Identification of 7-Phenylaminothieno-[3,2-b]pyridine-6-carbonitriles as a New Class of Src Kinase Inhibitors

Diane H. Boschelli,* Biqi Wu,

Ana Carolina Barrios Sosa, Haris Durutlic, Fei Ye, Yuri Raifeld, Jennifer M. Golas, and Frank Boschelli

> Chemical and Screening Sciences and Oncology, Wyeth Research, 401 N. Middletown Road, Pearl River, New York 10965

> > Received September 17, 2004

Abstract: We disclose here a new class of kinase inhibitors, obtained by replacing the phenyl ring of a 3-quinolinecarbonitrile system with a thiophene ring. When suitably substituted, the resultant 7-phenylaminothieno[3,2-*b*]pyridine-6-carbonitrile analogues show potent inhibition of Src kinase activity.

Src, the prototype member of a family of highly related nonreceptor tyrosine kinases,¹ is over-expressed and/or activated in several types of cancer and also plays a key role in tumor progression and metastases.^{2–4} Increased levels of activated Src were first observed in metastatic colorectal cancer⁵ and more recently in late-stage pancreatic⁶ and ovarian cancers.⁷ Small molecule Src kinase inhibitors may therefore prove useful in the treatment of the more aggressive forms of cancer, including bone metastases in breast cancer patients.⁸ Since Src plays a role in additional signaling pathways, Src inhibitors are also being pursued for the treatment of other diseases including osteoporosis and stroke.^{9,10}

We have reported that 7-alkoxy-4-[(2,4-dichloro-5-methoxyphenyl)amino]-3-quinolinecarbonitriles are potent Src inhibitors, exemplified by the lead compound SKI-606.¹¹⁻¹⁵ Replacement of the C-7 alkoxy group of these original analogues with a thiophene, phenyl, vinyl, or ethynyl group resulted in compounds of structure 1, which retained activity against Src.¹⁶⁻¹⁸ We report here the preparation of compounds with the core structure of **2**, where the phenyl ring of the quinoline system is replaced by a thiophene and show that with suitable substitution these analogues can effectively inhibit Src kinase activity. During the course of this work, Pfizer reported that related thienopyrimidines and thienopyridines (**3**) are VEGFR kinase inhibitors.¹⁹

* To whom correspondence should be addressed. Tel: 845-602-3567. Fax: 845-602-5561. E-mail: bosched@wyeth.com.

Ethyl 7-chlorothieno[3,2-b]pyridine-6-carboxylate, 4, was prepared as reported in the literature.²⁰ As shown in Scheme 1, hydrolysis of the ethyl ester of 4 provided the corresponding acid 5. Subsequent reaction of 5 with thionyl chloride followed by addition of ammonium hydroxide gave the primary amide 6 which was dehydrated with cyanuric chloride to afford the key 6-carbonitrile intermediate 7. Displacement of the 7-chloro group of 7 with 2,4-dichloro-5-methoxyaniline provided 8.

^{*a*} Reagents: (a) NaOH (1N aq), EtOH; (b) (1) SOCl₂; (2) NH₄OH (aq); (c) cyanuric chloride, DMF; (d) 2,4-diCl-5-OMe aniline, NaH, THF.

To prepare C-2-functionalized analogues, **7** was first treated with lithium diisopropylamine followed by addition of iodine to provide the 2-iodo derivative **9** as shown in Scheme 2. Addition of 2,4-dichloro-5-methoxyaniline to **9** gave **10**. Reaction of **10** with phenylboronic acid under Suzuki conditions provided **11**, the C-2 phenyl analogue of **8**. Analogously, coupling of **10** with 4-formylphenylboronic acid provided **12**. Reductive amination of the aldehyde group of **12** with morpholine and *N*-methylpiperazine resulted in **13** and **14**, respectively. Alternatively **10** was coupled with 3-formylphenylboronic acid followed by reductive amination of **15** with *N*-methylpiperazine to provide **16**, the meta isomer of **14**. The ortho isomer of **14**, namely **18**, was prepared in a similar fashion via the aldehyde intermediate **17**.

 a Reagents: (a) (1) LDA, heptane, THF, ethylbenzene; (2) I_2, THF; (b) 2,4-diCl-5-OMe aniline, NaH, THF; (c) boronic acid, (Ph_3P)_4Pd, DME, saturated aqueous NaHCO_3; (d) R'RNH, Na(OAc)_3BH, CH_2Cl_2, NMP, HOAc.

