C. Zanato et al.

Paper

Tricyclic Fused Pyrazoles with a 'Click' 1,2,3-Triazole Substituent in Position 3 Are Nanomolar CB₁ Receptor Ligands

817

Chiara Zanato^a Maria Grazia Cascio^a Paolo Lazzari*^{b,c} Roger Pertwee^a Andrea Testaª Matteo Zanda^{* a,d}

^a Kosterlitz Centre for Therapeutics, Institute of Medical Sciences, University of Aberdeen, Foresterhill, AB25 2ZD, Scotland, UK m.zanda@abdn.ac.uk

^b PharmaNess Scarl, Parco Scientifico della Sardegna, Edificio 5,

Loc. Piscinamanna, 09010 Pula (CA), Italy

^c KemoTech s.r.l., Parco Scientifico della Sardegna, Edificio 3,

Loc. Piscinamanna, 09010 Pula (CA), Italy

^dC.N.R.-I.C.R.M., via Mancinelli 7, 20131 Milano, Italy

Received: 19.11.2014 Accepted: 12.12.2014 Published online: 16.01.2015 DOI: 10.1055/s-0034-1379887; Art ID: ss-2014-z0706-op

Abstract Structural modification of the potent conformationally constrained tricyclic pyrazole CB1 ligand NESS0327 was achieved by replacing: (1) the chlorine substituent on the tricycle with a 3-fluoropropyl chain, and (2) the pyrazole 3-{[(piperidino)amino]carbonyl] substituent with a 4-substituted 1,2,3-triazole group obtained by click chemistry from an alkynyl precursor. Among the resulting compounds, two are particularly promising candidates for [18F]radiolabelling and PET imaging studies of the CB₁ receptor, as they displayed K_i CB₁ = 62.5 nM and 42.5 nM, respectively, in the same range as that displayed by rimonabant.

Key words cannabinoids, PET imaging, fluorine, Sonogashira reaction, click chemistry

Cannabinoid receptors belong to the family of G-protein coupled receptors (GPCRs).¹ Two subgroups of cannabinoid receptors have been discovered and extensively studied: CB₁ and CB₂.² Although CB₁ receptors are predominantly localised in the central nervous system (CNS)² while CB₂ receptors are mostly present in the peripheral nervous system (PNS),³ some studies have shown the presence of CB₁ receptors in the PNS⁴ and of CB₂ in the CNS, albeit in low density.⁵ CB₁ receptors have a prominent role in drug discovery as they have been shown to play an important role in a number of disorders, including chronic pain,⁶ depression,⁷ anxiety,⁸ stress,⁹ schizophrenia,¹⁰ and obesity.¹¹ Consequently, several cannabinoid ligands were developed as drug candidates, including rimonabant (SR141716A),12 which is a pyrazole-core inverse agonist discovered by Sanofi-Synthelabo (now Sanofi-Aventis) in 1994. Rimonabant (Figure 1) was marketed in Europe as an anti-obesity drug, but it was subsequently withdrawn from the market owing

R = 2,4-Cl₂C₆H₄; K_iCB₁ = 42.5 nM

to its side effects, which included severe depression and suicidal tendencies.¹³ Since then, the pharmaceutical industry's interest in cannabinoid ligands has somewhat declined, whereas academic cannabinoid research has remained vibrant. In particular, the relationship between density, distribution, and functional modification of CB1 receptors and the onset of a pathological state is still not well understood. For this reason the development of radio-ligands suitable for in vivo PET functional imaging of CB₁ receptors has emerged as an important area of research in medicine and drug development. A small number of PET radiotracers¹⁴ based on the structure of rimonabant have been synthesised, radiolabelled, and tested in vivo, but the majority afforded unsatisfactory CNS-imaging capacity as a consequence of their poor brain uptake. A few radiolabelled CB₁ PET ligands¹⁵ have also been tested in clinical trials on humans.¹⁶ Recently, we described a new class of high-affinity CB₁ ligands A (Figure 1), bearing a 'click' N-(4-fluorobutyl)-1,2,3-triazolyl function in position 3 of the pyrazolyl ring, as candidate PET tracers.¹⁷ In agreement with previously reported data on rimonabant analogues having nitrogen- and oxygen-containing aromatic rings replacing the rimonabant-type hydrazide moiety in position 3 of the pyrazole ring,¹⁸ our results showed that the 1,2,3-triazole group is well tolerated by the CB₁ binding pocket, although the effect of varying the substituent in position 4 of the triazole ring was not investigated. Taking into account the high CB₁ affinity of NESS0327 (Figure 1), a conformationally constrained tricyclic pyrazole analogue of rimonabant, that was reported to have CB₁ affinity in the femtoMolar range,¹⁹ we have now extended our investigation to the 1-(2,4-dichlorophenyl)-1,4,5,6-tetrahydrobenzo[6,7]cyclohepta[1,2c]pyrazole-3-carboxamide structural scaffold for the development of novel CB₁ PET tracer candidates **1** (Figure 1).

۸

In this work we describe: (1) the synthesis of tricyclic fused pyrazoles **1** carrying a 3-fluoropropyl group as an aromatic substituent and differently 4-substituted 1,2,3-triazole groups in position 3 of the pyrazole ring; and (2) the assessment of the CB₁ and CB₂ affinity of these new ligands. Some of them, in particular **1g** and **1l**, showed excellent CB₁ affinity in line with rimonabant, although selectivity vs. CB₂ was quite modest, suggesting that these compounds may indeed have potential as PET tracers for imaging the cannabinoid system in vivo.

The synthesis of target compounds 1 started from 3bromobenzaldehyde (2) (Scheme 1), which was submitted to a Wittig olefination with (3-carboxypropyl)triphenylphosphonium bromide affording the carboxylic acid **3** as a mixture of E and Z geometric isomers.²⁰ Catalytic hydrogenation of 3, over palladium on carbon catalyst provided the saturated derivative 4, which was first transformed into the corresponding acyl chloride and then submitted to an intramolecular Friedel-Crafts acylation promoted by aluminium trichloride to give the benzosuberone 5.21 The latter was subjected to Dieckmann reaction with diethyl oxalate in the presence of sodium ethoxide²⁰ to give the 1,3-diketo ester 6 as a tautomeric mixture, predominantly containing the alkenylidene structure. Next, the tricarbonyl compound 6 and 2,4-dichlorophenylhydrazine were heated in ethanol to afford the pyrazole 7.²⁰ A solvent-free palladium-catalysed Sonogashira cross coupling²² with prop-2-yn-1-ol afforded the alkyne 8. A first attempt to hydrogenate the propargylic alcohol 8 by employing palladium on carbon in ethyl acetate under hydrogen (1 atm) resulted in a concomitant reductive de-chlorination of the benzene ring. A second attempt was carried out with the Wilkinson catalyst in benzene (1 atm of H₂) but, after 24 hours at 60 °C, only partial hydrogenation to the corresponding alkene was observed and the reaction did not proceed further. At this point we opted for Raney nickel as catalyst²³ under hydrogen (1 atm) and when ethanol was used as the solvent we still obtained a significant amount of de-chlorinated compounds, however, when tetrahydrofuran was used as the solvent we were able to obtain the desired saturated product 9 in quantitative yield. Next, the alcohol 9 was treated with the dehydroxy-fluorinating agent Deoxofluor²⁴ affording the fluoro ester 10 which was directly submitted to reduction with lithium aluminium hydride. The resulting alcohol 11 was oxidised with the Dess-Martin periodinane providing the corresponding aldehyde 12. The latter was homologated under Bestmann–Ohira alkynylation conditions²⁵ leading to the key alkyne intermediate 13.

The synthesis of the target compounds **1a–l** was completed by using a copper-catalysed azide-alkyne cycloaddition²⁶ between **13** and a series of azides (Scheme 2).

We next tested the CB₁ and CB₂ affinity of compounds **1a–I**. To that end, we performed [³H]CP55940 displacement binding assays with membranes obtained from hCB₁ and hCB₂ CHO cells using methods we have described previously.²⁷ The results are summarised in Table 1 and affinity to CB₁ and CB₂ are expressed as K_i values. All the compounds, with the exception of **1b** that showed higher affinity for the CB₂ receptor, evidenced nanomolar affinity for the CB₁ receptor and moderate to low CB₁/CB₂ selectivity. Compounds **1g** and **1l** stand out for their high CB₁ affinity, which was comparable to that displayed by rimonabant. Moreover, K_i CB₁ values of both **1g** and **1l** were in line with the CB₁ affinity of NESS0327 as reported by Zhang et al.²⁸ It is worth

Synthesis

C. Zanato et al.

Paper

819

Scheme 1 Synthesis of alkyne 13. *Reagents and conditions*: (i) Ph₃P⁺(CH₂)₃CO₂H·Br⁻, t-BuOK, DMSO, r.t., overnight (80%); (ii) H₂, Pd/C, EtOAc, AcOH, r.t., overnight; (iii) 1. (COCl)₂, DMF, r.t., 1 h; 2. AlCl₃, CH₂Cl₂, r.t., overnight (80% over 3 steps); (vi) diethyl oxalate, NaOEt, EtOH, r.t., overnight; (v) 2,4-di-chlorophenylhydrazine hydrochloride, EtOH, reflux, overnight (50% over 2 steps); (vi) prop-2-yn-1-ol, PdCl₂(PPh₃)₂, TBAF, 70 °C, 4 h (70%); (vii) H₂, Raney Ni, THF–H₂O, r.t., 3 h; (viii) Deoxofluor, THF, CH₂Cl₂, r.t., 2 h (80% over 2 steps); (ix) LiAlH₄, THF, r.t., 2 h (85%); (x) DMP, CH₂Cl₂, r.t., 3 h; (xi) dimethyl 1-diazo-2-oxopropylphosphonate, K₂CO₃, MeOH, r.t., overnight (90% over 2 steps).

noting that the originally reported femtoMolar CB₁ affinity of NESS0327²⁰ was not confirmed in literature by other authors who determined for the same compound K_i CB₁ values in the range 18.4–126 nM.²⁹ Relative to rimonabant, both **1g** and **1l** showed lower CB₁/CB₂ selectivity (K_i CB₂/ K_i CB₁ <10).

In the light of their high CB_1 affinities **1g,l** are therefore the most promising candidates for further development, including their possible use as a PET tracer for imaging the CB_1 receptor in vivo.

