Transition Metal-Catalyzed Synthesis of Novel Biologically Relevant Tryptophan Analogues

Bart C. J. van Esseveldt,^a Floris L. van Delft,^a Jan M. M. Smits,^b René de Gelder,^b Hans E. Schoemaker,^c Floris P. J. T. Rutjes^{a,*}

- Fax: (+31)-24-365-3393, e-mail: rutjes@sci.kun.nl
- ^b NSRIM, Department of Inorganic Chemistry, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
- ^c DSM Research, Life Science Products, PO Box 18, 6160 MD Geleen, The Netherlands Received: January 14, 2004, Accepted: May 21, 2004

Dedicated to Joe P. Richmond on the occasion of his 60th birthday.

Supporting Information for this article is available on the WWW under http://asc.wiley-vch.de or from the author.

Abstract: A synthetic approach to the synthesis of novel tryptophan derivatives and benzofuran-containing amino acids is detailed. The sequence starts from enzymatically resolved enantiopure acetylene-containing amino acids, of which the acetylene function can be efficiently transformed into the targeted 2-

Introduction

Indoleamine 2,3-dioxygenase (IDO) is a heme-containing glycoprotein that is widely distributed in mammalian tissue, including the brain, lung and small intestine.^[1] One of the functions of IDO in cells is the cleavage of the indole 2,3-double bond of (*S*)-tryptophan (1), using superoxide in the presence of free-radical generating systems, such as ascorbic acid and methylene blue. The product of this oxidative cleavage is (*S*)-*N*-formylkynurenine (2), which is subsequently hydrolyzed by a formamidase enzyme to give (*S*)-kynurenine (3, Scheme 1).

These two reactions are the first steps in the kynurenine pathway, which in 1947 was first recognized as a major route for the metabolism of tryptophan to nicotinamide and its nucleotide conjugates.^[2] The kynurenine pathway contains a number of interesting enzymes that catalyze chemical reactions which are infrequently found in metabolism. Consequently, many of these transformations are still mechanistically poorly understood, such as the aforementioned IDO-catalyzed oxidative cleavage of tryptophan $(1 \rightarrow 2)$.

The activity of the IDO enzyme can be induced by several factors,^[3] which results in depletion of available tryptophan, the least abundant of the essential amino acids required for cellular integrity. Hence, its reduced availability affects protein synthesis, genome replication substited indole and benzofuran moieties *via* Sonogashira-type coupling and metal-catalyzed cyclization.

Keywords: amino acids; benzofurans; homogeneous catalysis; indoles; isotryptophan; palladium

and organismal growth. Increased IDO activity therefore leads to starvation of cells for tryptophan, which has a much more devastating effect on rapidly dividing cells, such as microbial pathogens and tumor cells. As a result, the IDO enzyme has apparent antimicrobial and antitumor properties. Another consequence of inducing IDO activity is an increase in the concentration of metabolites produced in the kynurenine pathway, such as quinolinic acid (4) and kynurenic acid (5), both of which are known to exhibit neurological activity.^[4]

Quinolinic acid, for example, has been implicated as an etiological factor in a range of neurodegenerative diseases including AIDS-related dementia, Huntington's disease and Lyme's disease.^[5] Moreover, the upregulation of IDO activity, resulting in the elevation of quinolinic acid concentrations, is observed in several inflammatory diseases including meningitis, septicemia and ar-

Scheme 1. The first steps in the kynurenine pathway.

^a NSRIM, Department of Organic Chemistry, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

Scheme 2. Kynurenine pathway metabolites (4 and 5) and tryptophan analogues (6-8).

thritis.^[6] Consequently, in the design of novel therapies to treat these diseases, the kynurenine pathway has been identified as an important target for drug action. Mechanistic work on the enzymes involved in the pathway has therefore been stimulated, to provide information so that specific and effective inhibitors can be designed.

Especially, inhibitors of the IDO enzyme have important clinical implications as potential therapeutic agents, as well as to study and control the symptoms of the aforementioned diseases which are affected by the upregulation of IDO activity. In addition, potent and specific inhibitors of the IDO enzyme are valuable pharmacological tools to elucidate the biological importance of the kynurenine pathway in more detail and to better understand the chemistry of the IDO-catalyzed reactions.

