ISSN 1070-3632, Russian Journal of General Chemistry, 2007, Vol. 77, No. 8, pp. 1477–1479. © Pleiades Publishing, Ltd., 2007. Original Russian Text © A.A. Prishchenko, M.V. Livantsov, O.P. Novikova, L.I. Livantsova, A.V. Maryashkin, E.R. Milaeva, 2007, published in Zhurnal Obshchei Khimii, 2007, Vol. 77, No. 8, pp. 1400–1402.

> LETTERS TO THE EDITOR

Addition of Trimethylsilyl Esters of Trivalent Phosphorus Acids to Diethyl 3,5-Di-*tert*-butyl-4-hydroxybenzoylphosphonate

A. A. Prishchenko, M. V. Livantsov, O. P. Novikova, L. I. Livantsova, A. V. Maryashkin, and E. R. Milaeva

> Lomonosov Moscow State University, Vorob'evy Gory, Moscow, 119992 Russia e-mail: liv@org.chem.msu.ru

> > Received December 25, 2006

DOI: 10.1134/S107036320708035X

Derivatives of substituted unsymmetrical hydroxymethylenediphosphorus acids containing two phosphoryl groups with different extents of polarization are of interest as ligands and biologically active compounds [1]. Here we report on a facile route to new derivatives of unsymmetrical hydroxymethylenediphosphorus acids containing a 2,6-di-*tert*-butylphenol fragment starting from diethyl (3,5-di-*tert*butyl-4-hydroxybenzoyl)phosphonate I detected previously as an intermediate [2]. Phosphonate I was prepared in a high yield by the reaction of triethyl phosphite with readily available 3,5-di-*tert*-butyl-4hydroxybenzoyl chloride A [3].

Tris(trimethylsilyl) phosphite as well as functionalized trimethylsilyl phosphonites taken in excess readily add to the carbonyl group of α -keto phosphonate I with the formation of diphosphonate II and phosphonate–phosphinates III and IV, respectively, in high yields.

The reactions of diphosphonate II and phosphonate-phosphinates III and IV with excess methanol gave substituted hydroxymethylenediphosphorus acids V-VII in high yields. Acid V is obtained as white hygroscopic crystals decomposing on heating above 100°C, without definite melting point. Acids **VI** and **VII** are viscous oils.

Previously unknown hydroxymethylenediphosphoryl compounds **II-VII** containing a sterically

Ar =
$$-\frac{2}{\sqrt{3}} \frac{4}{5} OH$$
, Y = C⁶H₂C⁷H₂ $-\frac{8}{\sqrt{3}} (VI)$, C⁹H₂C¹⁰H₂C¹¹OOH (VII).

hindered phenolic fragment are promising complexing agents and antioxidants. The NMR spectra of **II–VII** contain characteristic signals of methylenediphosphoryl fragments $P^1C^1P^2$ together with the signals of substituted aromatic fragments and propionic acid moieties. The methylene protons of **III**, **IV**, **VI**, and **VII** give in the ¹H NMR spectra partly overlapping multiplets. In the ¹³C NMR spectra of **III** and **VI**, the signals of the phenyl fragment overlap with the signals of C^2 and C^3 nuclei.