Analogues functionalized at C-3 were prepared as shown in Scheme 3. Treatment of 7 with N-bromosuc-

Letters

cinimide in acetic acid provided a mixture of 3-bromo analogues **19a** and **19b**. While it was possible to obtain only **19a** by performing the bromination in DMF, the yield was low and the purification difficult. Since both the 7-chloro group of **19a** and the 7-bromo group of **19b** were readily displaced, the mixture was converted to the 7-phenylamino analogue **20**. Suzuki reaction of **20** with 4-formylphenylboronic acid and subsequent reductive amination of **21** with morpholine provided **22**, the C-3 isomer of **13**.

Scheme 3^a

 a Reagents: (a) NBS, HOAc; (b) 2,4-diCl-5-OMe aniline, NaH, THF; (c) 4-formylphenylboronic acid, (Ph_3P)_4Pd, DME, saturated aqueous NaHCO_3; (d) morpholine, Na(OAc)_3BH, CH_2Cl_2, NMP, HOAc.

The thieno[2,3-*b*]pyridine isomer of **13** was obtained as shown in Scheme 4. The known ethyl 4-chlorothieno-[2,3-*b*]pyridine-5-carboxylate **23** was prepared according to the literature procedure.²¹ Following the same sequence of reactions used to convert **4** to **13**, **23** was converted into **30**, the [2,3-*b*] isomer of **13**.

Scheme 4^a

 a Reagents: (a) NaOH (1N aq), EtOH; (b) (1) SOCl_2; (2) NH4OH (aq); (c) cyanuric chloride, DMF; (d)(1) LDA, heptane, THF, ethylbenzene; (2) I_2, THF; (e) 2,4-diCl-5-OMe aniline, NaH, THF; (f) 4-formylphenylboronic acid, (Ph_3P)_4Pd, DME, saturated aqueous NaHCO_3; (g) morpholine, Na(OAc)_3BH, CH_2Cl_2, NMP, HOAc.

We had shown in the 3-quinolinecarbonitrile series that a phenylamino group at C-4 provided more potent Src inhibition than a phenoxy or benzylamino substitutent at this position. ^{11,18} To determine if this same effect was seen in this new series, thieno[3,2-b]pyridines with different linkers at C-7 were prepared as shown in Scheme 5. Treatment of **9** with 2,4-dichloroaniline under the standard conditions provided the 7-phenylamino analogue **31**. Treatment of **9** with 2,4-dichlorophenol in the presence of potassium carbonate provided the 7-phenoxy analogue **32**, while treatment of **9** with 2,4-dichlorobenzylamine in the presence of Hunig's base provided the 7-benzylamino analogue **33**. Suzuki reaction of **31–33** with 4-formylphenylboronic acid gave **34–36**; subsequent reductive amination with N-methylpiperazine afforded **37–39**.

 a Reagents: (a) **31**: 2,4-diCl aniline, NaH, THF; **32**: 2,4-diCl phenol, K₂CO₃, DMF; **33**: 2,4-diCl benzylamine, Hunig's base, THF; (b) 4-formylphenylboronic acid, (Ph₃P)₄Pd, DME, saturated aqueous NaHCO₃; (c) N-Me-piperazine, Na(OAc)₃BH, CH₂Cl₂, NMP, HOAc.

Compounds were tested in the LANCE format Src enzyme assay¹⁵ and the Src-dependent cell proliferation assay¹¹ as previously reported. While the unsubstituted thieno[3,2-*b*]pyridine **8** was a weak Src kinase inhibitor, the addition of a phenyl group at C-2 increased the activity in the Src enzyme assay by 10-fold, with **11** having an IC₅₀ of 250 nM (Table 1). Another large

Table 1. Inhibition of Src Kinase Activity

compound	Src enzyme IC to nM (SD) ²²	Src cell_IC to nM (SD)22
compound	Sie enzyme, ie 30 mil (SD)	
1	3.8^{15}	100^{12}
8	2500 (410)	
11	250(37)	>10000
13	34 (10)	1200 (80)
14	13 (3)	720 (120)
16	21 (7)	1200 (370)
18	>10000	
22	>10000	
30	830 (190)	
37	50 (2)	4000 (580)
38	580 (100)	>10000
39	240(57)	>10000

increase in activity was observed with the addition of a morpholinomethyl substitutent at the para position of the phenyl ring of **11** to provide **13**. Improved activity was seen with **14**, the *N*-methylpiperazine analogue of **13**, which had an IC_{50} of 13 nM in the Src enzyme assay and an IC_{50} of 720 nM in the Src cell assay. The meta isomer of **14**, namely **16**, had slightly reduced activity in both assays, while the ortho isomer, **18**, had greatly reduced activity. This precipitous loss of Src inhibition was also seen in the 7-phenyl-3-quinolinecarbonitrile series where an analogue with a morpholinomethyl group at the ortho position was about 3 log orders less potent than the para isomer.¹⁷

