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Abstract: (S)-(+)-Curcuphenol 1 and (S)-(+)-curcumene 2 were
synthesised starting from enantiopure (R)-(-)-3-furyl-2-methylpropanol
3 and building up the phenolic ring through a benzoannulation reaction. 

In past years many different syntheses1 of bisabolane sesquiterpenes
have been developed allowing a whole availability of these natural
products in their racemic form. In spite of this, few enantioselective
approaches2 have been reported in the literature due to the difficulty of
introducing a stereogenic centre in the benzylic position. Moreover,
opposite enantiomers show different biological activities, as in the case
of curcuphenol where the (S)-(+)-enantiomer 1 (Scheme 1) inhibits the
activity of gastric H, K-ATPase3 while the (R)-(-)-enantiomer shows
antibacterial activity.4 

Scheme 1

Until now, the only two methods that allow one to synthesise
stereoselectively curcuphenol are described for (R)-(-)-enantiomer.
Enzymatic resolution of a racemic intermediate5 or use of enantiopure
(R)-(+)-citronellal6 are the methods for the introduction of the
stereogenic centre. Troublesome separation of enantiomers or use of a
precious enantiopure starting building block are then necessary.
Otherwise, as in the previous syntheses of bisabolane sesquiterpenes2, if
the starting materials are aromatic the stereogenic centre is introduced
with the difficulty mentioned above. 

In our work we propose a different synthetic approach based on a
stereoselective synthesis of a suitable chiral alicyclic framework which
can be converted through a cyclisation reaction in a phenol derivative
bearing a benzylic asymmetric centre. To effect our plan we used the
benzoannulation procedure that we have recently developed,7 based on
the cyclisation of substituted 3-alkoxycarbonyl-3,5-hexadienoic acids.
This latter process works under mild basic conditions and gives
benzoannulate phenols in high yields starting from chiral aldehydes7c

whilst preserving the configuration of the existing stereocentres.

We used (R)-(-)-3-furyl-2-methylpropanol 3 (99% e.e.) (Scheme 2),
easily available by enzymatic reduction of 2-methyl-3-furylacrolein8, as
starting chiral building block. The hydroxyl group can be manipulated
in order to obtain the hexadienoic acid and the furyl group is convertible
into the acid group by ozonolysis. 

The missing C-4 component of the whole C-15 bisabolane framework
can be introduced through conversion of alcohol C-11 10 in the related
iodide followed by coupling with the Grignard reagent 11 in the
presence of copper(I) iodide.

Thus, conversion of 3 (99% e.e.) in the 3-ethoxycarbonyl-3,5-
hexadienoic acid 6 was performed through few straighforward
reactions. Oxidation of 3 with pyridine-SO3 system9a in dry DMSO

afforded the related aldehyde without racemization of the vicinal
stereocentre.9b Direct reaction of the crude product with
carbethoxymethylenetriphenyl phosphonium betaine gives the ester 4
which was converted into the unsaturated aldehyde 5 through reduction
with DIBAH followed by oxidation with MnO2. Transformation of the
latter aldehyde in acid 6 was achieved in good yields by Wittig
olefination with triphenyl-(α-carbethoxy-β-carboxyethyl)-phosphonium
betaine.10  Benzannulation  of  the  acid 6 with ethyl chloroformate in
the presence of a slight excess of triethylamine followed by quick
treatment with ethanolic NaOH afforded the chiral phenol 711 in high
yield (90%).

The phenolic group was protected by methylation and treatment of the
resulting methyl ether with ozone at low temperature (-78°C) followed
by NaBH4 reduction gave the acid 8 in good yield. Simultaneous
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reduction of the two carboxylic groups of 8 was performed by treatment
with LiAlH4 and the resulting diol 9 was deoxygenated at the benzylic
position by hydrogenation affording the alcohol C-11 10.12

Transformation of the latter alcohol to the corresponding iodide and the
subsequent coupling13 with the Grignard reagent 11 catalysed by CuI
gave 12,14 allowing the whole bisabolane framework to be constructed.
Hydrolysis of the phenolic methyl ether by treatment with Me3SiCl/
NaI15 gave (S)-(+)-curcuphenol 116 showing the same analytical data
reported in the literature3b. To confirm that the absolute stereochemistry
was unchanged we reduced the corresponding mesylate derivative using
lithium in ammonia4 to give (S)-(+)-curcumene 2.17

Thus, the synthetic method that we proposed did not produce
racemization. Moreover, the starting materials and reagents are
inexpensive and the overall yield is good. 

The present route may be applicable not only to curcuphenol, but also to
other members of the bisabolane family. In effect, alcohol 10 can be a
useful chiral precursor for the synthesis of natural sesquiterpene
phenols18 which show the same absolute configuration at the benzylic
centre. 
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