Diethyl (3,5-di-tert-butyl-4-hydroxybenzoyl)phosphonate I. A mixture of 3.8 g of 3,5-di-tert-butyl-4-hydroxybenzoic acid and 8 ml of thionyl chloride in 10 ml of hexane was refluxed for 0.5 h, after which the solvent was distilled off in a vacuum, and the residue was kept in a vacuum (0.5 mm Hg) for 0.5 h. Then a solution of 4 g of triethyl phosphite in 10 ml of methylene chloride was added with stirring and cooling (10°C) to a solution of chloride A in 15 ml of methylene chloride. The mixture was stirred for 0.5 h and then heated to reflux, after which the solvent was distilled off, 15 ml of hexane was added to the residue, and the mixture was cooled to -10° C. The oil that separated out was washed with cold hexane and kept in a vacuum (0.5 mm Hg) for 1 h to obtain 4.6 g (81%) of phosphonate I as oil. ¹H NMR spectrum, δ , ppm: 1.32 t (CH₃CH₂O, ³J_{HH} 8 Hz), 1.40 s (Me₃C), 4.15–4.25 m (CH₂O), 6.30 br.s (OH), 8.16 s (C₆H₂). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 16.34 d $(CH_{3}CH_{2}O, {}^{3}J_{PC} 6 Hz), 29.97 \text{ s} (Me_{3}C), 34.43 \text{ s} (Me_{3}C), 63.52 \text{ d} (CH_{2}O, {}^{2}J_{PC} 8 \text{ Hz}), 196.61 \text{ d} (C^{1}, {}^{1}J_{PC} 171 \text{ Hz}), 129.44 \text{ s} (C^{2}), 128.07 \text{ s} (C^{3}), 136.64 \text{ s}$ (C⁴), 160.39 s (C⁵). ³¹P NMR spectrum, δ_P , ppm: 0.05 s. Found, %: C 61.48; H 8.35. C₁₉H₃₁O₅P. Calculated, %: C 61.61; H 8.43.

Bis(trimethylsilyl) (3,5-di-tert-butyl-4-hydroxyphenyl)(trimethylsiloxy)(diethoxyphosphoryl)methylphosphonate II. A solution of 10 g of tris(trimethylsilyl) phosphite in 5 ml of methylene chloride was added with stirring and cooling (10°C) to a solution of 4.6 g of phosphonate I in 10 ml of methylene chloride,. The mixture was refluxed for 2 h and kept for 24 h, after which the solvent was distilled off, and the residue was left for 24 h. Then 15 ml of hexane was added to the residue, and the resulting solution was cooled to -5° C. The precipitated white crystals were filtered off and kept in a vacuum (0.5 mm Hg) for 1 h to give 7.2 g (87%) of phosphonate II, mp 110°C. ¹H NMR spectrum, δ , ppm: -0.03 and 0.11 s (Me₃SiOP), 0.15 s (Me₃SiOC), 1.01 t and 1.12 t (CH₃ \cdot CH₂O, ${}^{3}J_{\text{HH}}$ 7 Hz), 1.32 s (Me₃C), 3.6–4.0 m (CH₂O), 5.14 br. s (OH), 7.54 s (C₆H₂). 13 C NMR spectrum, δ_{C} , ppm: 0.77 s and 0.96 s (Me₃SiOP), 2.57 s (Me₃SiOC), 16.12 d and 16.16 d (CH₃CH₂O, ${}^{3}J_{PC}$ 6 Hz), 30.29 s (*Me*₃C), 34.42 s (Me₃C), 62.77 d and 63.09 d (CH₂O, ${}^{2}J_{PC} 8 \text{ Hz}$, 79.72 d.d [C¹, ${}^{1}J_{P^{1}C} 151 \text{ Hz}$, ${}^{1}J_{P^{2}C} 163 \text{ Hz}$], 126.61 s (C²), 124.28 t [C³, ${}^{3}J_{P^{1}C} = {}^{3}J_{P^{2}C} 4 \text{ Hz}$], 134.39 s (C⁴), 153.10 s (C⁵). ³¹P NMR spectrum, $\delta_{\rm P}$, ppm: 16.92 d (P¹), -0.58 d (P²), ²J_{PP} 45.4 Hz. Found, %: C 49.92; H 8.68. C₂₈H₅₈O₈P₂Si₃. Calculated, %: C 50.27; H 8.74.

Compounds **III** and **IV** were prepared similarly. These compounds are extremely readily hydrolyzed, and therefore they were analyzed in the form of the corresponding acids **VI** and **VII**.

