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INTRAMOLECULAR ACID-CATALYZED REACTIONS 

OF o-CARBOMETHOXY-~-DIAZOACETOPHENONES 

S. V. Chapyshev, L. I. Kurkovskii 
and V. G. Kartsev 

UDC 541.127:541.6:542.97:547.556.7:547.572.1 

~-Diazoacetophenones (DAP) are broadly applied as model compounds in studying the cor- 
relation between structure and reactivity of diazoketones in their acid-catalyzed decomposi- 
tion reactions [i, 2]. 

In order to elucidate the intramolecular (anchimeric) effect of the o-C02CH 3 group on 
the rate and mechanism of acid-catalyzed DAP decomposition, we studied the decomposition ki- 
netics of o-carbomethoxy-~-diazoacetophenones (CMDAP) (la-h) and DAP (Ilia-f) in methanol 
on exposure to H2SO ~. 

O 
R I COCHN2 R l II 

CE----]OH )~ ~ L / O  
R ~ COOCH3 R 2 II 

0 
(~a--.~) ( I r a . - - h )  

R i -H, R z=OCH s ~), R x=H ~=H (70), R I=II, IR 2=CI (c), H I=CO~CHs' R ~=H 
(d), R I=CI, R 2=H (e), R I=H, R ~=CO2CHa (9, RI=NO2, R z=H (g), Ra=H, 
R 2 = NO2 (h). 

O O 
II 

R--~--CCHN2 ~ ~ [1 r R--\ /--CCH2OCHs 
( I I [ a - - f )  (IVa --f . )  

R = O C H s  (a) ,  R = CHa (b), R = H (c), R = CI (d), R = Br  (e), R = NO2 (f}. 

The synthesis of (la-h) and (Ilia-f) was performed according to [3, 4] by acylation of 
diazomethane with the appropriate carbonic acid chloranhydrides. Thin layer chromatographic 
analysis of the CMDAP (Ia-h) acid conversion products showed that isochromane-l,4-diones 
(Ila-h) were formed exclusively. The structure of compounds (Ia-h) and (IIa-h) was confirmed 
by physicochemical methods (Tables 1 and 2). The properties of compounds (IIIa-f) correspond 
to the literature data [4]. 

The kinetics of the acid-catalyzed decomposition of (Ia-h) and (IIIa-f) were followed 
spectrophotometrically by the disappearance of the characteristic absorption bands of the 
diazocarbonyl group (Table 3). The reactions are of the first order with respect to diazo- 
ketone and acid. The kef values (kef = kobs/[H+]) are shown in Table 3. 

Branch of the Institute of Chemical Physics, Academy of Sciences of the USSR, Chernogo- 
lovka. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 4, pp. 837, 
842~ April, 1987. Original article submitted September i0, 1985. 
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TABLE 3. Kinetic Characteristics of the Decomposition of 
Compounds (la-h) and (ilia-f) 

Com- 
potmd 

(Ia) 
(Ib) 
(Ic) 
(Id) 
O e) 
(It) 
(Ig) 
(lh) 
(IIIa) 
(Illb) 

( I I I r  
(IIId) 
(III~) 
(IIV) 

*,Ilm 
( log  e ) 

303 (4,17) 
288 (4,27) 
293 (4,i7) 
290 (4,ii) 
292 (3,92) 
292 (3,97) 
291 Hz (4,03) 
291 Hz (4,06) 

~-ef(H )- 102, 
liter/mo le" 
sec 

380 
t65 
78 
65 
62 
48,3 
t9,6 
i5,6 

H~SO4 4, 
102.M 

o,~o-o,7o 
0,80-0,95 
0,80-0,95 
0,80-0,95 
0,80-0,95 
0,80-4,95 
i,89-5,i9 
1,89-5,i9 

~'ef(D)" 10", 
liter/mole" 
;ec 

44 
27A 
t5,8 
i3,3 
12,7 
tt,6 
7,0 
6,1 

H2SO,, 
t02.M 

0,i0-0,90 
0,80-0,95 
0,80-0,95 
0,80-,0,95 
0,80-0,95 
0,80-4,95 
t,89-5,i9 
1,89-5,i9 

306 (4,32) 
309 (4,t9) 
299 (4,t5) 
300 (4,10) 
299 (4,06) 
307 (4,02) 

28,9 
12,2 
6,72 
3,83 
3,33 
0,67 

i,89-5,t9 
1,89-5,i9 
i,89-5,t9 
t,89-5,19 
L89-5,19 
5,t9-14,06 

29,3 
12,5 
7,47 
4,03 
3,56 
0,78 

i,89-5,19 
i,89-5,19 
t,89-5,t9 
t,89-5,19 
t,89-5,t9 
5,19-i4,06 

u 

kH/g" D 

8,64 
6~09 
5,00 
4,89 
4,88 
4,I6 
2,80 
2~56 
0,99 
0,98 
0,90 
0,95 
0,94 
0,86 

~Effective wavelength. 
%Effective acid concentration interval. 