Tryptophan analogues constitute one class of IDO inhibitors and therefore a wide range of tryptophan analogues has already been examined as inhibitors of the IDO enzyme. For example, replacement of the indole nitrogen of tryptophan by both oxygen and sulfur gave analogues **6** and **7**, respectively, which exhibited moderate inhibitory activity toward rabbit intestine IDO.^[7]

Based on studies focusing at the structural requirements for binding in the active site of the IDO enzyme, the *N*-methylated analogue **8** was prepared, which is the most potent tryptophan-based IDO inhibitor reported to date.^[8] Although several tryptophan analogues have exhibited inhibitory activity against the IDO enzyme, none of these compounds inhibited IDO below micromolar levels. Consequently, highly potent inhibitors of human IDO (with low nanomolar affinity) are still required, and for this reason the synthesis of novel tryptophan analogues in an optically active form is necessary.

In the continued effort to search for novel inhibitors of IDO, we envisaged that it may be of interest to synthesize three structurally related tryptophan analogues, namely (*S*)-isotryptophan (**9**), (*S*)-homoisotryptophan (**10**) and (*S*)-bishomoisotryptophan (**11**).^[9]

Of these potentially biologically relevant α -amino acids, only isotryptophan (9) itself has been previously prepared in optically active form. In that preparation,^[10] the synthesis proceeded *via* a copper-mediated cyclization^[11] of an *ortho*-ethynylaniline moiety that was connected to a Schöllkopf chiral auxiliary.

Scheme 3. Targeted tryptophan derivatives.

Scheme 4. Retrosynthesis of isotryptophans.

In addition to copper, palladium catalysts^[12] have been frequently used in cyclization reactions of nitrogen nucleophiles onto alkenes and alkynes to provide nitrogen heterocycles such as pyrroles^[13] and indoles.^[14] However, to the best of our knowledge, Pd-catalyzed syntheses of 2-substituted indoles have only been conducted using relatively simple 2-alkynylanilines as the cyclization precursors.^[14] We envisaged that the tryptophan analogues 9-11 might be readily synthesized from the corresponding protected anilines 12 via such a Pd-catalyzed cyclization as the key step. The anilines 12 should be easily accessible from the optically active acetylene-containing α -amino acids 13–15 (Scheme 4). These trifunctional amino acids^[15] are commercially available (e.g., 2amino-4-pentynoic acid),^[16] but can also be prepared via a chemoenzymatic procedure that was developed in collaboration with DSM Research (Geleen, The Netherlands).[17]

Results and Discussion

To probe the feasibility of forming the 2-substituted indole ring *via* an intramolecular Pd-catalyzed reaction, cyclization precursor **17** was synthesized starting from the racemic propargylglycine derivative **16**.^[18] The Pdcatalyzed functionalization of propargylglycine derivatives with aromatic groups under Sonogashira-type coupling conditions has already been described by Crisp and Robinson.^[19] Modification of the reported conditions led to a smooth coupling of **16** with 2-iodoaniline at room temperature affording precursor **17** in 88% yield (Scheme 5).

Interestingly, subjecting **17** to the previously reported cyclization conditions^[14f] did not lead to the anticipated

824

Scheme 5. Unexpected pyrroline formation.

Figure 1. PLATON drawing of the X-ray crystal structure of imine 18.

formation of the corresponding indole system. Instead, an unexpected compound was formed as the sole product in 65% yield. Eventually, this product was unambiguously identified as the five-membered cyclic imine **18** *via* an X-ray crystal structure determination (shown as a PLATON drawing^[20] in Fig. 1).^[21]

After this surprising result, amino acid **17** was again subjected to the same reagents, but now at room temperature, resulting in the formation of the cyclic enamide **19** in 54% yield after column chromatography (Scheme 5). Subsequent treatment of this enamide with the same Pdcatalyst in refluxing acetonitrile led to a rapid conversion into the aforementioned pyrroline **18** in 70% yield. The latter conversion could also be accomplished by refluxing **19** in acetonitrile without the Pd-catalyst present, however, in that case the reaction did not go to completion even after prolonged reaction times of over 24 h.

