially into the reaction flask with stirring. After 20 min, 5.5 M t-BuOOH in decane (0.61 mL) was added to the mixture and it was stirred at -20°C for another 0.5 h. Then, a solution of allylic alcohol 40 (760 mg, 3.37 mmol) in dry CH₂Cl₂ (4 mL) [previously stirred with 4-Å molecular sieves (75 mg) for 20 min] was cannulated into the mixture and the stirring was continued for further 4 h. Finally, an aqueous solution of 30% tartaric acid (3.4 mL) was added, the mixture was stirred for 0.5 h, and the temperature was allowed to warm to 0°C. Most of the CH₂Cl₂ was removed under reduced pressure and the residue was stirred at 0°C for 0.5 h with 30% aq NaOH (3.5 mL) saturated with NaCl. The resulting mixture was filtered through celite using Et₂O and the filtrate was placed in a separatory funnel and the organic layer was separated. The aqueous layer was extracted with Et₂O $(1 \times 30 \text{ mL})$ and the combined ethereal extracts were washed with brine (30 mL) and dried (Na_2SO_4). The solvent was removed under reduced pressure and the residue obtained was purified by column chromatography over silica gel (30% ethyl acetate–light petroleum) to give pure chiral epoxide 41a (347 mg, 43%). as a colorless viscous liquid. $[\alpha]_D^{25} = -22.8$ (c = 1, CHCl₃); IR (Neat): 3447, 3016, 1541, 1458, 1217,

1130, 756 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 2.79 (t, J = 4.8 Hz, 1H), 2.95 (dd, J = 2.8, 4.8 Hz, 1H), 3.22 (d, J = 3.2 Hz, 1H), 3.84 (s, 3H), 3.87 (s, 6H), 4.83 (d, J = 2.8 Hz, 1H), 6.62 (s, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 43.9, 55.2, 56.3, 61.0, 71.1, 103.4, 135.3, 153.6; HRMS: calcd. for C₁₂H₁₆O₅ (M+Na⁺) 263.0895; found: 263.0892.

2.27 Preparation of (R)-2-((R)-((Z)-2-bromo-3-(3,4-dimethoxyphenyl) allyloxy)(3,4,5-trimethoxyphenyl) methyl)oxirane (42a)

Compound 42a (386 mg, 78%) was prepared from **41a** (240 mg, 1.0 mmol) and **36b** (403 mg, 1.2 mmol) using the similar procedure used for the preparation of compound **6a**. $[\alpha]_{D}^{25} = -59.2$ (c = 2.81, CHCl₃); IR (Neat): 3018, 1593, 1463, 1215, 1130, 756, 667 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 2.83 (dd, J = 2.8, 12.4 Hz, 2H), 3.19 (m, 1H), 3.81-3.92 (m, 15H), 4.24-4.45 (m, 3H), 6.59-6.63 (m, 2H), 6.76-6.80 (m, 2H), 6.85-6.92 (m, 1H), 7.17 (t, J = 3.2 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 45.3, 45.9, 54.1, 54.3, 54.4, 55.1, 55.8, 55.9, 56.1, 57.1, 60.4, 60.8, 69.6, 73.6, 75.1, 80.1, 80.4, 80.5, 83.2, 86.7, 104.1, 104.2, 104.4, 110.7, 110.9, 111.5, 111.7, 111.7, 112.0, 114.4, 114.6, 121.2, 121.3, 122.4, 122.6, 122.7, 125.1, 126.7, 126.8, 127.4, 127.5, 128.2, 129.5, 133.0, 133.1, 133.3, 137.0, 137.2, 137.9, 148.5, 148.6, 148.8, 149.0, 149.1, 149.7, 153.3, 153.4, 153.5; HRMS: calcd for C₂₃H₂₇BrO₇ [M+Na]⁺ 517.0838; found: 517.0840.