According to [i], the acid-catalyzed decomposition of diazoketones consists of a pre- 
equilibrium protonation of the diazocarbonyl group and the subsequent decomposition of the 
methylenediazonium ion (VI). 

o 0 0 
I1 ~x t! -F Nu,  ~'~ II 

RCCHN~ + H § ,< ~" HCCH2N~ + > RCCH2Nu + 
(v) ~-~ (vI) -~2 

We know that for primary diazoketones (V), including p- and m-substituted DAP, the lim- 
iting reaction step is the decomposition of ion (VI) [5]. However, in many cases the anchi- 
meric effect of the functional groups in primary diazoketones leads to such a large increase 
in the acid-catalyzed decomposition rate of these ions that protonation may become the limit- 
ing step of the process (A-SE2 mechanism) [6, 7]. 

Our study of the kinetic isotope effect of the solvent on CMDAP (la-h) decomposition in 
methanol on exposure to H2S0 4 showed that the reaction rate in CHaOH was significantly high- 
er than in CD30D (see Table 3). These data, in accordance with [8], lead us to conclude that 
the rate-determining step in the decomposition of (Ia-h) is the protonation of the diazocar- 
bonyl group. Obviously, the rate of this process will be determined only by the basicity of 
the azomethine C atom, at which protonation occurs [i]. Consequently, an increase in the 
electron donor properties of the CMDAP aromatic ring substituents should be accompanied by 
an increase in the reaction rate. Indeed, we found a linear correlation between the log kef 
values and Hammet's a constants (G m and Op, respectively, were used for the R I and R 2 sub- 
stituents [9]), withanegativevalue for the reaction constant p (Fig. i). 

This correlation was also observed for DAP (IIIa-f) decomposition reactions in methanol 
on exposure to H2SO 4 (Fig. 2). However, unlike the reactions with CMDAP (Ia-h), the DAP 
methanolysis reactions can best be described by using o + substituent constants; concrete 
values for these constants were determined in [4, i0]. Thus, the observed difference in sub- 
stituent constant values used to describe the decomposition reactions of CMDAP and DAP in- 
dicates a decrease in direct conjugation between the protonated diazocarbonyl group and the 
p substituent in the benzene ring of CMDAP as compared to DAP, due to intramolecular inter- 
actions of C02CH 3 and COCHN 2. 

The presence of a linear correlation between logkef and o (o § for reactions of diazo- 
ketones (la-h) and (Ilia-f) allows the determinationof the magnitude of ~-diazoacetophenone 
decomposition acceleration due to the anchimeric assistance of the C02CH 3 group. This can 
be done by comparing the appropriat e decomposition rate constants for the given compounds, 
which can be measured directly or calculated from the correlation equations. Thus, from the 
data presented in Figs. i and 2 it can readily be shown that the acid-catalyzed decomposition 
rate of CMDAP (la-h) is higher than the decomposition rate of their o-unsubstituted analogs 
(Ilia-f) by 13-25 times. 

7 6 8  



log ~ ef o,p ~ 0~ 

m-CS2Lua ~ \ 

0,,~ I , , i 7 -NO'z' ~p-N-~O~ 
- 0 , 2 0 0 , 2  O,, ,3 

log ,~ef 

l,q }-q~ H3 

O,s - 

- 0,2 L~.--.I I 1 I I 
-O,Z  0 8,Z 

Fig. 1 Fig. 2 

N~Z~ I i-- 

Fig. i. Dependence of the CMDAP (la-h) decomposition rates 
on Hammet~s o constants: I) 20~ CH3OH, p = -1031, r = 
0.998, s = 0.033; 2) 20~ CD3OD, p = -0o81, r = 0.997, s = 
0.025. 

Fig. 2. Dependence of DAP (IIIa-f) decomposition rates on 
the electrophilic substituent constants o + [4]: 20~ 
CH3OH, p = -1.25, r = 0.999, s = 0.019 (for an analogous 
dependence on Hammet's o constants, the correlation equation 
parameters are: p = -1.46, r = 0.986, s = 0.087). 

EXPERIMENTAL 

PMR spectra were recorded on a Bruker WM-250 instrument (250 MHz) in CDCI 3 with TMS as 
internal standard, iR spectra were recorded on a Specord 75-IR instrument in petrolatum 
oil. Mass spectra were recorded on an MX-1303 mass spectrometer with direct feed of mater- 
ial into the ion source; ionizing electron energy, 70 eV; emission current, 150 DA; tempera- 
ture, 40-120~ Column chromatography was performed using silica gel L40/100 and benzene- 
ethyl acetate as eluant. The purity of materials was determined by TLC in a benzene-ethyl 
acetate system on Silufol UV-254 plates. DAP (IIIa-f) were obtained according to [4]. 