In conclusion, we have described the structural modification of the potent conformationally constrained tricyclic pyrazole CB₁ ligand NESS0327, which was achieved by replacing: (1) the chlorine substituent in the tricycle with a 3-fluoropropyl chain, which is amenable to radiofluorination, and (2) the pyrazole 3-{[(piperidino)amino]carbonyl} substituent with a 4-substituted 1,2,3-triazole group obtained by click chemistry from the alkynyl precursor **13**. Compounds **1g** and **1l** are particularly promising candidates for [¹⁸F]radiolabelling and PET imaging studies of the CB₁ receptor, as they displayed K_i CB₁ = 62.5 nM and 42.5 nM, respectively, in the same range as that displayed by rimonabant, although CB₁/CB₂ selectivity was fairly low for both the novel derivatives. Moreover, K_i CB₁ values of **1g** and **1l** are in line with that of the reference analogue NESS0327,

Scheme 2 Synthesis of CB₁ ligands **1a–l**. *Reagents and conditions*: (i) TMSN₃, CuSO₄, sodium ascorbate, DMF–H₂O, microwaves, 120 °C, 30 min (45% **1a**); (ii) NaN₃, CuSO₄, sodium ascorbate, DMF–H₂O, Mel, 120 °C, overnight (48% **1b**); (iii) RN₃, CuSO₄, sodium ascorbate, *t*-BuOH–H₂O, r.t., overnight (60–82% **1c–l**).

Table 1	CB ₁ and CB ₂ Affinities of Compounds	1a-l
---------	---	------

Compound	R	Receptor affinity			
		<i>К</i> _i CB ₁ (nM)ª (95% CL) ^ь	Max. disp. (95% CL) ^b	<i>К</i> _i CB ₂ (nM) ^а (95% CL) ^ь	Max. Disp. (95% CL) ^b
1a	Н	393.6 (217.4–712.6)	79.7 (67.7–91.7)	2212 (829.2–5903)	84.8 (57.0–112.5)
1b	Ме	2260.0 (361.6–14120)	87.8 (38.7–136.9)	1271 (998.8–1617)	99.6 (92.5–106.6)
1c	Pr	226.6 (141.2–363.8)c	71.3 (64.7–77.8)	1446 (1093–1912)	71.8 (65.8–77.8)
1d	(CH ₂) ₄ Me	250.6 (144.1–435.6)	78.9 (69.5–88.3)	883.1 (544.4–1433)	78.8 (68.2–89.4
1e	2 ros	458.0 (94.4–2221)	70.6 (44.4–96.8	935.0 (690.1–1267)	784.2 (476.1–92.3
1f		116.3 (70.4–192.3)	62.8 (57.6–67.9)	685.3 (302.9–1550)	45.7 (36.8–54.6)
1g	Bn	62.5 (28.1–139.1)	60.2 (50.2–70.2)	358.4 (243.2–528.0)	60.8 (55.7–65.9)
1h	OMe	_d	_d	415.0 (287.9–598.4)	49.5 (44.7–54.4)
1i	Ph	338.1 (69.8–1637)	26.9 (11.4–42.5)	648.4 (218.4–1925)	30.4 (19.0–41.7)
1j	<i>§</i> CF ₃	112.7 (20.7–613.3)	27.9 (14.6–41.1)	1023 (122.1–8570)	25.5 (4.6–46.4)
1k	MeO \$	91.9 (41.3-204.7)	47.8 (41.3–54.2)	508.6 (159.7–1620)	32.3 (24.2–40.4)
11	¢ CI CI CI	42.5 (24.4–74.1)	40.9 (36.6–45.2)	195.4 (126.0–303.0)	30.1 (26.6–33.7)
rimonabant (SR141716A) ¹⁸		31.7 (22.4–45.0) ^e	87.8 (83.1–92.4)	1400 (500–3700)	92.4 (70.4–114)

820

^a n = 4, unless otherwise indicated.

^b CL = confidence limits.

^c n = 12.

^d Plateau could not be reached, n = 2.

^e n = 24.

which some authors reported to be in the nM range²⁹ whereas the original study had measured for the same compound a K_i CB₁ = 0.00035 nM.²⁰

¹H (400.13 MHz), ¹³C (100.58 MHz), and ¹⁹F (376.45 MHz) NMR spectra were recorded on a Bruker Avance III spectrometer. ¹H NMR chemical shifts are reported relative to the solvent resonance (CDCl₃, δ = 7.26). ¹³C NMR spectra were recorded with complete proton decoupling, and the chemical shifts are reported relative to the solvent resonance (CDCl₃, δ = 77.0). MS experiments were performed on an Agilent Technologies 1200 Series HPLC system equipped with a DAD and a 6120 MS detector composed by a ESI ionisation source and a Single Quadrupole mass selective detector. A CEM Discover® System was used to perform reaction with microwaves. Melting points were

recorded using a Griffin melting point apparatus. All reactions were carried out in oven- or flame-dried glassware under a N₂ atmosphere, unless stated otherwise. All commercially available reagents were used as received. Reactions were magnetically stirred and monitored by TLC on silica gel (60 F254 pre-coated glass plates, 0.25-mm thickness). Visualisation was accomplished by irradiation with a UV lamp and/or staining with ceric ammonium molybdate or KMnO₄ solution. Flash chromatography was performed on silica gel (60 Å, particle size 0.040–0.062 mm). Yields refer to chromatographically and spectroscopically pure compounds, unless stated otherwise.

5-(3-Bromophenyl)pent-4-enoic Acid (3)³⁰

To a suspension of (3-carboxypropyl)triphenylphosphonium bromide (30.0 g, 69.9 mmol, 1.2 equiv) in anhyd DMSO (20 mL), *t*-BuOK (17.3 g, 153.7 mmol, 2.2 equiv) was added. The mixture was stirred for 1 h

Syn thesis

C. Zanato et al.

at r.t., then a solution of 3-bromobenzaldehyde (**2**, 6.8 mL, 58.3 mmol, 1.0 equiv) in DMSO (30 mL) was added dropwise. The resulting mixture was stirred overnight, poured into H₂O (150 mL), and extracted with CHCl₃ (2 × 200 mL). The aqueous layer was acidified with concd HCl and extracted with CHCl₃ (2 × 200 mL). The combined organic layers were washed with H₂O (2 × 200 mL). The combined organic layers were washed with H₂O (2 × 200 mL), dried (Na₂SO₄), filtered, and the solvent was evaporated under reduced pressure. The crude product was purified by flash chromatography (hexane–EtOAc, 7:3) to give **3** (11.85 g, 80%) as a yellow oil as an *E*/*Z* diastereomeric mixture; *R*_f = 0.25 (hexane–EtOAc, 6:4).

5-(3-Bromophenyl)pentanoic Acid (4)³⁰

To a solution of pentenoic acid **3** (7.30 g, 28.7 mmol, 1.0 equiv) in EtOAc (150 mL) and a catalytic amount of AcOH (0.5 mL), Pd/C (365.0 mg, 5% w/w) was added. The mixture was stirred under H₂ (1 atm) overnight and then filtered on a short pad of Celite; the solvent was evaporated under reduced pressure. Compound **4** was obtained as yellow oil in a quantitative yield and was used without further purification; R_f = 0.25 (hexane–EtOAc, 6:4).

2-Bromo-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one (5)³⁰

To an ice-cooled solution of carboxylic acid **4** (7.35 g, 28.7 mmol, 1.0 equiv), oxalyl chloride (2.46 mL, 28.7 mmol, 1.0 equiv) and a catalytic amount of DMF (1.0 mL) were added, and then the mixture was stirred for 1 h at r.t. The excess oxalyl chloride was removed under reduced pressure and CH₂Cl₂ (5.0 mL) was added to the residue and evaporated. This washing procedure was repeated (3 ×) then the crude product was diluted with CH₂Cl₂ (5.0 mL) and added to a suspension of AlCl₃ (4.21 g, 31.0 mmol, 1.1 equiv) in CH₂Cl₂ (5.0 mL). The mixture was stirred overnight at r.t., poured into ice, and extracted with CH₂Cl₂ (3 × 100 mL). The combined organic layers were washed with 5% aq NaHCO₃ (200 mL) and H₂O (2 × 200 mL), dried (Na₂SO₄), and filtered and the solvent was evaporated under reduced pressure. The crude product was purified by flash chromatography (hexane–EtOAc, 9:1) to give **5** (5.46 g, 80%) as a yellow oil; $R_f = 0.52$ (hexane–EtOAc, 9:1).

Ethyl 2-{2-Bromo-5-oxo-6,7,8,9-tetrahydro-5*H*-benzo[7]annulen-6-yl}-2-oxoacetate (6)³⁰

Na metal (874 mg, 38.0 mmol, 2.0 equiv) was added in one small portion to dry EtOH (100 mL) and the mixture was stirred until all the Na had reacted. Ethyl oxalate (1.97 mL, 19.0 mmol, 1.0 equiv) was added, followed by a solution of bromo-benzosuberone **5** (4.57 g, 19.0 mmol, 1.0 equiv) in dry EtOH (5.0 mL). The solution was stirred at r.t. overnight then the mixture was slowly poured into ice, and 2 M aq HCl (10 mL) was added. The resulting mixture was extracted with CHCl₃ (2 × 100 mL), dried (Na₂SO₄), and filtered and the solvent was evaporated under reduced pressure. Compound **6** was obtained as yellow oil in a quantitative yield and was used without further purification; $R_f =$ 0.45 (hexane–EtOAc, 9:1).

Ethyl 12-Bromo-3-(2,4-dichlorophenyl)-3,4-diazatricyclo[8.4.0.0^{2,6}]tetradeca-1(14),2(6),4,10,12-pentaene-5-carboxylate (7)³⁰

A stirred mixture of diketo ester **6** (4.57 g, 19.0 mmol, 1.0 equiv) and 2,4-dichlorophenylhydrazine hydrochloride (4.06 g, 19.0 mmol, 1.0 equiv) in EtOH (130 mL) was heated at 80 °C overnight. The mixture was allowed to cool to r.t. and the solvent was removed under reduced pressure to give a red-orange solid that was purified by flash chromatography (hexane–EtOAc, 9:1) to afford **7** (4.56 g, 50%) as a pale orange solid; mp 90–92 °C; $R_f = 0.60$ (hexane–EtOAc, 9:1).