A plausible mechanism to explain the remarkable formation of pyrroline **18** from precursor **17** involves com-

Scheme 6. Mechanism of pyrroline formation.

plexation of the Pd(II) catalyst to the triple bond, possibly aided by coordination to the aniline nitrogen, giving rise to the π -complex **20** (Scheme 6).

This renders the acetylene sufficiently electrophilic to undergo nucleophilic attack of the apparently more nucleophilic carbamate nitrogen to give the corresponding vinylpalladium intermediate **21**. This species will undergo protonolysis of the Pd–C bond, thereby regenerating the Pd(II) catalyst, to give cyclic enamide **19** as the intermediate product, which under the circumstances immediately reacts further to provide pyrroline **18** as the product. In this last step, the regenerated Pd catalyst may possibly act as a Lewis acid by lowering the electron density of the double bond, thus facilitating intramolecular attack of the aniline nitrogen onto the Boc group.

Intrigued by the facile cycloisomerization of **17**, we set out to further determine the scope of this reaction. Therefore, we prepared several cyclization precursors *via* Sonogashira couplings of protected propargylglycine **16** with (substituted) aryl iodides. The racemic substituted acetylenes **22–26** were thus obtained in good yields and subjected to PdCl₂(MeCN)₂ in MeCN at different temperatures (Table 1).

Unfortunately, subjecting cyclization precursor 22 to the Pd catalyst did not result in any reaction at room temperature, while heating at reflux temperature led to rapid decomposition of the starting compound (entry 1). Subjecting the substituted acetylene 23 to the Pd catalyst at room temperature did not lead to the formation of the corresponding cyclic enamide. Instead, these conditions led to partial decomposition of the starting compound and unexpected formation of the hydrated product 27 as the sole product in a yield of 32% (entry 2). Subjecting 23 to the same conditions at reflux temperature also did not lead to a cyclization reaction. Moreover, these conditions led to even more decomposition of the starting material and slowed down the formation of ketone 27. Substitution of the aromatic ring with an ortho-methoxy substituent (viz. 24) did not re-

asc.wiley-vch.de

Table 1. Scope of pyrroline formation.

^[a] Yield of isolated product after column chromatography.

sult in cyclization either, but gave a similar reaction leading to ketone **28** as the major product in a somewhat lower yield of 19% (entry 3).

Presumably, in these cases the internal acetylene undergoes a Pd-catalyzed hydration leading to the corresponding ketone. Similar regioselective Pd-catalyzed hydration of substituted acetylenes has been observed before, and the formation of, for example, ketone **27** might be explained analogously to the reported mechanism^[22] (Scheme 7).

Thus, the catalytic cycle presumably involves electrophilic activation of the triple bond by the Pd(II) catalyst, followed by intramolecular nucleophilic attack of the ester function. The resulting vinylpalladium intermediate **31** then undergoes attack by water followed by subsequent protonolysis of the Pd–C bond to finally give ketone **27** as its enol tautomer. In an attempt to improve the yield of ketone **27**, the Pd-catalyzed hydration of acetylene **23** was conducted again in the presence of a small amount of water, according to the literature procedure.^[22] These conditions, however, did not facilitate the formation of ketone **27**, which was even isolated in a somewhat lower yield of 26%.

In addition, the acetylated aniline **25** underwent cyclization at room temperature, resulting in the formation of the cyclic enamide **29** in 49% yield after column chromatography (entry 4). Furthermore, we converted cycli-

Scheme 7. Mechanism of alkyne hydration.

Scheme 8. Formation of oxazolidinone 26.

zation precursor **17** into the more restricted oxazolidinone analogue **26** in two steps, i.e., ester reduction with LiBH₄ in THF followed by oxazolidinone formation in 52% yield (Scheme 8). Subjecting the cyclic carbamate **26** to the Pd catalyst at reflux temperature led to the formation of the corresponding bicyclic product **30** in a somewhat lower isolated yield of 32% (entry 5).