2.28 Synthesis of a mixture of magnofargesin (1) and 7'-epimagnofargesin (2)

A solution of titanocene dichloride (564 mg, 2.28 mmol) in dry and deoxygenated THF (10 mL) was stirred with activated zinc dust (360 mg, 5.5 mmol) for 1h under argon (activated zinc dust was prepared by washing 20g of commercially available zinc dust with 60mL of 4 M HCl and thorough washing with water and finally with dry acetone and then dried in vacuum). The resulting green solution was then added dropwise to a stirred solution of the epoxy ether 42a (495 mg, 1 mmol) in dry THF (20 mL) at room temperature under argon during 1h. The reaction mixture was stirred for 6 h and was quenched with a saturated solution of sodium dihydrogen phosphate (5 mL). Most of the solvent was removed under reduced pressure and the residue was extracted with diethyl ether (4×30 mL). The combined ether layer was washed with saturated NaHCO₃ (2 \times 25 mL) and finally dried over Na₂SO₄. After removal of the solvent under reduced pressure the crude residue obtained was purified by column chromatography

over silica gel (30% ethyl acetate-petroleum ether) to afford magnofarges in (1) and 7'-epimagnofarges in (2)as a mixture of two isomers in 1: 1 ratio (324 mg, 78%). IR (neat): 3442, 3020, 1595, 1494, 1217, 1128, 767, 669 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 2.98 (m, 0.50H, C8-H for 1), 3.41 (m, 0.50H, C8-H for 2), 3.79-3.89 (m, 16H, 5 \times OCH₃ and C9-H), 3.97 (dd, J = 5.6, 11.2 Hz, 1H, C9-H), 4.63 (dd, J = 1.6, 14.0 Hz, 1H, C9'-H for 2), 4.73-4.77 (m, 0.50H, C9'-H for 1), 4.85 (d, J = 6.4 Hz, 0.50H, C7-H for 1), 4.93 (dd, J = 1.6, 14.0 Hz, 0.50H, C9'-H for 1), 5.07 (d, J =3.6 Hz, 0.50H, C7-H for 2), 6.39 (d, J = 2.0 Hz, 0.50H, C7'-H for 1), 6.47 (d, J = 1.6 Hz, 0.50H, C7'-*H* for **2**), 6.61 (s, 1H, C2-*H* and C6-*H* for **2**), 6.63 (s, 1H, C2-*H* and C6-*H* for 1), 6.70-6.74 (m, 1H, Ar*H*), 6.81-6.93 (m, 2H, Ar*H*); ¹³C NMR (75 MHz, CDCl₃): δ 52.0, 55.7, 56.0, 56.3, 60.9, 61.8, 62.8, 70.3, 73.1, 82.4, 84.6, 103.1, 103.2, 111.3, 111.6, 120.6, 120.8, 121.8, 122.1, 129.4, 130.0, 136.9, 137.8, 138.8, 139.4, 148.3, 148.4, 149.0, 153.4, 153.5; HRMS: calcd. for $C_{23}H_{28}O_7$ [M+Na]⁺ 439.1733; found: 439.1735.

The two isomers could not be separated by usual chromatographic methods. But, the spectral and analytical data of the mixture of two isomers were in agreement with the reported values.^{12,19}

3. Results and Discussion

Thus, the bromo epoxide **6** was prepared as an inseparable mixture of two isomers in different ratio from the corresponding aldehyde **3** following standard chemical transformations as shown in scheme 1. The bromo epoxide **6** on treatment with Cp₂TiCl in THF under argon afforded the tetrahydrofuran **7** *via* radical induced cyclization-elimination pathway as an inseparable mixture of *cis-trans* isomers in different ratio. In some cases, the ratio was found to be 1:1 depending on the substrate. In all cases, radical cyclization of the bromo epoxide afforded only the 2,3-*trans* products as revealed from our earlier studies.¹¹