Ethyl 3-(2,4-Dichlorophenyl)-12-(3-hydroxyprop-1-ynyl)-3,4-diazatricyclo[8.4.0.0^{2,6}]tetradeca-1(14),2(6),4,10,12-pentaene-5-carboxylate (8)

A mixture of bromide **7** (3.0 g, 6.24 mmol, 1.0 equiv), prop-2-yn-1-ol (0.36 mL, 6.24 mmol, 1.0 equiv), PdCl₂(PPh₃)₂ (0.19 mmol, 131.4 mg, 0.03 equiv), and 1 M TBAF (18.7 mL, 18.7 mmol, 3.0 equiv) was stirred at 70 °C for 4 h. Then the mixture was diluted with water (20 mL), extracted with EtOAc (2 × 50 mL), dried (Na₂SO₄), and filtered and the solvent was evaporated under reduced pressure. The crude product was purified by flash chromatography (CH₂Cl₂–MeOH, 95:5) to give **8** (2.0 g, 70%) as a white solid; mp 110–112 °C; $R_f = 0.23$ (hexane–EtOAc, 7:3).

¹H NMR (400 MHz, CDCl₃): δ = 1.44 (t, *J* = 7.1 Hz, 3 H), 1.97 (br s, OH), 2.25 (br s, 2 H), 2.65 (br s, 1 H), 2.67 (t, *J* = 6.5 Hz, 2 H), 3.24 (br s, 1 H), 4.47 (q, *J* = 7.1 Hz, 2 H), 4.49 (s, 2 H), 6.63 (d, *J* = 8.0 Hz, 1 H), 7.10 (dd, *J* = 1.4, 8.0 Hz, 1 H), 7.35–7.44 (m, 3 H), 7.55 (d, *J* = 9.0 Hz, 1 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 14.4, 20.7, 31.4, 32.4, 51.6, 61.1, 85.1, 88.4, 122.7, 123.7, 126.9, 128.1, 129.2, 129.3, 130.3, 130.6, 132.5, 132.9, 135.9, 136.0, 141.8, 142.0, 142.5, 162.8.

 $\begin{array}{l} MS \;(ESI):\; m/z \; calcd \; C_{24}H_{20}^{\;\;35}Cl_2N_2O_3 : \; 455.1 \; [M \; + \; H]^*, \; 457.1 \; [M \; + \; 2 \; + \; H]^*, \; 477.1 \; [M \; + \; Na]^*, \; 479.1 \; [M \; + \; 2 \; + \; Na]^*; \; found: \; 455.1 \; [M \; + \; H]^* \; (100), \\ 457.1 \; [M \; + \; 2 \; + \; H]^* \; (70), \; 477.1 \; [M \; + \; Na]^* \; (20), \; 479.1 \; [M \; + \; 2 \; + \; Na]^* \; (15). \end{array}$

Ethyl 3-(2,4-Dichlorophenyl)-12-(3-hydroxypropyl)-3,4-diazatricyclo[8.4.0.0^{2,6}]tetradeca-1(14),2(6),4,10,12-pentaene-5-carboxylate (9)

Raney Ni was washed with H₂O until the washings were pH neutral and transferred into a round-bottom flask. A solution of alkyne **8** (1.65 g, 3.60 mmol, 1.0 equiv) in THF (240 mL) was added, and the mixture was degassed and then purged with H₂ (3 ×). After stirring for 3 h at r.t. the mixture was filtered through a short pad of Celite and the solvent was evaporated under reduced pressure. Compound **9** was obtained as a white solid in a quantitative yield and was used without further purification. $R_f = 0.23$ (hexane–EtOAc, 7:3).

¹H NMR (400 MHz, $CDCI_3$): $\delta = 1.45$ (t, J = 7.1 Hz, 3 H), 1.65 (br s, OH), 1.90 (tt, J = 6.4, 13.0 Hz, 2 H), 2.27 (br s, 2 H), 2.61–2.79 (m, 5 H), 3.19 (br s, 1 H), 3.68 (t, J = 6.3 Hz, 2 H), 4.47 (q, J = 7.1 Hz, 2 H), 6.61 (d, J = 7.9 Hz, 1 H), 6.88 (dd, J = 1.6, 7.9 Hz, 1 H), 7.15 (d, J = 1.6 Hz, 1 H), 7.39 (dd, J = 2.3, 8.4 Hz, 1 H), 7.42 (d, J = 2.3 Hz, 1 H), 7.54 (d, J = 8.4Hz, 1 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 14.5, 20.7, 31.8, 31.9, 32.5, 33.8, 61.0, 62.3, 123.2, 126.1, 126.6, 127.0, 128.0, 129.9, 130.2, 130.7, 132.8, 135.7, 136.4, 141.8, 141.9, 142.4, 143.2, 163.0.

 $\begin{array}{l} MS \; (ESI): \; m/z \; calcd \; C_{24}H_{24}{}^{35}Cl_2N_2O_3; \; 459.1 \; [M + H]^*, \; 461.1 \; [M + 2 + H]^*, \; 481.1 \; [M + Na]^*, \; 483.1 \; [M + 2 + Na]^*; \; found: \; 459.1 \; [M + H]^* \; (100), \; 461.1 \; [M + 2 + H]^* \; (70), \; 481.1 \; [M + Na]^* \; (40), \; 483.1 \; [M + 2 + Na]^* \; (30). \end{array}$

Ethyl 3-(2,4-Dichlorophenyl)-12-(3-fluoropropyl)-3,4-diazatricyclo[8.4.0.0^{2,6}]tetradeca-1(14),2(6),4,10,12-pentaene-5-carboxylate (10)

To an ice-cooled solution of alcohol **9** (1.4 g, 3.2 mmol, 1.0 equiv) in CH₂Cl₂ (30 mL), 50% Deoxofluor in THF (2.0 mL, 4.8 mmol, 1.5 equiv) was added. The mixture was stirred at r.t. for 2 h, then sat. aq NaHCO₃ (30 mL) was added. The resulting mixture was extracted with CH₂Cl₂ (2 × 100 mL), dried (Na₂SO₄), and filtered and the solvent was evaporated under reduced pressure. The crude product was purified by flash chromatography (hexane–EtOAc, 7:3) to give fluorinated compound **10** (1.18 g, 80%) as white solid; mp 100–102 °C; R_f = 0.50 (hexane–EtOAc, 7:3).

C. Zanato et al.

¹H NMR (400 MHz, CDCl₃): δ = 1.45 (t, *J* = 7.1 Hz, 3 H), 1.95–2.09 (m, 2 H), 2.27 (br s, 2 H), 2.67–2.75 (m, 5 H), 3.20 (br s, 1 H), 4.47 (dt, *J*_{H-H} = 5.9 Hz, *J*_{H-F} = 47.2 Hz, 2 H), 4.47 (q, *J* = 7.1 Hz, 2 H), 6.63 (d, *J* = 7.9 Hz, 1 H), 6.88 (dd, *J* = 1.7, 7.9 Hz, 1 H), 7.15 (d, *J* = 1.7 Hz, 1 H), 7.39 (dd, *J* = 2.2, 8.4 Hz, 1 H), 7.42 (d, *J* = 2.2 Hz, 1 H), 7.54 (d, *J* = 8.4 Hz, 1 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 14.5, 31.1 (d, $J_{\text{C-F}}$ = 5.3 Hz), 31.7 (d, $J_{\text{C-F}}$ = 20.2 Hz), 31.8, 61.0, 82.5, 83.1 (d, $J_{\text{C-F}}$ = 165.1 Hz), 123.3, 126.2, 126.8, 127.1, 128.0, 130.0, 130.2, 130.7, 132.8, 135.8, 136.3, 141.7, 141.9 (2 C), 143.2, 163.0.

¹⁹F NMR (376.45 MHz, CDCl₃): δ = -220.0 (tt, *J* = 25.3, 47.1 Hz, 1 F).

 $\begin{array}{l} MS \ (ESI): \ m/z \ calcd \ for \ C_{24}H_{23}{}^{35}Cl_2FN_2O_2; \ 461.1 \ [M+H]^+, \ 463.1 \ [M+2 \\ + \ H]^+, \ 483.1 \ [M+Na]^+, \ 485.1 \ [M+2 + Na]^+; \ found: \ 461.1 \ [M+H]^+ \\ (100), \ 463.1 \ [M+2 + H]^+ \ (65). \ 483.1 \ [M+Na]^+ \ (100), \ 485.1 \ [M+2 + Na]^+ \ (65). \end{array}$

[3-(2,4-Dichlorophenyl)-12-(3-fluoropropyl)-3,4-diazatricyclo[8.4.0.0^{2,6}]tetradeca-1(14),2(6),4,10,12-pentaen-5-yl]methanol (11)

A solution of ester **10** (2.47 g, 5.36 mmol, 1.0 equiv) in THF (53.0 mL) was added to a suspension of LiAlH₄ (223.8 mg, 5.90 mmol, 1.1 equiv) in THF (53.0 mL) at 0 °C. The mixture was warmed to r.t. and stirred for 2 h. The solution was cooled to 0 °C and quenched with H₂O (5.4 mL), 15% aq NaOH (11 mL), and H₂O (5.4 mL). After vigorously stirring for 1 h, the mixture was filtered on a short pad of silica, dried (Na₂SO₄), and filtered, and the solvent was evaporated under reduced pressure. The crude product was purified by flash chromatography (hexane–EtOAc, 1:1) to give fluorinated alcohol **11** (1.92 g, 85%) as white solid; mp 104–106 °C; *R*_f = 0.25 (hexane–EtOAc, 1:1).

¹H NMR (400 MHz, CDCl₃): δ = 1.95–2.08 (m, 2 H), 2.19–2.26 (m, 2 H), 2.39 (t, *J* = 7.6 Hz, OH), 2.62 (br s, 4 H), 2.72 (t, *J* = 7.6 Hz, 2 H), 4.47 (dt, *J*_{H-H} = 5.8 Hz, *J*_{H-F} = 47.2 Hz, 2 H), 4.79 (d, *J* = 5.8 Hz, 2 H), 6.62 (d, *J* = 7.9 Hz, 1 H), 6.87 (dd, *J* = 1.7, 7.9 Hz, 1 H), 7.13 (d, *J* = 1.7 Hz, 1 H), 7.35 (dd, *J* = 2.2, 8.5 Hz, 1 H), 7.43 (d, *J* = 2.0 Hz, 1 H), 7.44 (d, *J* = 4.2 Hz, 1 H).

