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ABSTRACT: Alkylidenecyclobutanes (ACBs) containing all-
carbon quaternary stereocenters were simply and efliciently
synthesized by combining boron-homologation and y-selective
cross-coupling strategies. This unique sequence led to
excellent regio- and diastereoselectivities in the generation of
targeted four-membered rings with up to 99% enantiomeric
excess using chiral substrates. In addition to the original
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synthesis of ACBs, the first asymmetric catalytic formation of quaternary stereocenters based on y-selective cross-coupling

reactions is finally shown.

hile the Suzuki—Miyaura cross-coupling is already a

well-established method in pharmaceutical sciences," the
use of allylic boronic esters therein still remains scarcely
described. Pioneering studies by Szabdé and Miyaura®
demonstrated that the reaction of allylboronic ester at the y-
position can be triggered by employing an appropriate
palladium precatalyst. Since then, however, this interesting
transformation was only examined by a few groups.

Recently, the groups of Morken, Buchwald, and Organ
independently illustrated highly regioselective y-cross-coupling
reactions,” while Aggarwal and Crudden described very good
stereoselectivities of these transformations when employing
substituted allyl- and propargylboronic esters.”

We envisioned that combining such a powerful tool with an
in situ generation of cyclobutenylmethylboronic esters (CMBs)
would result in a straightforward formation of alkylidenecyclo-
butanes (ACBs). These small architectures have a rather limited
accessibility but are encountered in many natural products and
biologically active substances.” Moreover, the relatively strained
nature of ACBs allows for a variety of further transformations.’
Recently, merging boron homologation of cyclobutenyl metal
species and allylboration strategies in a one-pot sequence, we
have described a very efficient approach toward stereodefined
ACBs.”

In this communication, we present a unique combination of
boron homologation with a highly y-selective Suzuki—Miyaura
cross-coupling for the diastereo- and enantioselective con-
struction of ACBs containing a quaternary stereocenter
(Scheme 1) starting from achiral CMBs (1a,b) and chiral a-
or §-substituted CMBs (1c—g).

Negishi 7-cyclization® of readily available 4-bromobutynes
followed by a Matteson homologation led to CMBs 1.
Morken’s conditions were initially employed for optimizing
our reaction conditions when 4-iodotoluene was used as the
cross-coupling partner.3d After a short screening, reactions
performed in THF with KOH introduced from a stock solution
proved to give the best results (Table 1, entry 3) in only 1 h.
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Scheme 1. Approach to ACBs Containing a Quaternary
Stereocenter through y-Selective Cross-Coupling
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Similar conversions were observed when replacing THF by
MTBE or ethyl acetate (Table 1, entries 8 and 9), nonetheless
requiring 14 h to reach completion. Attempts to replace
potassium hydroxide as the base only resulted in decreasing
either conversion or regioselectivity levels (Table 1, entries 4
and 5).

With optimal conditions in hand, a set of various aryl halides
were engaged in the presence of 1a,b (Scheme 2). With an
exception for aldehydes (that would lead to a fast allylboration)
and alcohols, a wide range of functional groups were tolerated.

Not only aryl iodides or bromides but also aryl chlorides
were successfully engaged, although with lower yield (2f: 57%
compared to 91% for the corresponding aryl bromide). The
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Table 1. Survey of Base and Solvent in y-Cross-Coupling
Reactions

);k/Bpin

p-Tol-1 (1.0 equiv)
Pd(OAc); (2 mol %)
RuPhos (4 mol %)

-\

base (4.5 equiv) p-Tol
1a solvent, 60 °C, 14 h 2a

entry solvent base conv (%)% y/a®
1 THF KOH 72 >99:1
2 THF/H,0 (1:1) KOH 80 >99:1
3 THF KOH )" >99° >99:1
4 THF TBAF 74 86:14
S THF CsF 65 >99:1
6 dioxane KOH,," 91 >99:1
7 acetonitrile KOH 94 72:28
8 MTBE KOH >99 >99:1
9 ethyl acetate KOH >99 >99:1

“Determined by GC. 8.0 M solution. “After 1 h.