The dibromo compound **12** was prepared from cinnamaldehyde **8** following standard chemical transformations (scheme 2). Thus, a solution of cinnamaldehyde **8** in DCM was stirred for 15 min with Br₂ at 0'C followed by the addition of Et₃N and stirred for 15 min to yield a 1:10 mixture of E/Z isomers **9** as an yellow oil. After keeping for 3 days at room temperature the mixture of isomers in **9** completely converted to Z- α bromocinnamaldehyde **10** in the form of a bright yellow solid. Reduction of the aldehyde **10** with sodium borohydride in the presence of CeCl₃.7H₂O furnished the alcohol **11** which was finally brominated using PBr₃ to yield the dibromo compound **12**.¹³

Thus, a series of bromoepoxides were prepared and subjected to radical cyclization using titanocene(III) chloride and the results are summarized in table 1. The methodology worked well for aromatic (Entry 1-6, table 1) as well as aliphatic substrate (Entry 7, table 1) with comparable yield.

Two possible pathways may be predicted for the formation of the cyclized product **7** as shown in scheme **3**. Path A involves the radical **13** that undergoes cyclization to furnish the intermediate **14**. Then, the expulsion of the bromine radical from **14** yielded the intermediate **15** which on acidic work up provided the desired product **7** as an inseparable mixture of two isomers (E/Z). In path B, a diradical species **16** may be formed which undergoes radical coupling to form the intermediate **15** and finally to the product **7**. But, formation of aryl/vinyl radical in path B may be discarded as observed²⁰ by Campaña and Cuerva in a control experiment of intramolecular conjugate addition using aryl iodide and Cp₂TiCl.

In support of path A, a separate experiment was carried out where the bromo compound **18** was treated with Cp₂TiCl in THF under identical reaction conditions (scheme 4). It was observed that only the unreacted starting bromide **18** was isolated without a trace of the cyclized product **19** ensuring the inability of Cp₂TiCl to form a vinyl radical from vinyl bromide.

Scheme 1. Radical induced synthesis of tetrahydrofurans.

Scheme 2. Synthesis of dibromo compound.

Sl. No.	Substrate	Product (E:Z)	Yield (%) ^a
1	O Br O Br 6a	HO , 7a (1:2)	72
	O Br		
2	CI 6b	CI ² ~ 7b (1:1)	70
3	G Br	Tc (1:1)	67
4	MeO 6d	MeO 7d (1:2)	68
5	Ge Br	7e (1:2)	78
6	O Br O O O 6f	HO O O Tf (1:2)	76
7	O Br O 6g	HO ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	67

^aYield refers to pure isolated product.

Scheme 3. Probable Mechanism for radical cyclization.

Scheme 4. Experimental support in favour of path A.

For asymmetric synthesis of tetrahydrofurans, easily accessible R-2,3-O-cyclohexylidine glyceraldehyde **20** was used as a source of chiral pool. Freshly prepared 3,4-dimethoxyphenyl magnesium bromide **21** was added to the aldehyde **20** to obtain an inseparable mixture of two isomeric alcohols **22a** and **22b** in a ratio of 1:1 (scheme 5). The crude mixture of **22** was subjected to PCC oxidation to produce the ketone **23**

in good yield. The ketone **23** was reduced by LiAlH₄ in THF at -78° C to afford the known alcohol **22a** as the sole product.^{21c} The high selectivity of the nucleophilic addition of hydride to carbonyl moiety in **23** may be explained with the analogy as reported earlier.²¹ The alcohol **22a** was then alkylated with dibromo compound **12** in the presence of NaH in THF under argon to furnish **24**. The aryl ether **24** on treatment with 80%

Scheme 5. Asymmetric synthesis of tetrahydrofurans.

aqueous acetic acid at 40°C afforded the diol **25**. The diol **25** was selectively *mono*-tosylated using tosyl chloride with excess of pyridine in DCM to furnish the *mono*-tosylated alcohol **26** which on treatment with NaH in THF produced the chiral epoxide **27** in 84% yield. The chiral radical precursor **27** on treatment with Cp₂TiCl in THF under argon produced the cyclized product **28** as an inseparable mixture of two isomers in equal ratio (E:Z = 1:1).