2-CarbomethoxyT~Tdiazoacetophenones (IIIa-f) (General Procedure). 4(5)-Substituted 2- 
earbomethoxybenzoic acid (0.i mole) was boiled for 2-4 h with 0.3-0.4 mole SOCI 2. Excess 
SOCI 2 was removed at reduced pressure, and the residue was dissolved in dry ether or benzene. 
The resulting solution was added dropwise to a cold (-15~ solution of diazomethane in ether, 
obtained from i00 g nitrosomethylurea in 900 ml ether. The temperature was then adjusted 
to ~20~ excess diazomethane was removed by bubbling through N2, the solvent was evaporated 
at reduced pressure, and the residue was chromatographed on a silica gel column. The charac- 
teristics of CMDAP (Ia-h) are shown in Table i. The mass spectra of CMDAP (Ia-h) contained 
the following ions: [M - N2]+, [M - CHN2] +, [M - N 2 - CH3] § [M - N 2 - CO]*, [M - CHN 2 - 

CH20]* 

Isochromane-l,4-diones (Ila-h) (General Procedure). H2SO 4 (15%, 2 ml) was added to 5 
mmoles of diazoketone (Ia-h) in 15 ml methanol; the solution was allowed to stand at ~20~ 
for 1-1.5 h, and was neutralized by adding NaHCO3o The major portion of the solvent was 
evaporated at reduced pressure, and the residue was recrystallized from benzene. The charac- 
teristics of compounds (IIa-h) are shown in Table 2. The mass spectra of (IIa-h) contained 
the following ions: [M] +, [M - CH20] § [M - CH20 - CO] § [M - CH20 - 2C0] + 

Kinetic Measurements. Methanol was dried by evaporation over Na. Commerical CD3OD 
contained 98% of the D isotope, with a molar fraction of 0.988 of the ground substance. A 
solution of H2SO 4 in methanol was prepared gravimetrically. The residual water content of 
methanol (according to Fischer) was ~0.5%. 

The kinetics of CMDAP (Ia-h) and DAP (IIIa-f) decomposition were examined spectrophoto- 
metrically by the disappearance of the characteristic absorption bands of the diazoketone 
diazocarbonyl group (till ~90% reaction completion; see Table 3). The initial diazoketone 
concentrations were ~10 -4 M. Each experiment was repeated at least two times. The kinetic 
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curves were linearized in semilogarithmic coordinates; the kobs pseudo first-order rate 
constants were calculated graphically; the standard deviation in the determination of kef 
was 5% (the mean error was computed for a 95% confidence interval). 

CONCLUSIONS 

i. A variety of new o-carbomethoxy-m-diazoacetophenones and isochromane-l,4-diones 
were synthesized. 

2. The decomposition of o-carbomethoxy-~-diazoacetophenones in methanol-H2S04, in con- 
strast to reactions of their o-unsubstituted analogs, takes place via the A-SE2 mechanism. 
The intramolecular nucleophilic assistance of the o-CORCH s group increases the decomposition 
rate of m-diazoacetophenones by 13-25 times. 

3. A correlation was observed between the acid-catalyzed reaction rates of o-carbo- 
methoxy-w-diazoacetophenones and Hammet's o constants for benzene ring substituents. 

i. 

. 

3 
4 
5 
6 
7 
8 
9. 

i0. 
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ASYMMETRIC REDUCTION OF THE CARBONYL GROUP BY CHIRAL HYDRIDES. 

i. STEREOCHEMICAL CONSIDERATIONS 

V. A. Pavlov, T. V. Simonova, and E. I. Klabunovskii UDC 541.63:542.941.7 

Asymmetric reduction of prochiral ketones by chiral hydrides readily affords alcohols. 
Chiral hydrides are obtained by partial decomposition of LiAIH4, LiBH4, NaBH4, and BH s by 
R*OH or RR*NH, where R* is a chiral substituent. Efficient hydrides for the asymmetric re- 
duction of ketones (optical yields of product p > 75%) have the general structures 

OR* /~Nk 
I �9 H N  0 

Lo NmR_I LoR  LoR '-' 
D-5] [6] [7] D] [91,10] 

Bearing in mind the similarities in the structure of chiral hydrides derived from LiAIH 4 
and Na(Li)BH 4 (AI- and B- have the tetrahedral structure [i, 2]), it is reasonable to sup- 
pose that their enantioselective mode of action has common features. We propose a rule 
which takes into account this mechanism, and enables the reduction of ketones by chiral 
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