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Abstract: Molecular iodine efficiently catalyzes the direct nucleo-
philic substitution of the hydroxy group of benzylic alcohols with
carbon and oxygen nucleophiles.
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The displacement of hydroxy groups in alcohols by nu-
cleophiles is a direct method for C–C bond-formation re-
action. This reaction has gained importance due to readily
available starting materials and also the environmentally
benign byproduct (water) formed during the reaction. The
direct nucleophilic substitution reactions of alcohols are
generally attained by employing stoichiometric amounts
of Lewis acids1 or by using excess of sulfuric acid or phos-
phoric acid.2 Since the hydroxy group is not a good leav-
ing group, very often it has to be derivatized as acetate or
halide for substitution with different nucleophiles.3 Re-
cently, there have been many precedents for the direct nu-
cleophilic substitution reactions of benzyl alcohols,
remarkable are the reactions catalyzed by p-toluene-
sulfonic acid monohydrate, polymer-bound p-toluene-
sulfonic acid,4 metal salts such as Bi, La, Sc, or Hf salts,5

or Fe3a or Au6 catalysis including the more recent InCl3.
7

However, these reactions are generally performed at ele-
vated temperatures or require more than catalytic amount
of the catalyst. Therefore, the development of new meth-
ods for direct substitution of hydroxy group is a challeng-
ing goal to organic chemists.

During the last decade molecular iodine has been well ex-
plored as a versatile catalyst for several organic transfor-
mations such as synthesis of bis(indolyl)methanes,8

thioketalization of carbonyl compounds,9 Michael addi-

tion,10 protection/deprotection,11 and multicomponent re-
actions.12 Our group has been on a long-term project
where iodine is being investigated as catalyst for several
organic reactions.13 In continuation towards these studies,
we have recently demonstrated that iodine could be used
efficiently for nucleophilic substitution reactions of aryl
propargyl alcohols with C- and O-nucleophiles.14 In this
context, we disclose the nucleophilic substitution reac-
tions of substituted benzyl alcohols (1) with O- (2) and C-
(3) nucleophiles in the presence of catalytic amount of io-
dine (see Scheme 1).

Initially, as a preliminary example, diphenyl carbinol was
treated with propargyl alcohol in the presence of 5 mol%
of iodine at room temperature. Within 20 minutes, the
starting material was completely consumed to produce a
single product that was isolated and characterized as the
propargylated diphenyl carbinol. Encouraged by this re-
sult, we proceeded further, investigating the scope and
generality of this reaction. Thus, various other nucleo-
philes such as allyl alcohol 2b (entry 2), 3-benzyloxypro-
pan-1-ol (2c, entry 3), propargyl alcohol (2a, entries 1 and
4) were treated with benzylic alcohols and found to pro-
duce the corresponding O-nucleophilic substituted prod-
ucts in good yields (see Table 1).

When naphth-2-ol (3a, entries 6, 9, and 12), p-cresol (3d,
entry 11), and resorcinol (3c, entries 8 and 15) were treat-
ed, the products obtained were only the C-nucleophilic
products rather the O-nucleophilic products, also in the re-
sulting products substitution was present only on electron-
rich carbon site resulting in a single regioisomer as evi-
denced from spectral data.15 For example, the regioisomer
formed from the reaction of 1a with 3a was assumed to be
product 5a, inline with literature precedent having a melt-
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ing point of 110 °C in agreement with the known prod-
uct.16a Similarly, anisole (3e, entry 14) responded well to
give the C-nucleophilic product.16b The data clearly re-
veals that the diaryl carbinols react faster than aryl alkyl
carbinols (see Table 1). This may be attributed towards
the formation of a more stable carbocation intermediate,
which would facilitate the reaction towards the product. A
plausible mechanism is shown in Scheme 2.

The resulting HI may facilitate the generation of a car-
bocation from the activated aryl alcohols. And since the
carbocation is involved in the process, the reaction may
proceed through SN1 mechanism. Benzyl alcohol, a-phen-
yl ethyl alcohol, and a-phenyl ethyl alcohols with elec-
tron-withdrawing groups (entries 5 and 16) did not
respond to this protocol, but a-phenyl ethyl alcohols bear-
ing electron-releasing groups responded well under the

present protocol to give the corresponding products in
good yields.

When a reaction of chiral 1-(4-methoxyphenyl)ethanol17

with allyl alcohol was studied, racemic product was ob-
tained (see Scheme 3). This example clearly reveals that
SN1 type of mechanism is involved in this reaction. Dur-
ing the course of these studies, we needed product 5a for
one of our academic programs in larger amounts (≥ 2 g).
For this, a two-gram reaction was run and we noticed that
within one hour complete consumption of the starting ma-
terial occurred and resulted in 94% of the required prod-
uct. Thus this protocol was also found to be amenable for
large-scale synthesis.
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Table 1 Iodine-Catalyzed Nucleophilic Substitution Reactions of Aryl Alcohols

Entry Aryl carbinol Nucleophile Producta Time (min) Yield (%)b

1 1a 2a 4a 15 95

2 1a 2b 4b 20 92

3 1a 2c 4c 20 92
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4 1b 2a 4d 15 92

5 1c 2b 4e no reaction

6 1a 3a 5a 20 96

7 1a 3b 5b 15 90

8 1a 3c 5c 25 93

9 1d 3a 5d 20 95

10 1d 3b 5e 15 96

11 1d 3d 5f 30 90

12 1b 3a 5g 15 95

Table 1 Iodine-Catalyzed Nucleophilic Substitution Reactions of Aryl Alcohols (continued)

Entry Aryl carbinol Nucleophile Producta Time (min) Yield (%)b
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In conclusion, an efficient benzylic substitution reaction
with different nucleophiles has been demonstrated using
elemental iodine. Reactions at ambient temperature with
shorter reaction times and operationally simple proce-
dures involving readily available inexpensive iodine
make this procedure a very attractive and valid contribu-
tion to the existing procedures. Application of the present
protocol for other nucleophilic substitution reactions are
currently in progress and will be published in due course.
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