Trimethylsilyl [(3,5-di-*tert*-butyl-4-hydroxyphenyl)(trimethylsiloxy)(diethoxyphosphoryl)methyl](2-phenylethyl)phosphinate III. Yield 85%, oil. ¹H NMR spectrum, δ, ppm: -0.05 (Me₃SiOP), 0.17 s (Me₃SiOC), 1.1–1.15 m (CH₃CH₂O), 1.37 s (Me₃C), 3.6–4.0 m (CH₂O), 5.75 br.s (OH), 7.0–7.5 m (C₆H₂, C₆H₅). ¹³C NMR spectrum, δ_C, ppm: 0.62 s and 0.96 s (Me₃SiOP), 2.37 s (*Me*₃SiOC), 15.6–15.8 m (CH₃· CH₂O), 30.03 s (*Me*₃C), 34.35 s (Me₃C), 62.5–63.3 m (CH₂O), 81.25 d.d [C¹, ¹J_{P¹C} 147 Hz, ¹J_{P²C} 102 Hz], 135.58 s (C⁴), 153.30 s (C⁵), 32.08 d (C⁶, ¹J_{PC} 93 Hz), 27.82 d (C⁷, ²J_{PC} 3 Hz), 141.37 d (C⁸, ³J_{PC} 16 Hz). ³¹P NMR spectrum, δ_P, ppm: 17.14 d (P¹), 39.08 d (P²), ²J_{PP} 43.7 Hz.

Trimethylsilyl [(3,5-di-*tert*-butyl-4-hydroxyphenyl)(trimethylsiloxy)(diethoxyphosphoryl)methyl][2-(trimethylsiloxycarbonyl)ethyl]phosphinate IV. Yield 90%, oil. ¹H NMR spectrum, δ, ppm: 0.16 s [Me₃SiOC(O)], 0.05 s (Me₃SiOP), 0.26 s (Me₃SiOC), 1.0–1.1 m (CH₃CH₂O), 1.28 s (Me₃C), 3.7–4.3 m (CH₂O), 5.30 br.s (OH), 7.54 s (C₆H₂). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 0.67 s [Me₃SiOC(O)], 0.99 s (Me₃SiOP), 2.32 s (Me₃SiOC), 15.8–16.0 m (CH₃· CH₂O), 30.03 s (Me₃C), 34.32 s (Me₃C), 62.5–63.0 m (CH₂O), 81.25 d.d [C¹, ¹J_{P¹C} 148 Hz, ¹J_{P²C} 106 Hz], 126.99 s (C²), 123.62 s (C³), 135.21 s (C⁴), 153.42 s (C⁵), 22.44 d (C⁹, ¹J_{PC} 98 Hz), 28.50 s (C¹⁰), 172.45 d (C¹¹, ³J_{PC} 19 Hz). ³¹P NMR spectrum, $\delta_{\rm P}$, ppm: 17.15 d (P¹), 38.95 d (P²), ²J_{PP} 43.7 Hz.

(3,5-Di-tert-butyl-4-hydroxyphenyl)hydroxy(diethoxyphosphoryl)methylphosphonic acid V. Diphosphonate II, 7.2 g, was added to 30 ml of methanol with stirring and cooling to 10°C. The mixture was heated to reflux, the solvent was distilled off, and the residue was washed with hexane and kept in a vacuum (1 mm Hg) for 1 h to obtain 4.4 g (91%) of acid **IV** as white crystals. ¹H NMR spectrum, δ , ppm: 1.00 and 1.17 t (CH_3CH_2O , ${}^3J_{HH}$ 8 Hz), 1.39 s (Me₃C), 3.7–4.2 m (CH₂O), 7.58 s (C₆H₂). ¹³C NMR spectrum, δ_C , ppm: 16.45 d and 16.73 d (CH₃CH₂O, ${}^{3}J_{PC}$ 6 Hz), 30.92 s (*Me*₃C), 35.08 s (Me₃C), 63.23 d and 63.31 d (CH₂O, ${}^{2}J_{PC}$ 8 Hz), 76.54 t [C¹, ${}^{1}J_{P^{1}C}$ = ${}^{1}J_{P^{2}C}$ 146 Hz], 127.41 s (C²), 123.86 s (C³), 137.76 s (C⁴), 153.16 s (C⁵). ³¹P NMR spectrum, $\delta_{\rm P}$, ppm: 18.54 d (P¹), 14.95 d (P²), ²J_{PP} 38.9 Hz. Found, %: C 50.07; H 7.52. C₁₉H₃₄O₈P₂. Calculated, %: C 50.44; H 7.57.