A dramatic difference in activity was also observed between **13**, the C-2 substituted thieno[2,3-*b*]pyridine, and **22**, its C-3 isomer. While **13** had an IC₅₀ of 34 nM in the Src enzyme assay, **22** had an IC₅₀ of greater than 10 μ M. A more modest decrease in potency was observed with **30**, the thieno[2,3-*b*]pyridine analogue of **13**, which had an IC₅₀ of 830 nM in the Src enzyme assay.

As was observed in the 3-quinolinecarbonitrile series, the 7-phenylamino analogue **37** was a more potent Src inhibitor than the corresponding 7-phenoxy **38** or 7-benzylamino **39** analogues. Furthermore, as was seen previously, **37**, which lacks the 5-OMe group on the aniline, was about 1/4 as active as **14**, which contains the preferred 2,4-dichloro-5-methoxyaniline group.

Compound 14 was tested against a panel of kinases. While IC_{50} s of greater than 1 μ M were observed against KDR, CDK4, and raf/MEK, 14 was a potent inhibitor of Abl kinase, having an IC_{50} of 2.3 nM. This inhibition of Abl activity by 14 was not unexpected since several 3-quinolinecarbonitriles are also dual inhibitors of Src and Abl, with SKI-606 having an IC_{50} of 1.1 nM for Abl inhibition.^{14,15}

We are continuing to investigate the biological properties of **14** and expanding the SAR of this new core for Src kinase inhibitors.

Acknowledgment. We thank the Wyeth Discovery Analytical Chemistry Department for the spectral data and combustion analysis. We also thank Drs. Dennis Powell and Tarek Mansour for their support of this work.

Supporting Information Available: Experimental details, ¹H NMR, HRMS, and analytical data for all compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Courtneidge, S. A. Role of Src in signal transduction pathways. Biochem. Soc. Trans. 2002, 30, 11-17.
 Summy, J. M.; Gallick, G. E. Src family kinases in tumor
- (2) Summy, J. M.; Gallick, G. E. Src family kinases in tumor progression and metastasis. *Cancer Metastasis Rev.* 2003, 22, 337–358.
- (3) Frame, M. C. Src in cancer: Deregulation and consequences for cell behavior. *Biochim. Biophys. Acta* 2002, 1602, 114–130.
- (4) Irby, R. B.; Yeatman, T. J. Role of Src expression and activation in human cancer. *Oncogene* 2000, 19, 5636-5642.
 (5) Talamonti M. S. Roh, M. S. Curley, S. A. Gallick, G. F.
- (5) Talamonti, M. S.; Roh, M. S.; Curley, S. A.; Gallick, G. E. Increase in activity and level of pp60c-src in progressive stages of human colorectal cancer. J. Clin. Invest. 1993, 91, 53-60.
- (6) Ito, H.; Gardner-Thorpe, J.; Zinner, M. J.; Ashley, S. W.; Whang, E. E. Inhibition of tyrosine kinase Src suppresses pancreatic cancer invasiveness. *Surgery* **2003**, *134*, 221–226.
- cancer invasiveness. Surgery 2003, 134, 221-226.
 (7) Wiener, J. R.; Windham, T. C.; Estrella, V. C.; Parikh, N. U.; Thall, P. F.; Deavers, M. T.; Bast, R. C.; Mills, G. B.; Gallick, G. E. Activated SRC protein tyrosine kinase is overexpressed in late-stage human ovarian cancers. Gynecol. Oncol. 2003, 88, 73-79.