¹³C NMR (100 MHz, CDCl₃): δ = 20.3, 31.1 (d, J_{C-F} = 5.4 Hz), 31.2, 31.7 (d, J_{C-F} = 19.8 Hz), 32.8, 57.7, 83.1 (d, J_{C-F} = 165.0 Hz), 118.2, 126.1, 127.0, 127.4, 128.0, 129.9, 130.3, 130.5, 132.7, 135.0, 136.8, 141.1, 141.7, 142.1, 151.

¹⁹F NMR (376.45 MHz, CDCl₃): δ = -219.9 (tt, J = 25.2, 47.1 Hz, 1 F).

MS (ESI): m/z calcd for $C_{22}H_{21}^{35}Cl_2FN_2O$: 419.1 [M + H]⁺, 421.1 [M + 2 + H]⁺; found: 419.1 [M + H]⁺ (100), 421.1 [M + 2 + H]⁺ (70).

3-(2,4-Dichlorophenyl)-12-(3-fluoropropyl)-3,4-diazatricyclo[8.4.0.0^{2,6}]tetradeca-1(14),2(6),4,10,12-pentaene-5-carbaldehyde (12)

To a solution of alcohol **11** (1.91 g, 4.58 mmol, 1.0 equiv) in CH₂Cl₂ (12 mL), Dess–Martin periodinane (DMP, 2.33 g, 5.50 mmol, 1.2 equiv) was added at 0 °C The mixture was warmed to r.t. and stirred for 3 h. Then sat. aq NaHCO₃ (93 mL) and Na₂S₂O₃ (5.2 g, 33.4 mmol, 7.3 equiv) were added. After stirring for 1 h, the phases were separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 100 mL). The combined organic extracts were washed with brine (2 × 100 mL), dried (Na₂SO₄), and evaporated under reduced pressure. Aldehyde **12** was obtained as a white solid in a quantitative yield and was used without further purification; *R*_f = 0.70 (hexane–EtOAc, 6:4).

Paper

¹H NMR (400 MHz, CDCl₃): δ = 1.94–2.10 (m, 2 H), 2.19–2.34 (m, 2 H), 2.65–2.80 (m, 4 H), 3.14 (br s, 2 H), 4.47 (dt, J_{H-H} = 5.9 Hz, J_{H-F} = 47.2 Hz, 2 H), 6.63 (d, J = 7.9 Hz, 1 H), 6.89 (dd, J = 1.7, 7.9 Hz, 1 H), 7.16 (d, J = 1.5 Hz, 1 H), 7.43 (dd, J = 2.3, 8.4 Hz, 1 H), 7.49 (d, J = 1.3 Hz, 1 H), 7.50 (d, J = 8.5 Hz, 1 H), 10.2 (s, 1 H).

¹³C NMR (100 MHz, CDCl₃): δ = 20.4, 31.1 (d, J_{C-F} = 5.3 Hz), 31.2, 31.6 (d, J_{C-F} = 19.8 Hz), 32.7, 83.1 (d, J_{C-F} = 165.1 Hz), 121.7, 126.2, 126.3, 127.2, 128.2, 130.0, 130.2, 130.5, 132.6, 136.0, 136.3, 141.9, 142.1, 143.6, 148.9, 188.2.

¹⁹F NMR (376.45 MHz, CDCl₃): δ = -220.0 (tt, *J* = 25.4, 47.2 Hz, 1 F).

 $MS (ESI): m/z \ calcd \ for \ C_{22}H_{19}{}^{35}Cl_2FN_2O: 417.1 \ [M + H]^+, 419.1 \ [M + 2 + H]^+; found: 417.1 \ [M + H]^+ (100), 419.1 \ [M + 2 + H]^+ (70).$

3-(2,4-Dichlorophenyl)-5-ethynyl-12-(3-fluoropropyl)-3,4-diazatricyclo[8.4.0.0^{2,6}]tetradeca-1(14),2(6),4,10,12-pentaene (13)

K₂CO₃ (2.1 g, 15.1 mmol, 3.3 equiv) and dimethyl 1-diazo-2-oxopropylphosphonate (1.37 mL, 9.16 mmol, 2.0 equiv) were added to an ice-cold solution of aldehyde **12** (1.90 g, 4.58 mmol, 1.0 equiv) in MeOH (50 mL). After 5 min the ice bath was removed, the mixture was allowed to warm to r.t. and stirred for an additional 12 h. 5% aq NaHCO₃ solution (10 mL) was added and the aqueous layer was extracted with Et₂O (2 × 50 mL). The combined organic layers were washed with brine, dried (MgSO₄), and filtered and the solvent was evaporated under reduced pressure. The crude product was purified by flash chromatography (hexane–EtOAc, 7:3) to give alkyne **13** (1.7 g, 90%) as a white solid; mp 112–114 °C; $R_f = 0.72$ (hexane–EtOAc, 6:4).

¹H NMR (400 MHz, CDCl₃): δ = 1.95–2.08 (m, 2 H), 2.25 (br s, 2 H), 2.49–2.82 (m, 6 H), 3.28 (s, 1 H), 4.47 (dt, *J*_{H-H} = 5.9 Hz, *J*_{H-F} = 47.2 Hz, 2 H), 6.61 (d, *J* = 7.8 Hz, 1 H), 6.87 (d, *J* = 6.6 Hz, 1 H), 7.14 (s, 1 H), 7.38 (dd, *J* = 2.2, 8.5 Hz, 1 H), 7.43 (d, *J* = 2.1 Hz, 1 H), 7.48 (d, *J* = 8.7 Hz, 1 H).

¹³C NMR (100 MHz, $CDCI_3$): $\delta = 20.8$, 31.0, 31.1 (d, $J_{C-F} = 5.4$ Hz), 31.7 (d, $J_{C-F} = 19.8$ Hz), 32.7, 80.1, 83.1 (d, $J_{C-F} = 165.0$ Hz), 123.5, 126.2, 126.8, 126.9, 128.0, 130.0, 130.3, 130.4, 130.6, 132.6, 135.0, 135.4, 136.5, 141.2, 141.5, 141.9.

¹⁹F NMR (376.45 MHz, CDCl₃): δ = -220.0 (tt, *J* = 25.3, 47.2 Hz, 1 F).

MS (ESI): m/z calcd for $C_{23}H_{19}^{35}Cl_2FN_2$: 413.1 [M + H]⁺, 415.1 [M + 2 + H]⁺; found: 413.1 [M + H]⁺ (100), 415.1 [M + 2 + H]⁺ (70).

Synthesis of Benzylic and Aliphatic Azides;³¹ General Procedure

 $\rm NaN_3$ (2.0 equiv) in $\rm H_2O$ (0.1 mL/mmol) was added to a stirred solution of the benzylic/aliphatic bromide (1.0 equiv) in THF (2.5 mL/mmol). The resulting suspension was stirred at 80 °C for 3 h. The mixture was extracted with CH_2Cl_2, washed with water and brine, dried (Na_2SO_4), and filtered, and the solvent was evaporated under reduced pressure. The azide was obtained in quantitative yield and was used without further purification and isolation.

Synthesis of Aromatic Azides;³¹ General Procedure

A solution of aromatic amine (1.0 equiv) in MeCN (2 mL/mmol) was cooled to 0 °C and *t*-BuONO (1.5 equiv) followed by TMSN₃ (1.5 equiv) were added dropwise. The resulting solution was stirred at r.t. for 1 h. The mixture was concd under vacuum, diluted with hexane, and filtered on a short pad of silica gel. The azide was obtained in quantitative yield and was used without further purification and isolation.

3-(2,4-Dichlorophenyl)-12-(3-fluoropropyl)-5-(1*H*-1,2,3-triazol-4-yl)-3,4-diazatricyclo[8.4.0.0^{2,6}]tetradeca-1(14),2(6),4,10,12-pentaene (1a)

To solution of alkyne **13** (70 mg, 0.17 mmol, 1.0 equiv) and TMSN₃ (0.02 mL, 0.2 mmol, 1.2 equiv) in DMF-H₂O (4:1, 2.0 mL), CuSO₄ (1.4 mg, 0.008 mmol, 0.05 equiv) and sodium ascorbate (14.0 mg, 0.07 mmol, 0.4 equiv) were added. The mixture was placed in a microwave reactor and irradiated for 30 min at 120 °C. The solution was cooled, ice was added, and it was extracted with EtOAc (3 × 5 mL). The organic layers were washed with H₂O, brine, dried (Na₂SO₄), and filtered and the solvent was evaporated under reduced pressure. The crude product was purified by flash chromatography (hexane–EtOAc, 6:4) to give triazole **1a** (34.8 mg, 45%) as a white solid; mp 94–96 °C; $R_f = 0.20$ (hexane–EtOAc, 1:1).

¹H NMR (400 MHz, CDCl₃): δ = 1.98–2.10 (m, 2 H), 2.30 (br s, 2 H), 2.69–2.86 (m, 4 H), 2.88 (br s, 2 H), 4.48 (dt, J_{H-H} = 5.9 Hz, J_{H-F} = 47.2 Hz, 2 H), 6.68 (d, J = 7.8 Hz, 1 H), 6.90 (d, J = 7.5 Hz, 1 H), 7.17 (s, 1 H), 7.39 (dd, J = 1.8, 8.3 Hz, 1 H), 7.45 (d, J = 1.8 Hz, 1 H), 7.57 (d, J = 8.4 Hz, 1 H), 8.19 (s, 1 H).

¹³C NMR (100 MHz, CDCl₃): δ = 21.1, 31.1 (d, J_{C-F} = 5.3 Hz), 31.5, 31.7 (d, J_{C-F} = 19.5 Hz), 32.7, 83.1 (d, J_{C-F} = 165.0 Hz), 118.8, 126.2, 127.1, 127.2, 128.1, 130.0, 130.4, 130.7, 132.8, 135.5, 136.5, 141.5 (2 C), 141.9, 142.0 (2 C), 142.9.

¹⁹F NMR (376.45 MHz, CDCl₃): δ = -219.9 (tt, J = 25.3, 47.2 Hz, 1 F).