To study the scope of the method an attempt to prepare substituted dibromo compound **36a,b** following the procedure as stated in scheme 2 was unsuccessful as it produced only a mixture of unidentified products. Finally, the aromatic substituted dibromo compounds **36a** and **36b** were prepared following the procedure as depicted in scheme **6**.

Thus, phosphonium ylide $31^{18a,b}$ prepared from bromophoshphonium salt 30 which was selectively brominated following standard literature method^{18c} to form bromo carbethoxymethylenetriphenylphosphorane 32. The bromide 32 was refluxed separately with aldehyde 33a and 33b to furnish the isomeric unsaturated bromoesters 34a and 34b respectively (E/Z = 1:10). Without further purification, the mixture of esters in 34a and 34b was separately treated with DIBAL-H in THF at -78°C to produce the corresponding isomeric mixture of bromo alcohols **35a** and **35b** in 1:10 ratio (E/Z). The major Z-isomer in 35az (76%) and 35bz (75%) was separated by column chromatography over silica gel.^{18d} Alcohols **35az** and **35bz** were brominated separately with PBr₃ to produce the corresponding methoxy substituted dibromo compounds 36a (64%) and 36b (62%). Alkylation of **5a** with the dibromo compound 36a furnished the epoxy ether 37a. The epoxy ether 37a was then treated with Cp₂TiCl in THF under argon to furnish the furan moiety **38a** in 68% yield (scheme 7). The result showed no significant change in the diastereomeric ratio (E/Z = 1:1.5) which implied that the electronic effect of the methoxy group in the aromatic moiety failed to incorporate much selectivity.

We then turned our attention to the synthesis of furano lignans using the similar protocol. Lignans have attracted much interest over last few decades on account of their widespread occurrence in nature²² and broad range of biological activities.^{19,23–27} Magnofargesin, an antagonist of platelet-activity factor (PAF)²⁸ is a class of lignan and has been a long standing interest for synthetic chemists. Although plentiful synthetic

Scheme 6. Synthesis of aromatic substituted dibromides.

Scheme 7. Synthesis of tetrahydrofurans.

Scheme 8. Formal synthesis of magnofargesin and 7'-epimagnofargesin.

strategies leading to benzyledene substituted tetrahydrofurans have been reported in the literature, the major drawbacks are tedious reaction procedures, low vield and tedious separation technique.²⁹ In continuation of our study on Cp₂TiCl mediated radical induced synthesis of natural product, we demonstrated the formal synthesis of magnofargesin (1) and its stereoisomer *epi*-magnofargesin $(2)^{11}$ in optically active forms using addition-elimination methodology. Thus, 3,4,5trimethoxybenzaldehyde 39 was treated with vinyl magnesium bromide to furnish the allyl alcohol 40 which on Sharpless kinetic resolution,¹⁴ using (-)diethyl tartrate, titanium(IV) isopropoxide [Ti(^{*i*}PrO)₄], *tert*-butyl hydroperoxide and 4-Å molecular sieves in DCM at -20°C afforded the chiral epoxy alcohol 41a in 43% isolated yield (95% ee, determined from the corresponding Mosher ester)^{14c} (scheme 8). The other enantiomer of the allylic alcohol 41b was isolated as such.

The pure epoxy alcohol **41a** was then alkylated using the dibromo compound **36b** in the presence of NaH in THF to furnish the chiral epoxy ether **42a** in good yield. Finally, the chiral radical precursor **42a** when treated with Cp₂TiCl in THF under argon afforded a mixture of **1** and **2** in a ratio of 1:1. The ratio of the two isomers was determined from the ¹H NMR spectrum of the crude cyclized product and compared with the values reported in the literature.^{11,29} Since, the total synthesis of **1** and **2** has been reported by Wardrop²⁹ by separating two isomers using special technique, we accomplished the formal synthesis of two naturally occurring furano lignans, magnofargesin (**1**) and 7'-epimagnofargesin (**2**) in optically active forms through Cp₂TiCl mediated radical induced addition-elimination pathway.