Scheme 2. Electrophilic Scope of y-Selective Cross-Coupling
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2i, X = Br (55%)
(y/o > 99:1)

2g, X = Br (67%)
(y/o > 99:1)

2h, X = Br (71%)
(y/o > 99:1)

lower reaction rate of aryl chloride was exploited in the
chemoselective synthesis of 2i, accounting for only negligible
side reactions. Electron-donating (2a,b and 2h) as well as
electron-withdrawing groups (2f,g) led to good yields up to
91%, while heterocyclic products were isolated in up to 83%
yield (2d and 2e). Interestingly, free amines led to a complete
conversion of the starting material, giving the expected cross-
coupled compound in 76% vyield. In all cases the y-selective
cross-coupling products were exclusively detected, probably
enhanced by a strain release when shifting the z-system outside
of the ring structure.’

Having established an efficient route toward alkylidenecy-
clobutanes, we took a step further by employing chiral
cyclobutenylmethylboronic esters (1c,d) (Scheme 3) possess-
ing a lateral chain R. Performing reactions in dioxane showed
slightly better diastereoselectivities in this case, and aromatic- as

Scheme 3. y-Selective Cross-Coupling of Chiral Substrates
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well as heteroaromatic-substituted methylenecyclobutanes 2j—
o were obtained with high yields up to 95% and with a full
control over the diastereochemical outcome of the trans-
formation (dr >99:1).

As postulated by Buchwald et al. (Scheme 4), we propose to
explain the high diastereoselectivity by a ZT transition state in
which the transmetalation step would follow a chair model."’

Scheme 4. (a) Proposed ZT Model and (b) Observed NOEs
Supporting the Proposed Configuration
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In this case, the palladium complex preferably approaches
from the less hindered diastereotopic face of the double
bond—opposite side of the R chain—leading selectively to the
described isomer. The 2D-NMR assignments of 2k supported
the above-mentioned hypothesis, placing the aromatic moiety
anti to the preinstalled R chain (Scheme 4).

To further expand the scope toward more elaborated
structures and to open the possibility of synthesizing
enantioenriched ACBs, we chose to study the reactivity of a-
chiral boronic esters in y-selective cross-coupling reactions.
First experiments using previously described catalytic systems
led to expected compounds but without control over E/Z ratios
(50:50). Screening of diverse conditions showed the best
results when PCy; or dppb (1,4-bis(diphenylphosphino)-
butane) was employed as ligands in the presence of Pd(OAc),
or Pd(PPh;),Cl,, respectively (Table 2, entries 1 and 12).
However, when full conversion was to be observed, other
conditions only led to worse E/Z ratios. In most cases bidentate
ligands gave better E/Z ratios, a trend that could be attributed
to a favorable shielding of the pseudoaxial position toward the
formation of the E-product. Presenting similar stereoselectiv-
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Table 2. Survey of Conditions for Synthesis of
Alkylidenecyclobutanes

p-Tol-1 (1.0 equiv)
%)%/Bpin

[Pd] (5 mol %)
ligand (5-10 mol %)

KOHgq (4.5 equiv)

1e BY dioxane, 60 °C, 14 h p-Tol 3a
entry Pd species ligand E/Z°
1 Pd(OAc), PCy, 95:5
2 Pd(OAc), XPhos 87:13
3 Pd(OAc), DavePhos 66:34
4 Pd(OAc), RuPhos 49:51
S Pd(OAc), Tetraphos-Li 89:11
6 Pd(OAc), dppBz 88:12
7 Pd(OAc), dppb 92:8
8 Pd(OAc), dppp 92:8
9 Pd(OAc), PPh, 50:50
10 Pd(PPh,),Cl, PCy, 91:9
11 Pd(PPh,),Cl, dppp 92:8
12 Pd(PPhs),Cl, dppb 94:6
13 Pd(PPh,), PCy, 91:9
14 [Allyl-PdCl], PCy, 93:7

“10 mol % of monodentate, S mol % of bidentate ligands.
“Determined by GC.

ities, the Pd(OAc),/PCy; (Table 2, entry 1) system was
preferentially employed for economic reasons.

Pd(OAc), was thus chosen as precatalyst, and the trans-
formation was exemplified with a range of coupling partners
(Scheme S). Boronic esters le,f were readily prepared by a
double boron homologation in order to introduce a-

Scheme 5. Synthesis of Alkylidenecyclobutanes from le and
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substituents and subsequently cross-coupled with different
halides, achieving overall good to excellent yields (up to 97%).
None of the reactions showed a-cross-coupling, and E-3a—h
were obtained in more than 97% of stereochemical purity. In
the case of 4, a 2-cyanoethyl substituent was introduced
through the double-homologation sequence, pointing out the
functional group tolerance of the transformation. Worthy of
note, the starting cyclobutenylmethylboronic ester bearing the
2-cyanoethyl chain was engaged in the y-cross-coupling after
simple filtration of residual salts, avoiding fastidious purification
steps and furnishing 4 in 45% yield. 2D NMR experiments on
3f supported the favored formation of E-isomers.