- (8) Myoui, A.; Nishimura, R.; Williams, P. J.; Hiraga, T.; Tamura, D.; Michigami, T.; Mundy, G. R.; Yoneda, T. C-Src tyrosine kinase activity is associated with tumor colonization in bone and lung in an animal model of human breast cancer metastasis. *Cancer Res.* 2003, *63*, 5028–5033.
- (9) Susva, M.; Missbach, M.; Green, J. Src inhibitors: Drugs for the treatment of osteoporosis, cancer or both? *Trends Pharmacol. Sci.* 2000, 21, 489–495.
- (10) Paul, R.; Zhang, Z. G.; Eliceiri, B. P.; Jiang, Q.; Boccia, A. D.; Zhang, R. L.; Chopp, M.; Cheresh, D. A. Src deficiency or blockade of Src activity in mice provides cerebral protection following stroke. *Nat. Med.* **2001**, *7*, 222–227.
- (11) Boschell, D. H.; Wang, Y. D.; Ye, F.; Wu, B.; Zhang, N.; Dutia, M.; Powell, D. W.; Wissner, A.; Arndt, K.; Weber, J. M.; Boschelli, F. Synthesis and Src kinase inhibitory activity of a series of 4-phenylamino-3-quinolinecarbonitriles. J. Med. Chem. 2001, 44, 822-833.
- (12) Boschelli, D. H.; Ye, F.; Wang, Y. D.; Dutia, M.; Johnson, S. L.; Wu, B.; Miller, K.; Powell, D. W.; Yaczko, D.; Young, M.; Tischler, M.; Arndt, K.; Discafani, C.; Etienne, C.; Gibbons, J.; Grod, J.; Lucas, J.; Weber, J. M.; Boschelli, F. Optimization of 4-phenylamino-3-quinolinecarbonitriles as potent inhibitors of Src kinase activity. J. Med. Chem. 2001, 44, 3965–3977.
- (13) Boschelli, D. H. Y., F.; Wu, B.; Wang, Y. D.; Barrios Sosa, A. C.; Yaczko, D.; Powell, D.; Golas, J. M.; Lucas, J.; Boschelli, F. Investigation of the effect of varying the 4-anilino and 7-alkoxy groups of 3-quinolinecarbonitriles on the inhibition of src kinase activity. *Bioorg. Med. Chem. Lett.* **2003**, *13*, 3797–3800.
- (14) Golas, J. M.; Arndt, K.; Etienne, C.; Lucas, J.; Nardin, D.; Gibbons, J.; Frost, P.; Ye, F.; Boschelli, D. H.; Boschelli, F. SKI-606, a 4-anilino-3-quinolinecarbonitrile dual inhibitor of Src and Abl kinases, is a potent antiproliferative agent against chronic myelogenous leukemia cells in culture and causes regression of K562 xenografts in nude mice. *Cancer Res.* 2003, 63, 375–381.
- (15) Boschelli, D. H.; Wang, Y. D.; Johnson, S.; Wu, B.; Ye, F.; Barrios Sosa, A. C.; Golas, J. M.; Boschelli, F. 7-Alkoxy-4-phenylamino-3-quinolinecarbonitriles as dual inhibitors of Src and Abl kinases. J. Med. Chem. 2004, 47, 1599-1601.
- (16) Boschelli, D. H.; Wang, D. Y.; Ye, F.; Yamashita, A.; Zhang, N.; Powell, D.; Weber, J.; Boschelli, F. Inhibition of Src kinase activity by 4-anilino-7-thienyl-3-quinolinecarbonitriles. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 2011–2014.
- (17) Berger, D.; Dutia, M.; Powell, D.; Wissner, A.; DeMorin, F.; Raifeld, Y.; Weber, J.; Boschelli, F. Substituted 4-anilino-7phenyl-3-quinolinecarbonitriles as Src kinase inhibitors. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 2989–2992.
- (18) Barrios Sosa, A. C.; Boschelli, D. H.; Ye, F.; Golas, J. M.; Boschelli, F. Synthesis and inhibition of Src kinase activity by 7-ethenyl and 7-ethynyl-4-anilino-3-quinolinecarbonitriles. *Bioorg. Med. Chem. Lett.* **2004**, *14*, 2155–2158.
- (19) Munchhof, M. J.; Beebe, J. S.; Casavant, J. M.; Cooper, B. A.; Doty, J. L.; Higdon, R. C.; Hillerman, S. M.; Soderstrom, C. I.; Knauth, E. A.; Marx, M. A.; Rossi, A. M. K.; Sobolov, S. B.; Sun, J. Design and SAR of thienopyrimidine and thienopyridine inhibitors of VEGFR-2 kinase activity. *Bioorg. Med. Chem. Lett.* **2004**, *14*, 21–24.
- (20) Thompson, M.; Forbes, I. T. Anxiolytic and antidepressant thienopyridine derivatives. EP 126970; *Chem. Abstr.* 1985, 102, 220869.
- (21) Khan, M. A.; Guarconi, A. E. Thieno[2,3-b]pyridines and thieno-[3,2-b]pyridines by the method of Gould-Jacobs. J. Heterocycl. Chem. 1977, 14, 807-812.
- (22) Compounds were tested at least twice with the standard deviation reported within the brackets.

JM049237M