4. Conclusions

In conclusion, we have successfully developed a simple and efficient Cp₂TiCl mediated radical induced synthetic protocol for the synthesis of benzylidene substituted tetrahydrofurans following the additionelimination strategy. The technique has been applied to the total synthesis of a mixture of naturally occurring furano lignans, magnofargesin and its epimer 7'-epimagnofargesin, through addition-elimination process. Since, magnofargesin and its epimer 7'-epimagnofargesin have already been separated earlier from the mixture by Wardrop using special technique, we acomplished the formal synthesis of two naturally occurring furano lignans, magnofargesin (1) and 7'epimagnofargesin (2) in optically active forms.

Supplementary Information (SI)

Copies of NMR spectra of unknown compounds are available in Supplementary Information at www.ias.ac. in/chemsci.

Acknowledgements

P. C. thanks CSIR, New Delhi for awarding research fellowship (No. 9/80(677)2009-EMR-I).

References

- Kharasch M S, Jerome J J and Urry W H 1950 J. Org. Chem. 15 966
- 2. Heiba E I and Dessau R M 1967 J. Am. Chem. Soc. 89 3772
- Baldwin J E, Kelly D R and Ziegler C B 1984 J. Chem. Soc. Chem. Commun. 133

- 4. Harris F L and Weiler L 1987 Tetrahedron Lett. 28 2941
- 5. Patel V F and Pattendon G 1987 J. Chem. Soc., Chem. Commun. 871
- 6. Bosch E and Bachi M D 1993 J. Org. Chem. 58 5581
- (a) Miyata O, Ozawa Y, Ninomiya I and Naito T 2000 *Tetrahedron* 56 6199; (b) Miyata O, Shirai A, Yoshino S, Takeda Y, Sugiura M and Naito T 2006 *Synlett* 893
- (a) Brioche J, Michalak M, Quiclet-Sire B and Zard S Z 2011 Org. Lett. 13 6296; (b) Zhang H, Hay E B, Geib S J and Curran D P 2013 J. Am. Chem. Soc. 135 16610
- (a) Stanislawski P C, Willis A C and Banwell M G 2007 Org. Lett. 8 2143; (b) Banwell M G, Kokas O J and Willis A C 2007 Org. Lett. 8 3503
- (a) Apte S, Radetich B, Shin S and Rajanbabu T V 2004 Org. Lett. 6 4053; (b) Lowinger T B and Weiler L 1990 Can. J. Chem. 68 1636
- (a) Mandal S K, Paira M and Roy S C 2010 *J. Chem. Sci.* 122 423; (b) Saha S, Chakraborty P and Roy S C 2014 *J. Chem. Sci.* 126 837; (c) Chakraborty P, Jana S, Saha S and Roy S C 2012 *Tetrahedron Lett.* 53 6584
- 12. Rajan Babu T V and Nugent W A 1994 *J. Am. Chem. Soc.* **116** 986 and references cited therein.
- (a) Gilley C B, Buller M J and Kobayashi Y 2007 Org. Lett. 9 363; (b) Bowman W R, Bridge C F, Brookes P, Cloonan M O and Leach D C 2002 J. Chem. Soc., Perkin Trans. 1 58
- (a) Gao Y, Hanson R M, Klunder J M, Ko S Y, Masamune H and Sharpless K B 1987 J. Am. Chem. Soc. 109 5765 and references cited therein; (b) Procter G 1996 In Asymmetric Synthesis (New York: Oxford University Press) p. 178; (c) Banerjee B and Roy S C 2005 Synthesis 2913; (d) Fang B, Xie X, Li H, Jing P, Gu J and She X 2013 Tetrahedron Lett. 54 6349
- 15. Logan A W J, Parker J S, Hallside M S and Burton J W 2012 Org. Lett. 14 2940
- Bouziane A, Hélou M, Carboni B, Carreaux F, Demerseman B, Bruneau C and Renaud J-L 2008 *Chem. Eur. J.* 14 5630
- 17. Midland M M and Koops R W 1990 J. Org. Chem. 55 5058
- (a) Werkhoven T M, van Nispen R and Lugtenburg J 1999 Eur. J. Org. Chem. 2909; (b) Mao Y and Mathey F 2012 Org. Lett. 14 1162; (c) Gong X, Yang H, Liu H, Jiang Y, Zhao Y and Fu H 2010 Org. Lett. 12 3128; (d) Ohno H, Iuchi M, Kojima N, Yoshimitsu T, Fujii N and Tanaka T 2012 Chem. Eur. J. 18 5352

