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Abstract: A total synthesis of the bis-deoxylophotoxin 25a, the
probable biological precursor to the neurotoxin lophotoxin 1 is de-
scribed. The synthesis uses a strategy based on sequential carbanion
alkylation and Stille coupling between the chiral building blocks 5
and 6, leading to the furanocembranolide 23, following by function-
al group manipulation.
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Lophotoxin 1 is a unique furanocembrane isolated from
species of the Pacific sea whip Lophogorgia.1 The com-
pound is a potent neurotoxin that binds selectively and ir-
reversibly to acetylcholine recognition sites in nicotinic
acetylcholine receptors, leading to paralysis and asphyxi-
ation.2 Lophotoxin co-occurs with the deoxylophotoxin
2a in L. chilensis, and both metabolites share a structural
resemblance to the natural products pukalide 2b and to
deoxypukalide 3a found in L. alba.2,3 Circumstantial evi-
dence would suggest that the metabolites 1–3 share a
common biosynthetic origin involving elaboration of the
furanocembrane carbon framework 4 followed by sequen-
tial oxidation, to 3a/3b and then epoxidation to 2a/2b en
route to 1. With its unusual juxtapositioned and diverse
oxygen functionality, embedded in a reactive macrocyclic
furan-based framework, lophotoxin 1 is a deceptively
challenging synthetic target.4 In earlier synthetic work we
outlined an approach to the core hydrocarbon furanocem-
brane macrocyclic system 4 in lophotoxin based on a nov-
el acyl radical macrocyclisation strategy.5 However,
attempts to extend this strategy to the macrocyclisation of
oxygen-functionalised acyl radical precursors met with
failure, and competing cyclisation processes became
dominant.6 Building on our investigations of the scope for
intramolecular sp2-sp2 coupling reactions in macrocyclic
constructions,7 we now describe a total synthesis of the
bis-deoxylophotoxin 3b using a stratagem based on se-
quential carbanion alkylation and Stille coupling between
the chiral building blocks 5 and 6 (Figure).8

The substituted phenylseleno lactone 5 was synthesised
from commercially available (R)-(–)-epichlorohydrin as
shown in Scheme 1. Thus, treatment of the epoxide 7 with
the lithium salt derived from trimethylsilylacetylene at –
78 °C, under Yamaguchi conditions,9 first gave the corre-
sponding chlorohydrin 8a which was then deprotected
leading to the monosubstituted acetylene 8b. Carbometa-

lation-iodination of 8b,10 next gave the E-vinyl iodide 9,
which was converted into the epoxide 10 in the presence
of NaOH. When the chiral epoxide 10 was treated with the
lithium salt derived from 1-ethoxyacetylene, and then
with p-toluenesulphonic acid, work up and chromatogra-
phy gave the (+)-lactone 11, in 60% overall yield.11

Deprotonation of 11, using LiHMDS, followed by
quenching the resulting anion with phenylselenenyl bro-
mide at –78 °C finally gave a 2:1 mixture of diastereomers
of the �-phenylselenolactone intermediate 5, as a viscous
oil.12

The furylstannane building block 6 was prepared starting
with the oxazolidinone 13 derived from 3-methylbuten-2-
oyl chloride and the lithium salt of the Evans’ auxiliary
1213. Thus, deprotonation of the oxazolidine 13 with NaH-
MDS in THF at –78 °C, followed by addition of ethyl 2-
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bromomethyl-3-furoate14 first led to the product 14, re-
sulting from deconjugative alkylation.15 The absolute ste-
reochemistry of 14, melting point 59–61 °C, was
established from X-ray crystal measurements.16 Reduc-
tion of 14 with Super Hydride next produced the alcohol
15 which was then converted into the nitrile 17 by sequen-
tial tosylation, reduction, cyanide displacement (to 16)
and, finally, alcohol group protection. The nitrile group in
17 was reduced with Dibal-H leading to the aldehyde 18

which, on further reduction with NaBH4, gave the alcohol
19. Deprotonation of the 2,3-disubstituted furan 19, using
n-BuLi, next gave the corresponding 5-lithiofuran which
was quenched with Me3SnCl at 0 °C to produce the 5-tri-
methylstannylfuran 20. Finally, oxidation of the substitut-
ed alcohol 20 using TPAP gave the key furylstannane
aldehyde intermediate 6 (Scheme 2).17

Deprotonation of the phenylselenolactone 5 using LiH-
MDS in THF at –78 °C, followed by addition of the alde-
hyde 6 gave a satisfying 75% yield of the secondary
alcohol 21 which was isolated as a mixture of diastere-
omers.18 Oxidation of the selenide 21 using hydrogen
peroxide19 was accompanied by in situ dehydroseleneny-
lation producing the unsaturated lactone 22.20 An intramo-
lecular Stille reaction with 22 under the conditions
described by Farina et al21 (Pd2dba3, AsPh3, NMP) at
40 °C, then led to the macrocycle 23 which was obtained
as an oily mixture of two diastereomers in 20% yield over
three steps from 21. Acetylation of the macrocyclic alco-
hol 23, followed by deprotection of the t-butyldimethyls-
ilyl ether group next produced the primary alcohol 24 as a
mixture of epimeric acetates which could be separated by
chromatography. Finally, oxidation of each of the epimer-
ic acetates led to the �-25a and to the �-25b epimers of the
bis-deoxylophotoxin 3b (Scheme 3).22

Preliminary investigations of the regio- and stereo-selec-
tive epoxidations of the bis-deoxylophotoxin diastere-
omers 25 have been carried out, but the dearth  of material
has not allowed us to assign unambiguous structures and
stereochemistries to the epoxide products resulting from
these studies. Further studies are now in progress and will
be reported in future publications.

Scheme 1 Reagents: (i) TMSCCH, n-BuLi, BF3, –78 °C; (ii) TB-
AF, HCl, THF, r.t., 42% over 2 steps; (iii) Me3Al, Cp2ZrCl2, CH2Cl2,
r.t., 3 days, then I2/THF, –30 °C to r.t., 2 h, 62%; (iv) NaOH, Et2O,
r.t., 14 h; (v) 1-ethoxyacetylene, n-BuLi, BF3, 2 h; (vi) p-TsOH,
EtOH, 2 h, then CHCl3, reflux, 14 h, 60% overall from 9; (vii)
LiHMDS, THF, 5 min, then PhSeBr, 40 min., –78 °C, 75%
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Scheme 2 Reagents: (i) n-BuLi, –78 °C, 20 min, then 3-methylbuten-2-oyl chloride, from –78 °C to r.t., 30 min,75%; (ii) NaHMDS, 1 h, –
78 °C, THF; then, 1.2 equiv of ethyl 2-bromomethyl-3-furoate, 65%; (iii) Super Hydride, toluene, –78 °C, 20 min, 80%; (iv) TsCl, Et3N,
DMAP, r.t., 75%; (v) Dibal-H, CH2Cl2, –78 °C, 95%; (vi) n-Bu4NCN, 3equiv, DMSO, 60 °C, 90%; (vii) TBDMSiCl, Et3N, DMAP, r.t., 91%;
(viii) Dibal-H, 1.1 equiv, toluene, –78 °C to r.t., 85%; (ix) NaBH4, MeOH, 0 °C, 70%; (x) n-BuLi, 20 min, then TMEDA for 6 h and n-BuLi
for 20 min, r.t.; then Me3SnCl, 0 °C to r.t. 16 h, 80%; (xi) TPAP, NMO, MS 4, CH2Cl2, 1 h, 75%
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