The results shown in Table 1 indicate that the presence of the *ortho*-aniline nitrogen atom in the precursor is crucial for the cycloisomerization to occur, which is in line with the proposed mechanism. This fact significantly reduces the scope of this cyclization, so that this line of research was not pursued any further.

Next, we set out to investigate the feasibility of forming the 2-substituted indole system starting from the homologous optically active homo- and bishomopropargylglycine derivatives **34** and **35**, respectively, *via* the same pathway as used before. In order to do so, the amino acids 13-15 were first converted into the corresponding methyl esters and protected to give the optically active Boc-protected amino esters **33**, **34** and **35** (Scheme 9).

The Pd-catalyzed Sonogashira coupling of **34** and **35** with 2-iodoaniline afforded the cyclization precursors **36** and **37** in 79 and 78% yield, respectively. To our satisfaction, treatment of **36** with the Pd catalyst in refluxing acetonitrile led to a rapid conversion into homoisotryptophan derivative **38** in 60% yield after chromatography. Under the same conditions, bishomoisotryptophan derivative **39** was also obtained in a reasonable yield of 55%. Furthermore, we proved in both cases using chiral HPLC (Chiralcel OJ) that no (partial) racemization had taken place during the whole synthetic sequence.

FULL PAPERS

Scheme 9. Synthesis of isotryptophan derivatives.

Scheme 10. Pd-catalyzed cyclization to isotryptophan.

These results actually point out that the applied cyclization conditions are suitable for the formation of the desired 2-substituted indole system. However, the mode of cyclization is strongly dependent on the sidechain length of the cyclization precursor. To verify this reasoning, the suitably protected biscarbamate **41** was synthesized in two steps from the enantiopure propargylglycine derivative **33** (Scheme 10). The presence of the additional Boc group in this precursor should prevent the cyclization *via* the carbamate nitrogen, thereby leaving the aniline nitrogen as the only reactive nucleophile.

Indeed, subjecting precursor **41** to the same Pd catalyst in refluxing acetonitrile led to an activation of the aniline nitrogen, which cyclized onto the triple bond affording isotryptophan derivative **42** as the sole product without loss of enantiopurity according to chiral HPLC (Chiralcel OD).

In order to circumvent the use of the second Boc group on the carbamate nitrogen, we also searched for a catalyst that would effect a selective cyclization into the 2-substituted indole system, without interference of the carbamate nitrogen in the cyclization process. Af-

Scheme 11. Ag-catalyzed cyclization to isotryptophan.

Figure 2. PLATON drawing of the X-ray crystal structure of 47.

ter screening a variety of catalysts, we found that AgOTf – silver has a high affinity for double bonds and much less for heteroatoms such as nitrogen – might be the catalyst of choice in effecting such a selective ring closure. In order to probe the feasibility of selective indole formation *via* an Ag-catalyzed cyclization, precursor **43** was synthesized from the enantiopure propargylglycine derivative **33** (Scheme 11).

Subjecting precursor 43 to the Ag catalyst in acetonitrile at room temperature did not give any reaction. However, we were pleased to see that heating the reaction mixture at reflux temperature indeed led to a slow but clean conversion of the starting compound into isotryptophan derivative 44, which was isolated in an improved yield of 75% after column chromatography. Additionally, we converted the racemic Ts-protected propargylglycine derivative 45^[18] via Sonogashira coupling with 2-iodoaniline into precursor 46, which was also subjected to AgOTf in refluxing acetonitrile affording isotryptophan derivative 47 in an excellent yield of 86% after chromatography. Luckily, tryptophan analogue 47 appeared to be a crystalline solid suitable for an X-ray crystal structure determination, proving the formation of the 2-substituted indole system (shown as a PLATON drawing^[20] in Fig. 2).^[21]

Encouraged by these results, we set out to apply this methodology in the synthesis of 2-substituted benzo[b]-

827

Scheme 12. Synthesis of benzofuran analogue 49.

furans, which might give us the opportunity to also access the oxygen-containing counterparts of tryptophan analogues 9–11 (see Scheme 3). In order to investigate the possible formation of a 2-substituted benzo[b]furan via a similar intramolecular Pd- or Ag-catalyzed reaction, the racemic propargylglycine derivative 45 was first reacted with 2-iodophenol under Sonogashira coupling conditions to afford the appropriate precursor 48 (Scheme 12).