- Nitao J K, Johnson K S, Scriber J M and Nair M G 1992 J. Chem. Ecol. 18 1661
- Máquez I R, Miguel D, Millán A, Marcos M L, Cienfuegos L Á d, Campaña A G and Cuerva J M 2014 J. Org. Chem. 79 1529
- 21. (a) Chikashita H, Nikaya T, Uemura H and Itoh K 1989 Bull. Chem. Soc. Jpn. 62 2121; (b) Mulzer J and Angermann A 1983 Tetrahedron Lett. 24 2843; (c) Saha S, Chakraborty P and Roy S C 2014 J. Chem. Sci. 126 837
- 22. (a) C B S Rao (Ed.) 1978 The Chemistry of Lignans (Waltair: Andhra University Press); (b) Whiting D A 1985 Nat. Prod. Rep. 2 191; 1987 4 499; 1990 7 349; (c) Ward R S Nat. Prod. Rep. 1993 10 1; 1995 12 183
- 23. (a) O R Gottlieb 1977 In New Natural Products and Plant Drugs with Pharmacological, Biological or Therapeutical Activity (Berlin-Heidelberg: Springer-Verlag) p. 227; (b) MacRae W D and Towers G H N 1984 Phytochemistry 23 1207 and references cited therein.
- 24. (a) Keller-Juslen C, Kuhn M, Von Warburg A and Stahelin H 1971 J. Med. Chem. 14 936; (b) Kupchan, S M, Britton R W, Ziegler M F, Gilmore C J, Restivo R J and Bryan R F 1973 J. Am. Chem. Soc. 95 1335; (c) Weiss S G, Tin-Wa M, Perdue R E and Farnsworth N R 1975 J. Pharm. Sci. 64 95; (d) Hartwell J L 1976 Cancer Treat. Rep. 60 1031; (e) Carter S K and Livingston R B 1976 Cancer Treat. Rep. 60 1141
- 25. (a) Kamikado T, Chang C F, Sakurai S A and Tamura S 1975 *Agric. Biol. Chem. (Jpn.)* 39 833; (b) Russell G B, Singh P and Fenemore P G 1976 *Aust. J. Biol. Sci.* 29 99
- 26. Richardson M D, Peterson J R and Clark A M 1992 *Phytother. Res.* 6 274
- 27. (a) Yamauchi S and Taniguchi E 1991 Agric. Biol. Chem. 55 3075; (b) Yamauchi S and Tanighchi E 1992 Biosci. Biotech. Biochem. 56 412; (c) Yamauchi S, Nagata S and Taniguchi E 1992 Biosci. Biotech. Biochem. 56 1193; (d) Yamauchi S and Taniguchi E 1992 Biosci. Biotech. Biochem. 56 1744
- (a) Miyazawa M, Hiroyuki K and Kameoka H 1996 *Phytochemistry* 42 531; (b) Miyazawa M, Kasahara H and Kameoka H 1995 *Nat. Prod. Lett.* 7 205; (c) Myazawa M 1994 *Chem. Abstr.* 121 91784
- 29. Wardrop D J and Fritz J 2006 Org. Lett. 8 3659