MS (ESI): m/z calcd for $C_{23}H_{20}^{35}Cl_2FN_5$: 456.1 [M + H]⁺, 458.1 [M + 2 + H]⁺; found: 456.1 [M + H]⁺ (100), 458.1 [M + 2 + H]⁺ (70).

HRMS: m/z [M + H]⁺ calcd for C₂₃H₂₁Cl₂FN₅: 456.1153; found: 456.1149.

3-(2,4-Dichlorophenyl)-12-(3-fluoropropyl)-5-(1-methyl-1*H*-1,2,3-triazol-4-yl)-3,4-diazatricyclo[8.4.0.0^{2,6}]tetradeca-1(14),2(6),4,10,12-pentaene (1b)

A solution of NaN₃ (102 mg, 1.5 mmol, 6.0 equiv), CuSO₄ (8.0 mg, 0.05 mmol, 0.2 equiv), and sodium ascorbate (24.8 mg, 0.125 mmol, 0.5 equiv) in DMF-H₂O (1:1, 8.0 mL) was stirred for 5 min at r.t. Then a solution of alkyne **13** (103 mg, 0.25 mmol, 1.0 equiv) in DMF (1 mL) and Mel (0.1 mL, 0.58 mmol, 1.6 equiv) were added and the resulting mixture was stirred overnight at 120 °C. The solution was cooled and extracted with EtOAc (3 × 20 mL). The organic layers were washed with H₂O, brine, dried (Na₂SO₄), and filtered and the solvent was evaporated under reduced pressure. The crude product was purified by flash chromatography (hexane–EtOAc, 6:4) to give triazole **1b** (56.2 mg, 48%) as a white solid; mp 88–90 °C; R_f = 0.25 (hexane–EtOAc, 6:4).

¹H NMR (400 MHz, CDCl₃): δ = 1.96–2.09 (m, 2 H), 2.23–2.37 (m, 2 H), 2.69–2.83 (m, 4 H), 2.30 (br s, 2 H), 4.17 (s, 3 H), 4.47 (dt, *J*_{H-H} = 5.9 Hz, *J*_{H-F} = 47.2 Hz, 2 H), 6.66 (d, *J* = 7.8 Hz, 1 H), 6.88 (dd, *J* = 1.7, 7.9 Hz, 1 H), 7.16 (d, *J* = 1.3 Hz, 1 H), 7.38 (dd, *J* = 2.3, 8.5 Hz, 1 H), 7.45 (d, *J* = 2.2 Hz, 1 H), 7.51 (d, *J* = 8.4 Hz, 1 H), 7.96 (s, 1 H).

¹³C NMR (100 MHz, CDCl₃): δ = 20.9, 31.1 (d, J_{C-F} = 5.4 Hz), 31.7 (d, J_{C-F} = 19.9 Hz), 31.8, 32.8, 36.7, 83.1 (d, J_{C-F} = 165.0 Hz), 118.9, 122.2, 126.1, 127.1, 127.4, 128.0, 129.9, 130.3, 130.7, 132.8, 135.2, 136.8, 141.2, 142.0, 142.6, 142.7, 142.8.

¹⁹F NMR (376.45 MHz, CDCl₃): δ = -219.9 (tt, *J* = 25.3, 47.2 Hz, 1 F).

 $\begin{array}{l} MS \ (ESI): \ m/z \ calcd \ for \ C_{24}H_{22}{}^{35}Cl_2FN_5: \ 470.1 \ [M+H]^+, \ 472.1 \ [M+2+H]^+; \ found: \ 470.1 \ [M+H]^+ \ (100), \ 472.1 \ [M+2+H]^+ \ (70). \end{array}$

HRMS: m/z [M + H]⁺ calcd for C₂₄H₂₃Cl₂FN₅: 470.1309; found: 470.1305.

Compounds 1c-l; General Synthetic Procedure

823

Sodium ascorbate (0.2 equiv) and $CuSO_4$ (0.04 equiv) were added to a solution of alkyne **13** (1.0 equiv) and the appropriate azide (1.0 equiv) in *t*-BuOH–H₂O (2:1, 12 mL per mmol). The mixture was stirred at r.t. for 24 h. Sat. aq NH₄Cl (10 mL/mmol) was added and the aqueous layer was extracted with EtOAc. The organic layer was washed with brine, dried (Na₂SO₄), and filtered and the solvent was evaporated under reduced pressure.

3-(2,4-Dichlorophenyl)-12-(3-fluoropropyl)-5-(1-propyl-1*H*-1,2,3-triazol-4-yl)-3,4-diazatricyclo[8.4.0.0^{2,6}]tetradeca-1(14),2(6),4,10,12-pentaene (1c)

The crude product was purified by flash chromatography (hexane–EtOAc, 6:4) to give triazole **1c** (40 mg, 65%) as a white solid; mp 122–124 °C; R_f = 0.40 (hexane–EtOAc, 6:4).

¹H NMR (400 MHz, CDCl₃): δ = 1.02 (t, *J* = 7.4 Hz, 3 H), 1.97–2.11 (m, 2 H), 2.01 (dd, *J* = 7.2, 14.4 Hz, 2 H), 2.27–2.39 (m, 2 H), 2.70–2.82 (m, 4 H), 2.99 (br s, 2 H), 4.41 (t, *J* = 7.1 Hz, 2 H), 4.47 (dt, *J*_{H-H} = 5.9 Hz, *J*_{H-F} = 47.2 Hz, 2 H), 6.66 (d, *J* = 7.8 Hz, 1 H), 6.89 (dd, *J* = 1.7, 7.9 Hz, 1 H), 7.17 (d, *J* = 1.5 Hz, 1 H), 7.39 (dd, *J* = 2.3, 8.4 Hz, 1 H), 7.45 (d, *J* = 2.2 Hz, 1 H), 7.51 (d, *J* = 8.5 Hz, 1 H), 7.99 (s, 1 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 11.1, 20.9, 23.7, 31.1 (d, $J_{\text{C-F}}$ = 5.5 Hz), 31.7 (d, $J_{\text{C-F}}$ = 19.8 Hz), 31.8, 32.8, 52.0, 83.1 (d, $J_{\text{C-F}}$ = 162.0 Hz), 118.9, 121.0, 126.0, 127.1, 127.3, 127.4, 129.9, 130.3, 130.7, 132.8, 135.2, 136.8, 141.2, 142.0, 142.5, 142.7, 142.9.

¹⁹F NMR (376.45 MHz, CDCl₃): δ = -219.9 (tt, *J* = 25.3, 47.1 Hz, 1 F).

MS (ESI): m/z calcd for $C_{26}H_{26}^{35}CI_2FN_5$: 498.1 [M + H]⁺, 500.1 [M + 2 + H]⁺; found: 498.1 [M + H]⁺ (100), 500.1 [M + 2 + H]⁺ (70).

HRMS: m/z [M + H]⁺ calcd for C₂₆H₂₇Cl₂FN₅: 498.1622; found: 498.1611.

3-(2,4-Dichlorophenyl)-12-(3-fluoropropyl)-5-(1-pentyl-1*H*-1,2,3triazol-4-yl)-3,4-diazatricyclo[8.4.0.0^{2,6}]tetradeca-1(14),2(6),4,10,12-pentaene (1d)

The crude product was purified by flash chromatography (hexane–EtOAc, 6:4) to give triazole **1d** (35 mg, 60%) as a white solid; mp 133–135 °C; R_f = 0.65 (hexane–EtOAc, 6:4).

¹H NMR (400 MHz, CDCl₃): δ = 0.92 (t, J = 7.1 Hz, 3 H), 1.22–1.47 (m, 4 H), 1.86–2.13 (m, 4 H), 2.25–2.40 (m, 2 H), 2.64–2.85 (m, 4 H), 3.03 (br s, 2 H), 4.43 (t, J = 7.1 Hz, 2 H), 4.48 (dt, J_{H-H} = 5.9 Hz, J_{H-F} = 47.2 Hz, 2 H), 6.66 (d, J = 7.8 Hz, 1 H), 6.89 (dd, J = 1.6, 7.8 Hz, 1 H), 7.16 (d, J = 1.3 Hz, 1 H), 7.38 (dd, J = 2.3, 8.4 Hz, 1 H), 7.45 (d, J = 2.2 Hz, 1 H), 7.51 (d, J = 8.5 Hz, 1 H), 7.98 (s, 1 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 13.8, 20.9, 22.1, 28.6, 30.0, 31.1 (d, $J_{\text{C-F}}$ = 5.4 Hz), 31.7 (d, $J_{\text{C-F}}$ = 19.8 Hz), 31.8, 32.8, 50.4, 83.1 (d, $J_{\text{C-F}}$ = 165.0 Hz), 119.0, 121.0, 126.0, 127.1, 127.4, 128.0, 130.0, 130.3, 130.7, 132.8, 135.2, 136.8, 141.2, 142.0, 142.5, 142.7, 142.9.

¹⁹F NMR (376.45 MHz, CDCl₃): δ = -219.9 (tt, J = 25.3, 47.2 Hz, 1 F).

MS (ESI): m/z calcd for $C_{28}H_{30}{}^{35}Cl_2FN_5$: 526.2 [M + H]⁺, 528.2 [M + 2 + H]⁺; found: 526.2 [M + H]⁺ (100), 528.2 [M + 2 + H]⁺ (65).

HRMS: m/z [M + H]⁺ calcd for C₂₈H₃₁Cl₂FN₅: 526.1935; found: 526.1924.

5-[1-(But-3-enyl)-1*H*-1,2,3-triazol-4-yl]-3-(2,4-dichlorophenyl)-12-(3-fluoropropyl)-3,4-diazatricyclo[8.4.0.0^{2,6}]tetradeca-1(14),2(6),4,10,12-pentaene (1e)

The crude product was purified by flash chromatography (hexane–EtOAc, 6:4) to give triazole **1e** (25 mg, 60%) as a white solid; mp 138–140 °C; R_f = 0.80 (hexane–EtOAc, 6:4).