Taking advantage of a substituent present at the a-position—
that can easily be introduced in a stereoselective way—we took
on the challenge of relaying the chiral information from the
boronic ester moiety to the quaternary stereocenter.

A preinstalled enantiomerically pure ligand on the boron
atom led to enantiomerically enriched cyclobutene derivatives
((R)-1e and (R)-1f) via successively diastereoselective and
diastereospecific boron-homologation sequences. 5-Bromoin-
dole and 4-bromoaniline were chosen for the y-selective cross-
coupling, and corresponding ACBs were obtained in very good
yields up to 94% and with a perfect control of the
stereochemistry (99% E and 99% ee) (Scheme 6). High
stereoselectivities observed in this reaction can be attributed to
a sterically favored pseudo-equatorial positioning of the a-
substituent R in the ZT transition state.

Scheme 6. Diastereoselective Access to Enantioenriched
ACBs 3d and 3g
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(+)-3d (94%) (+)-39 (91%)
(EI1Z=99:1) (EIZ=99:1)
(/oo >99:1, ee = 99%) (y/o > 99:1, ee = 99%)

The next step toward enantioenriched ACBs was designed
through asymmetric catalysis, employing chiral palladium
ligands in the presence of achiral substrates 1b.

To the best of our knowledge, intermolecular enantiose-
lective formation of a quaternary stereocenter through y-
selectlve cross- coupling remains unexplored. While TADDOL-
PNMe,'" failed our expectations, the first positive results were
observed when employing (R)-BINAP as the chiral ligand (er =
64:36) (Table 3, entry 2). Changing the ligand to the JosiPhos
series (entries 3—8) could improve the enantiomeric ratio to
81:19 with L1 at 60 °C. Performing the reaction at room
temperature gave the best enantioselectivities (er = 85:15).
Adjustments on the ligand structure (L2—S5) did not lead to
any amelioration on the stereoselectivity of the reaction.
Finally, methylenecyclobutanes (—)-2c and (—)-2g were—for
the first time—generated from corresponding allylboron
species through stereoselective y-cross-coupling in up to 77%
yield and moderate enantiomeric ratios (up to 85:15 er).
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Table 3. Survey of Conditions for Enantioselective Synthesis
of MCBs

)\RBpin

4-bromoaniline
Pd(OAc), (2 mol %)
ligand (2.5 mol %)

base (4.5 equiv), solvent,
temperature, 1-14 h

1b HoN 2c
entry ligand base solvent  temp (°C) er”
1 TADDOL-PNMe,”  CsF* THF 60 A
2 (R)-BINAP KOH,, dioxane 60 64:36
3 L1 KOH,, dioxane 60 81:19
4 L1 KOH,,  dioxane rt 85:15
S L2 KOH,, dioxane 60 50:50
6 L3 KOH,, dioxane 60 A
7 L4 KOH,, dioxane 60 74:26
8 LS KOH dioxane 60 4

aq
“Determined by HPLC utilizing a chiral stationary phase. b7 mol %.
3.0 equiv. “No conversion.

Y D N

", ", E@/( . L1,R=Ph, R'=Cy
E PR, L2,R=Cy,R =Cy
HoN Ac 1 Fe PR, L3,R=Cy,R'=tBu |

L4, R =Ph, R' = 3,5-Xy |
(-)-2¢ (75%) L5,R=Ph,R' =tBu !
(y/o. > 99:1)

(er = 85:15)

()29 (77%) |
(/o> 99:1)
(er =71:29)

JosiPhos

In conclusion, we have reported a new strategy to easily
synthesize alkylidenecyclobutanes containing a quaternary
stereocenter in very good yields by combining boron-
homologation sequences with y-selective Suzuki—Miyaura
cross-coupling reactions. Excellent regio- and diastereocontrol
was established in this unique transformation, and the first—yet
moderate—enantioselective intermolecular couplings of allyl-
boronic esters were undertaken for the generation of
quaternary stereocenter-containing ACBs.
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