Acids **VI** and **VII** were prepared similarly.

[(3,5-Di-*tert*-butyl-4-hydroxyphenyl)hydroxy(diethoxyphosphoryl)methyl](2-phenylethyl)phosphinic acid VI. Yield 92%, oil. ¹H NMR spectrum, δ, ppm: 1.10–1.15 m (CH₃CH₂O), 1.32 s (Me₃C), 3.7– 4.2 m (CH₂O), 7.0–7.7 m (C₆H₂, C₆H₅). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 16.4–16.6 m (CH₃CH₂O), 30.85 s (Me₃C), 35.11 s (Me₃C), 63.5–64.0 m (CH₂O), 77.77 d.d [C¹, ¹J_{P¹C} 148 Hz, ¹J_{P²C} 96 Hz], 138.15 s (C⁴), 153.52 s (C⁵), 31.66 (C⁶, ¹J_{PC} 94 Hz), 27.84 s (C⁷), 142.50 d (C⁸, ³J_{PC} 15 Hz). ³¹P NMR spectrum, $\delta_{\rm P}$, ppm: 17.97 d (P¹), 43.59 d (P²), ²J_{PP} 32.4 Hz. Found, %: C 59.65; H 7.74. C₂₇H₄₂O₇P₂. Calculated, %: C 59.99; H 7.83.

[(3,5-Di-*tert*-butyl-4-hydroxyphenyl)hydroxy(diethoxyphosphoryl)methyl](2-carboxyethyl)phosphinic acid VII. Yield 92%, oil. ¹H NMR spectrum, δ, ppm: 1.0–1.15 m (CH₃CH₂O), 1.32 s (Me₃C), 3.7– 4.3 m (CH₂O), 7.53 s (C₆H₂). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 16.4–16.6 m (CH₃CH₂O), 30.78 s (Me₃C), 35.06 s (Me₃C), 62.5–63.0 m (CH₂O), 77.70 d.d [C¹, ¹J_{P¹C} 153 Hz, ¹J_{P²C} 93 Hz], 126.36 s (C²), 123.84 (C³), 138.05 s (C⁴), 153.45 s (C⁵), 22.21 d (C⁹, ¹J_{PC} 94 Hz), 26.83 s (C¹⁰), 173.18 d (C¹¹, ³J_{PC} 15 Hz). ³¹P NMR spectrum, $\delta_{\rm P}$, ppm: 17.93 d (P¹), 43.10 d (P²), ²J_{PP} 35.6 Hz. Found, %: C 51.59; H 7.46. C₂₂H₃₈. O₉P₂. Calculated, %: C 51.97; H 7.57.

The NMR spectra were recorded on a Bruker Avance 400 spectrometer, solvents $CDCl_3$ for I–IV and $(CD_3)_2SO$ for V–VII, references TMS (¹H and ¹³C) and 85% H₃PO₄ in D₂O (³¹P).

ACKNOWLEDGMENTS

The study was financially supported by the Russian Foundation for Basic Research (project nos. 05-03-32864 and 06-03-32731).

REFERENCES

- 1. Ebetino, F.H., *Phosphorus, Sulfur, Silicon, Relat Elem.*, 1999, vols. 144–146, p. 9.
- Prishchenko, A.A., Livantsov, M.V., Novikova, O.P., Livantsova, L.I., Maryashkin, A.V., and Milaeva, E.R., *Zh. Obshch. Khim.*, 2007, vol. 77, no. 8, p. 1397.
- Ivakhnenko, E.P., Shif, A.I., Prokof'ev, A.I., Olekhnovich, L.P., and Minkin, V.I., *Zh. Org. Khim.*, 1989, vol. 25, no. 2, p. 357.