¹H NMR (400 MHz, CDCl₃): δ = 1.93–2.12 (m, 2 H), 2.22–2.41 (m, 2 H), 2.61–2.82 (m, 6 H), 3.03 (br s, 2 H), 4.48 (dt, *J*_{H-H} = 5.9 Hz, *J*_{H-F} = 47.2 Hz, 2 H), 4.50 (t, *J* = 7.1 Hz, 2 H), 5.09–5.21 (m, 2 H), 5.81 (ddt, *J* = 6.8, 10.2, 17.0 Hz, 1 H), 6.65 (d, *J* = 7.8 Hz, 1 H), 6.88 (d, *J* = 7.8 Hz, 1 H), 7.16 (s, 1 H), 7.38 (dd, *J* = 2.0, 8.5 Hz, 1 H), 7.44 (d, *J* = 2.1 Hz, 1 H), 7.51 (d, *J* = 8.4 Hz, 1 H), 7.99 (s, 1 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 20.9, 31.1 (d, $J_{\text{C-F}}$ = 5.4 Hz), 31.7 (d, $J_{\text{C-F}}$ = 19.8 Hz), 31.8, 32.8, 34.4, 49.7, 83.1 (d, $J_{\text{C-F}}$ = 164.9 Hz), 118.5, 119.0, 121.1, 126.1, 127.1, 127.4, 128.0, 129.9, 130.3, 130.7, 132.8, 133.2, 135.2, 136.8, 141.2, 142.0, 142.5, 142.7, 142.9.

¹⁹F NMR (376.45 MHz, CDCl₃): δ = -220.0 (tt, J = 25.3, 47.2 Hz, 1 F).

 $\begin{array}{l} MS \ (ESI): \ m/z \ calcd \ for \ C_{27}H_{26}{}^{35}Cl_2FN_5: \ 510.1 \ [M+H]^+, \ 512.1 \ [M+2+H]^+, \ 532.1 \ [M+Na]^+, \ 532.1 \ [M+Na]^+, \ 534.1 \ [M+2+Na]^+; \ found: \ 510.1 \ [M+H]^+ \ (100), \ 512.2 \ [M+2+H]^+ \ (70) \ 532.1 \ [M+Na]^+ \ (45), \ 534.1 \ [M+2+Na]^+ \ (30). \end{array}$

HRMS: m/z [M + H]⁺ calcd for C₂₇H₂₇Cl₂FN₅: 510.1622; found: 510.1613.

5-[1-(Cyclohexylmethyl)-1*H*-1,2,3-triazol-4-yl]-3-(2,4-dichlorophenyl)-12-(3-fluoropropyl)-3,4-diazatricyclo[8.4.0.0^{2,6}]tetradeca-1(14),2(6),4,10,12-pentaene (1f)

The crude product was purified by flash chromatography (hexane–EtOAc, 6:4) to give triazole **1f** (62 mg, 76%) as a white solid; mp 174–176 °C; R_f = 0.68 (hexane–EtOAc, 6:4).

¹H NMR (400 MHz, CDCl₃): δ = 0.95–1.13 (m, 2 H), 1.16–1.35 (m, 4 H), 1.63–1.82 (m, 4 H), 1.88–2.13 (m, 3 H), 2.27–2.42 (m, 2 H), 2.62–2.83 (m, 4 H), 3.03 (br s, 2 H), 4.25 (d, *J* = 7.2 Hz, 2 H), 4.47 (dt, *J*_{H-H} = 5.9 Hz, *J*_{H-F} = 47.2 Hz, 2 H), 6.66 (d, *J* = 7.8 Hz, 1 H), 6.88 (dd, *J* = 1.4, 7.8 Hz, 1 H), 7.16 (d, *J* = 0.9 Hz, 1 H), 7.38 (dd, *J* = 2.2, 8.4 Hz, 1 H), 7.44 (d, *J* = 2.2 Hz, 1 H), 7.51 (d, *J* = 8.4 Hz, 1 H), 7.95 (s, 1 H).

¹³C NMR (100 MHz, CDCl₃): δ = 20.9, 25.5 (2 C), 26.1, 30.5 (2 C), 31.1 (d, J_{C-F} = 5.4 Hz), 31.7 (d, J_{C-F} = 19.7 Hz), 31.8, 32.8, 38.8, 56.5, 83.1 (d, J_{C-F} = 165.0 Hz), 110.0, 121.5, 126.0, 127.1, 127.5, 128.0, 129.9, 130.3, 130.7, 132.8, 135.2, 136.8, 141.1, 142.0, 141.4, 142.7, 142.9.

¹⁹F NMR (376.45 MHz, CDCl₃): δ = -219.9 (tt, J = 25.3, 47.2 Hz, 1 F).

 $\begin{array}{l} MS \ (ESI): \ m/z \ calcd \ for \ C_{30}H_{32}{}^{35}Cl_2FN_5: \ 552.2 \ [M+H]^+, \ 554.2 \ [M+2+H]^+; \ found: \ 552.2 \ [M+H]^+ \ (100), \ 554.2 \ [M+2+H]^+ \ (65). \end{array}$

HRMS: m/z [M + H]⁺ calcd for $C_{30}H_{33}Cl_2FN_5$: 552.2092; found: 552.2098.

5-(1-Benzyl-1*H*-1,2,3-triazol-4-yl)-3-(2,4-dichlorophenyl)-12-(3-fluoropropyl)-3,4-diazatricyclo[8.4.0.0^{2,6}]tetradeca-1(14),2(6),4,10,12-pentaene (1g)

The crude product was purified by flash chromatography (hexane–EtOAc, 6:4) to give triazole **1g** (47 mg, 82%) as a white solid; mp 75–77 °C; R_f = 0.50 (hexane–EtOAc, 7:3).

¹H NMR (400 MHz, CDCl₃): δ = 1.96–2.11 (m, 2 H), 2.24–2.40 (m, 2 H), 2.68–2.80 (m, 4 H), 3.09 (br s, 2 H), 4.47 (dt, $J_{\text{H-H}}$ = 5.9 Hz, $J_{\text{H-F}}$ = 47.2 Hz, 2 H), 5.60 (s, 2 H), 6.65 (d, J = 7.8 Hz, 1 H), 6.88 (dd, J = 1.8, 7.9 Hz, 1 H), 7.16 (d, J = 1.5 Hz, 1 H), 7.33–7.41 (m, 6 H), 7.43 (d, J = 2.2 Hz, 1 H), 7.48 (d, J = 8.5 Hz, 1 H), 7.93 (s, 1 H).

Paper

 ^{13}C NMR (100 MHz, CDCl₃): δ = 20.9, 31.1 (d, $J_{\text{C-F}}$ = 5.3 Hz), 31.7 (d, $J_{\text{C-F}}$ = 19.7 Hz), 31.8, 32.8, 54.3, 83.1 (d, $J_{\text{C-F}}$ = 165.0 Hz), 118.0, 190.0, 126.1, 127.1, 127.3, 128.0, 128.4 (2 C), 128.8, 129.1 (2 C), 130.0, 130.3, 130.7, 132.8, 134.5, 135.3, 136.6, 136.7, 141.3, 142.0, 142.7, 142.9.

¹⁹F NMR (376.45 MHz, CDCl₃): δ = -220.0 (tt, J = 25.3, 47.2 Hz, 1 F).

 $\begin{array}{l} MS \ (ESI): \ m/z \ calcd \ for \ C_{30} H_{26}{}^{35} Cl_2 FN_5: \ 546.2 \ [M + H]^+, \ 548.2 \ [M + 2 + H]^+; \ found: \ 546.2 \ [M + H]^+ \ (100), \ 548.2 \ [M + 2 + H]^+ \ (70). \end{array}$

HRMS: m/z [M + H]⁺ calcd for C₃₀H₂₇Cl₂FN₅: 546.1628; found: 546.1613.

3-(2,4-Dichlorophenyl)-12-(3-fluoropropyl)-5-{1-[(4-methoxyphenyl)methyl]-1*H*-1,2,3-triazol-4-yl}-3,4-diazatricyclo[8.4.0.0^{2,6}]tetradeca-1(14),2(6),4,10,12-pentaene (1h)

The crude product was purified by flash chromatography (hexane–EtOAc, 6:4) to give triazole **1h** (50 mg, 78%) as a white solid; mp 70–72 °C; R_f = 0.60 (hexane–EtOAc, 7:3).

¹H NMR (400 MHz, CDCl₃): δ = 1.93–2.11 (m, 2 H), 2.24–2.40 (m, 2 H), 2.66–2.80 (m, 4 H), 3.08 (br s, 2 H), 3.82 (s, 3 H), 4.47 (dt, *J*_{H-H} = 5.9 Hz, *J*_{H-F} = 47.2 Hz, 2 H), 5.53 (s, 2 H), 6.64 (d, *J* = 7.9 Hz, 1 H), 6.88 (d, *J* = 9.5 Hz, 1 H), 6.91 (d, *J* = 8.6 Hz, 2 H), 7.16 (s, 1 H), 7.30 (d, *J* = 9.5 Hz, 2 H), 7.36 (dd, *J* = 2.0, 8.5 Hz, 1 H), 7.43 (d, *J* = 2.2 Hz, 1 H), 7.47 (d, *J* = 8.4 Hz, 1 H), 7.85 (s, 1 H).

¹³C NMR (100 MHz, CDCl₃): δ = 20.9, 29.7, 31.1 (d, J_{C-F} = 5.4 Hz), 31.7 (d, J_{C-F} = 19.7 Hz), 31.8, 32.8, 53.8, 55.4, 83.1 (d, J_{C-F} = 165.0 Hz), 114.5 (2 C), 119.0, 120.8, 126.0, 126.5, 127.0, 127.4, 128.0, 129.9, 130.0 (2 C), 130.3, 130.7, 132.8, 135.2, 136.8, 141.2, 142.0, 142.7, 142.8, 160.0.

¹⁹F NMR (376.45 MHz, CDCl₃): δ = -219.9 (tt, *J* = 25.3, 47.2 Hz, 1 F).

$$\begin{split} &MS\,(ESI):\,m/z\,calcd\,for\,C_{31}H_{28}{}^{35}Cl_2FN_5O:\,576.2\,\,[M+H]^+,\,578.2\,\,[M+2+H]^+;\,found:\,576.2\,\,[M+H]^+\,(100),\,578.2\,\,[M+2+H]^+\,(70). \end{split}$$

HRMS: $m/z [M + H]^+$ calcd for $C_{31}H_{29}Cl_2FN_5O$: 576.1728; found: 576.1720.

3-(2,4-Dichlorophenyl)-12-(3-fluoropropyl)-5-(1-phenyl-1*H*-1,2,3triazol-4-yl)-3,4-diazatricyclo[8.4.0.0^{2,6}]tetradeca-1(14),2(6),4,10,12-pentaene (1i)

The crude product was purified by flash chromatography (hexane–EtOAc, 6:4) to give triazole **1i** (64 mg, 65%) as a white solid; mp 90–92 °C; R_f = 0.65 (hexane–EtOAc, 7:3).

¹H NMR (400 MHz, CDCl₃): δ = 1.94–2.12 (m, 2 H), 2.26–2.44 (m, 2 H), 2.65–2.84 (m, 4 H), 3.10 (br s, 2 H), 4.48 (dt, J_{H-H} = 5.8 Hz, J_{H-F} = 47.2 Hz, 2 H), 6.69 (d, J = 7.8 Hz, 1 H), 6.90 (dd, J = 1.4, 7.8 Hz, 1 H), 7.18 (s, 1 H), 7.40 (dd, J = 2.2, 8.4 Hz, 1 H), 7.45–7.49 (m, 2 H), 7.54 (d, J = 8.4 Hz, 1 H), 7.58 (d, J = 7.5 Hz, 2 H), 8.47 (s, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ = 20.9, 31.1 (d, J_{C-F} = 5.3 Hz), 31.7 (d, J_{C-F} = 18.0 Hz), 31.8, 32.8, 83.1 (d, J_{C-F} = 165.0 Hz), 119.1, 119.2, 120.4 (2 C), 126.1, 127.1, 127.3, 128.0, 128.7, 129.8 (2 C), 130.0, 130.4, 130.7, 132.9, 135.3, 136.8, 137.1, 141.3, 142.0, 142.5, 142.9, 143.3.

¹⁹F NMR (376.45 MHz, CDCl₃): δ = -219.9 (tt, *J* = 25.3, 47.2 Hz, 1 F).

 $\begin{array}{l} MS \ (ESI): \ m/z \ calcd \ for \ C_{29}H_{24}{}^{35}Cl_2FN_5: \ 532.1 \ [M + H]^+, \ 534.1 \ [M + 2 + H]^+; \ found: \ 532.1 \ [M + H]^+ \ (100), \ 534.1 \ [M + 2 + H]^+ \ (70). \end{array}$

HRMS: m/z [M + H]⁺ calcd for C₂₉H₂₅Cl₂FN₅: 532.1466; found: 532.1458.

C. Zanato et al.

3-(2,4-Dichlorophenyl)-12-(3-fluoropropyl)-5-{1-[4-(trifluoromethyl)phenyl]-1*H*-1,2,3-triazol-4-yl}-3,4-diazatricyclo[8.4.0.0^{2,6}]tetradeca-1(14),2(6),4,10,12-pentaene (1j)

The crude product was purified by flash chromatography (hexane–EtOAc, 6:4) to give triazole **1j** (39 mg, 75%) as a white solid; mp 88–90 °C; R_f = 0.68 (hexane–EtOAc, 7:3).

¹H NMR (400 MHz, CDCl₃): δ = 1.94–2.13 (m, 2 H), 2.29–2.44 (m, 2 H), 2.65–2.83 (m, 4 H), 3.12 (br s, 2 H), 4.48 (dt, *J*_{H-H} = 5.9 Hz, *J*_{H-F} = 47.2 Hz, 2 H), 6.68 (d, *J* = 7.8 Hz, 1 H), 6.91 (dd, *J* = 1.6, 7.9 Hz, 1 H), 7.18 (d, *J* = 1.3 Hz, 1 H), 7.41 (dd, *J* = 2.3, 8.4 Hz, 1 H), 7.48 (d, *J* = 2.2 Hz, 1 H), 7.53 (d, *J* = 8.5 Hz, 1 H), 7.67–7.83 (m, 2 H), 8.03–8.18 (m, 2 H), 8.53 (s, 1 H).

¹³C NMR (100 MHz, CDCl₃): δ = 20.9, 31.1 (d, J_{CF} = 5.3 Hz), 31.7 (d, J_{C-F} = 19.8 Hz), 31.8, 32.8, 83.1 (d, J_{C-F} = 165.0 Hz), 117.3 (q, J_{C-F} = 4.0 Hz), 118.9, 119.3, 123.3 (q, J_{C-F} = 272.9 Hz), 123.4, 125.9 (q, J_{C-F} = 3.4 Hz), 126.1, 127.1, 127.2, 128.1, 130.0, 130.4, 130.6 (2 C), 132.5 (q, J_{C-F} = 33.2 Hz), 132.8, 135.4, 136.7, 137.4, 141.4, 142.0, 142.1, 143.0, 143.8.

 $^{19}{\rm F}$ NMR (376.45 MHz, CDCl₃): δ = –219.9 (tt, J = 25.3, 47.2 Hz, 1 F), 62.9 (s, 3 F).

 $MS (ESI): m/z \ calcd \ for \ C_{30}H_{23}{}^{35}Cl_2F_4N_5: 600.1 \ [M + H]^+, 602.1 \ [M + 2 + H]^+; found: 600.1 \ [M + H]^+ (100), 602.1 \ [M + 2 + H]^+ (65).$

HRMS: $m/z [M + H]^+$ calcd for $C_{30}H_{24}Cl_2F_4N_5$: 600.1339; found: 600.1347.

3-(2,4-Dichlorophenyl)-12-(3-fluoropropyl)-5-[1-(2-methoxyphenyl)-1*H*-1,2,3-triazol-4-yl]-3,4-diazatricyclo[8.4.0.0^{2,6}]tetradeca-1(14),2(6),4,10,12-pentaene (1k)

The crude product was purified by flash chromatography (hexane–EtOAc, 6:4) to give triazole **1k** (38 mg, 60%) as a white solid; mp 128–130 °C; R_f = 0.62 (hexane–EtOAc, 7:3).

¹H NMR (400 MHz, $CDCl_3$): δ = 1.96–2.13 (m, 2 H), 2.26–2.45 (m, 2 H), 2.64–2.87 (m, 4 H), 3.10 (br s, 2 H), 3.93 (s, 3 H), 4.48 (dt, *J*_{H-H} = 5.9 Hz, *J*_{H-F} = 47.2 Hz, 2 H), 6.68 (d, *J* = 7.8 Hz, 1 H), 6.90 (dd, *J* = 7.7 Hz, 1 H), 7.06–7.22 (m, 3 H), 7.34–7.51 (m, 3 H), 7.56 (d, *J* = 8.4 Hz, 1 H), 7.87 (d, *J* = 1.4, 7.9 Hz, 1 H), 8.58 (s, 1 H).

¹³C NMR (100 MHz, CDCl₃): δ = 20.9, 31.1 (d, J_{C-F} = 5.5 Hz), 31.7 (d, J_{C-F} = 20.0 Hz), 31.8, 32.8, 56.0, 83.1 (d, J_{C-F} = 164.9 Hz), 112.3, 119.1, 121.2, 123.3, 125.5, 126.1, 126.4, 127.1, 127.5, 128.0, 129.9, 130.1, 130.3, 130.8, 132.9, 135.2, 136.9, 141.3, 142.0, 142.7, 142.8, 124.9, 151.2.

¹⁹F NMR (376.45 MHz, $CDCl_3$): $\delta = -219.9$ (tt, J = 25.2, 47.1 Hz, 1 F).

$$\begin{split} &MS\,(ESI):\,m/z\,calcd\,for\,C_{30}H_{26}{}^{35}Cl_2FN_5O:\,562.2\,\,[M+H]^*,\,564.2\,\,[M+2+H]^*;\,found:\,562.2\,\,[M+H]^*\,(100),\,564.2\,\,[M+2+H]^*\,(65). \end{split}$$

HRMS: $m/z [M + H]^+$ calcd for $C_{30}H_{27}Cl_2FN_5O$: 562.157; found: 562.1564.

3-(2,4-Dichlorophenyl)-5-[1-(2,4-dichlorophenyl)-1H-1,2,3-triazol-4-yl]-12-(3-fluoropropyl)-3,4-diazatricyclo[8.4.0.0^{2.6}]tetradeca-1(14),2(6),4,10,12-pentaene (11)

The crude product was purified by flash chromatography (hexane–EtOAc, 6:4) to give triazole **11** (41 mg, 75%) as a white solid; mp 76–78 °C; R_f = 0.60 (hexane–EtOAc, 7:3).

¹H NMR (400 MHz, CDCl₃): δ = 1.93–2.14 (m, 2 H), 2.28–2.46 (m, 2 H), 2.68–2.84 (m, 4 H), 3.08 (br s, 2 H), 4.48 (dt, J_{H-H} = 5.9 Hz, J_{H-F} = 47.2 Hz, 2 H), 6.68 (d, J = 7.8 Hz, 1 H), 6.90 (dd, J = 1.6, 7.9 Hz, 1 H), 7.18 (d, J = 1.3 Hz, 1 H), 7.40 (dd, J = 2.3, 8.5 Hz, 1 H), 7.46 (d, J = 2.2 Hz, 1 H), 7.49 (d, J = 2.2 Hz, 1 H), 7.54 (d, J = 8.5 Hz, 1 H), 7.64 (d, J = 2.6 Hz, 1 H), 7.65 (d, J = 3.7 Hz, 1 H), 8.42 (s, 1 H).

¹³C NMR (100 MHz, CDCl₃): δ = 20.9, 31.1 (d, J_{C-F} = 5.3 Hz), 31.7 (d, J_{C-F} = 19.3 Hz), 31.8, 32.8, 83.1 (d, J_{C-F} = 165.0 Hz), 119.2, 123.0, 126.1, 127.1, 127.3, 128.0, 128.3, 128.5, 129.5, 130.0, 130.4, 130.7 (2 C), 132.8, 133.6, 135.3, 136.3, 136.7, 141.4, 142.0, 142.2, 142.7, 142.9.

¹⁹F NMR (376.45 MHz, CDCl₃): δ = -219.9 (tt, J = 25.3, 47.2 Hz, 1 F).

 $\begin{array}{l} \text{MS (ESI): } m/z \text{ calcd for } C_{29}\text{H}_{22}\ ^{35}\text{Cl}_4\text{FN}_5\text{: } 600.1 \ [M + H]^+, \ 602.1 \ [M + 2 + H] + , \ 603.1 \ [M + 3 + H]^+, \ 604.1 \ [M + 4 + H]^+\text{; found: } 600.1 \ [M + H] + \\ (100), \ 602.2 \ [M + 2 + H]^+ \ (80), \ 603.1 \ [M + 3 + H]^+, \ 604.1 \ [M + 4 + H]^+\text{.} \\ \text{HRMS: } m/z \ \ [M + H]^+ \ \text{calcd for } \ C_{29}\text{H}_{23}\text{Cl}_4\text{FN}_5\text{: } 600.0686\text{; found: } \\ 600.0692. \end{array}$

Acknowledgment

We thank the European Commission for financial support (Industry Academia Partnerships and Pathways project 'PET BRAIN', Contract No 251482) and the EPSRC National Mass Spectrometry Service Centre (Swansea, UK), for performing HRMS analyses. We also wish to thank Ms. Serena Montanari for carrying out some preliminary experiments and Mrs Lesley A. Stevenson for technical support.

Supporting Information

Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1379887.

References

- (a) Pertwee, R. G.; Howlett, A. C.; Abood, M. E.; Alexander, S. P. H.; Marzo, V. D.; Elphick, M. R.; Greasley, P. J.; Hansen, H. S.; Kunos, G.; Mackie, K.; Mechoulam, R.; Ross, R. A. *Pharmacol. Rev.* **2010**, *62*, 588. (b) Munro, S.; Thomas, K. L.; Abu-Shaar, M. *Nature (London, U. K.)* **1993**, 365, 61.
- (2) Herkenham, M.; Lynn, A. B.; Little, M. D.; Johnson, M. R.; Melvin, L. S.; de Costa, B. R.; Rice, K. C. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 1932.
- (3) Griffin, G.; Fernando, S. R.; Ross, R. A.; McKay, N. G.; Ashford, M. L. J.; Shire, D.; Huffman, J. W.; Yu, S.; Lainton, J. A. H.; Pertwee, R. G. *Eur. J. Pharmacol.* **1997**, 339, 53.
- (4) Pertwee, R. G. Life Sci. **1999**, 65, 597.
- (5) Ashton, J. C.; Friberg, D.; Darlington, C. L.; Smith, P. F. Neurosci. Lett. 2006, 396, 113.
- (6) Costa, B.; Trovato, A. E.; Colleoni, M.; Giagnoni, G.; Zarini, E.; Croci, T. *Pain* **2005**, *116*, 52.
- (7) Horder, J.; Browning, M.; Simplicio, M. D.; Cowen, P. J.; Harmer, C. J. J. Psychopharmacol. (London, U. K.) 2012, 26, 125.
- (8) Kunos, G.; Osei-Hyiaman, D.; Bátkai, S.; Sharkey, K. A.; Makriyannis, A. Trends Pharmacol. Sci. 2009, 30, 1.
- (9) Kirilly, E.; Gonda, X.; Bagdy, G. Acta Physiol. 2012, 205, 41.
- (10) Ho, B.-C.; Wassink, T. H.; Ziebell, S.; Andreasen, N. C. Schizophr. *Res.* **2011**, *128*, 66.
- (11) Gazzerro, P.; Caruso, M. G.; Notarnicola, M.; Misciagna, G.; Guerra, V.; Laezza, C.; Bifulco, M. *Int. J. Obes.* **2006**, *31*, 908.
- (12) Rinaldi-Carmona, M.; Barth, F.; Héaulme, M.; Shire, D.; Calandra, B.; Congy, C.; Martinez, S.; Maruani, J.; Néliat, G.; Caput, D.; Ferrara, P.; Soubrié, P.; Brelière, J. C.; Le Fur, G. FEBS Lett. **1994**, 350, 240.
- (13) (a) Jones, D. *Nat. Rev. Drug Discovery* 2008, 7, 961. (b) Akbas, F.; Gasteyger, C.; Sjödin, A.; Astrup, A.; Larsen, T. M. *Obes. Rev.* 2009, *10*, 58. (c) Pertwee, R. G. *Br. J. Pharmacol.* 2009, *156*, 397.

Syn<mark>thesis</mark>

C. Zanato et al.

- (14) (a) Gatley, S. J.; Gifford, A. N.; Volkow, N. D.; Lan, R.; Makriyannis, A. *Eur. J. Pharmacol.* **1996**, 307, 331. (b) Gatley, S. J.; Lan, R.; Volkow, N. D.; Pappas, N.; King, P.; Wong, C. T.; Gifford, A. N.; Pyatt, B.; Dewey, S. L.; Makriyannis, A. *J. Neurochem.* **1998**, 70, 417.
- (15) (a) Burns, H. D.; Laere, K. V.; Sanabria-Bohórquez, S.; Hamill, T. G.; Bormans, G.; Eng, W.; Gibson, R.; Ryan, C.; Connolly, B.; Patel, S.; Krause, S.; Vanko, A.; Hecken, A. V.; Dupont, P.; Lepeleire, I. D.; Rothenberg, P.; Stoch, S. A.; Cote, J.; Hagmann, W. K.; Jewell, J. P.; Lin, L. S.; Liu, P.; Goulet, M. T.; Gottesdiener, K.; Wagner, J. A.; de Hoon, J.; Mortelmans, L.; Fong, T. M.; Hargreaves, R. J. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 9800. (b) Yasuno, F.; Brown, A. K.; Zoghbi, S. S.; Krushinski, J. H.; Chernet, E.; Tauscher, J.; Schaus, J. M.; Phebus, L. A.; Chesterfield, A. K.; Felder, C. C.; Gladding, R. L.; Hong, J.; Halldin, C.; Pike, V. W.; Innis, R. B. Neuropsychopharmacology 2008, 33, 259. (c) Terry, G. E.; Hirvonen, J.; Liow, J.-S.; Zoghbi, S. S.; Gladding, R.; Tauscher, J. T.; Schaus, J. M.; Phebus, L.; Felder, C. C.; Morse, C. L.; Donohue, S. R.; Pike, V. W.; Halldin, C.; Innis, R. B. J. Nucl. Med. 2010, 51, 112. (d) Donohue, S. R.; Pike, V. W.; Finnema, S. J.; Truong, P.; Andersson, J.; Gulyás, B.; Halldin, C. J. Med. Chem. 2008, 51, 5608.
- (16) Retrieved June 27, 2012, from http://clinicaltrials.gov/.
- (17) Distinto, R.; Zanato, C.; Montanari, S.; Cascio, M. G.; Lazzari, P.; Pertwee, R.; Zanda, M. J. Fluor. Chem. **2014**, 167, 184.
- (18) (a) Lee, S. H.; Seo, H. J.; Lee, S.-H.; Jung, M. E.; Park, J.-H.; Park, H.-J.; Yoo, J.; Yun, H.; Na, J.; Kang, S. Y.; Song, K.-S.; Kim, M.; Chang, C.-H.; Kim, J.; Lee, J. *J. Med. Chem.* **2008**, *51*, 7216. (b) Chu, C.-M.; Hung, M.-S.; Hsieh, M.-T.; Kuo, C.-W.; Suja, T. D.; Song, J.-S.; Chiu, H.-H.; Chao, Y.-S.; Shia, K.-S. Org. Biomol. Chem. **2008**, *6*, 3399. (c) Kang, S. Y.; Lee, S.-H.; Seo, H. J.; Jung, M. E.; Ahn, K.; Kim, J.; Lee, J. Bioorg. Med. Chem. Lett. **2008**, *18*, 2385.

- (19) Ruiu, S.; Pinna, G. A.; Marchese, G.; Mussinu, J.-M.; Saba, P.; Tambaro, S.; Casti, P.; Vargiu, R.; Pani, L. J. Pharmacol. Exp. Ther. 2003, 306, 363.
- (20) Murineddu, G.; Ruiu, S.; Loriga, G.; Manca, I.; Lazzari, P.; Reali, R.; Pani, L.; Toma, L.; Pinna, G. A. J. Med. Chem. 2005, 48, 7351.
- (21) Martz, K. E.; Dorn, A.; Baur, B.; Schattel, V.; Goettert, M. I.; Mayer-Wrangowski, S. C.; Rauh, D.; Laufer, S. A. J. Med. Chem. 2012, 55, 7862.
- (22) (a) Liang, Y.; Xie, Y.-X.; Li, J.-H. J. Org. Chem. 2006, 71, 379.
 (b) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467.
- (23) Yoshida, H.; Kawashima, S.; Takemoto, Y.; Okada, K.; Ohshita, J.; Takaki, K. *Angew. Chem. Int. Ed.* **2012**, *51*, 235.
- (24) Singh, R. P.; Shreeve, J. M. Synthesis 2002, 2561.
- (25) (a) Ohira, S. Synth. Commun. 1989, 19, 561. (b) Müller, S.;
 Liepold, B.; Roth, G. J.; Bestmann, H. J. Synlett 1996, 521.
- (26) Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.; Noodleman, L.; Sharpless, K. B.; Fokin, V. V. J. Am. Chem. Soc. 2005, 127, 210.
- (27) (a) Cascio, M.; Gauson, L.; Stevenson, L.; Ross, R.; Pertwee, R. Br. J. Pharmacol. 2010, 159, 129. (b) Bolognini, D.; Costa, B.; Maione, S.; Comelli, F.; Marini, P.; Di Marzo, V.; Parolaro, D.; Ross, R. A.; Gauson, L. A.; Cascio, M. G.; Pertwee, R. G. Br. J. Pharmacol. 2010, 160, 677.
- (28) Zhang, Y.; Burgess, J. P.; Brackeen, M.; Gilliam, A.; Mascarella, S.
 W.; Page, K.; Seltzman, H. H.; Thomas, B. F. *J. Med. Chem.* 2008, 51, 3526.
- (29) Stoit, A. R.; Lange, J. H. M.; den Hartog, A. P.; Ronken, E.; Tipker, K.; van Stuivenberg, H. H.; Dijksman, J. A. R.; Wals, H. C.; Kruse, C. G. *Chem. Pharm. Bull.* **2002**, *50*, 1109.
- (30) For the complete characterisation, see ref. 21.
- (31) Mamidyala, S. K.; Cooper, M. A. Chem. Commun. 2013, 49, 8407.