To our surprise, these conditions indeed led to the formation of the expected precursor 48 in 64%, but in addition the eventually desired tryptophan analogue 49 was found in 16% yield. Without separation, we subjected the obtained mixture to AgOTf in refluxing acetonitrile to see whether this catalyst would effect the cyclization of phenol 48 into benzofuran 49. Unfortunately, however, refluxing the mixture for more than 20 h in the presence of AgOTf did not lead to an increase in the conversion of 48 into 49 as judged by TLC. Obviously, this behavior can be explained by the lower nucleophilicity of the phenol compared to the previously used anilines. In line with this reasoning, we added Et₂NH (1 equiv.) to the reaction mixture to see if this would facilitate the formation of benzofuran 49. Indeed, the addition of Et₂NH led to a rapid conversion of phenol 48 into benzofuran 49, however, the reaction did not go to completion and also led to partial decomposition of the remaining phenol. Considering these results, we again turned our attention to the Sonogashira reaction of propargylglycine derivative 45 with 2-iodophenol. We envisaged that a modification of the applied conditions, i.e., using Et₂NH as base and solvent at reflux temperature, might be beneficial to the formation of tryptophan analogue 49. Thus, subjecting acetylene 45 to these modified conditions led to the formation of a mixture of phenol 48 and benzofuran 49 in an improved ratio in favor of 49 in a combined yield of 71% (Scheme 12).

After this result, it became apparent to us that it would be feasible to convert propargylglycine derivative 45 completely into tryptophan analogue 49 if the reaction mixture would be refluxed for more than 2 h. To achieve this tandem cross-coupling cyclization process,^[23] we first converted enantiomerically pure propargylglycine 13 into propargylglycine derivative 50 by esterification using thionyl chloride in MeOH and subjected it to pyridine and *p*-toluenesulfonyl chloride in CH₂Cl₂. Acety-

Scheme 13. One-pot coupling/cyclization to benzofuran derivative 51.

lene 50 was subsequently reacted with 2-iodophenol under the aforementioned modified Sonogashira conditions to give initially the corresponding intermediate phenol, which was after 4 h completely consumed to give the enantiopure tryptophan analogue 51 as the sole product in 74% yield (Scheme 13).

Conclusion

A short and efficient preparation of novel optically active tryptophan analogues is described. The aniline-containing homo- and bishomopropargylglycine derivatives 36 and 37 underwent a rapid Pd-catalyzed cyclization to afford the corresponding tryptophan analogues 38 and 39 in reasonable yields. In contrast to these results, treatment of the aniline-containing propargylglycine derivative 17 with the same Pd catalyst led to an unexpected cycloisomerization affording pyrroline 18. In addition, some insight was gained regarding the scope and limitations of the observed cycloisomerization.

Furthermore, in the case of 43 we demonstrated the possibility of circumventing the Pd-catalyzed cycloisomerization by the selective construction of tryptophan analogue 44 via Ag-catalyzed indole formation. Finally, we explored the possibility to apply the developed methodology in the synthesis of 2-subsituted benzofurans. This led to modified conditions in the Sonogashira reaction of propargylglycine derivative 50 with 2-iodophenol, allowing the direct synthesis of tryptophan analogue 51 via a tandem cross-coupling cyclization process. Currently, further studies concerning the scale-up of these compounds, the synthesis of additional new tryptophan derivatives and biological evaluation of these compounds as inhibitors of IDO are being carried out in collaboration with Chiralix BV (Nijmegen, The Netherlands).^[24]

Experimental Section

General Information

All reactions were carried out under an atmosphere of dry nitrogen, unless stated otherwise. Infrared (IR) spectra were obtained using an ATI Mattson Genesis Series FTIR spectrome-

828

© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

ter and wavelengths ($\tilde{\nu}$) are reported in cm⁻¹. Optical rotations were measured on a Perkin-Elmer 241 polarimeter, using concentrations (c) in g/100 mL in the indicated solvents. ¹H and ¹³C nuclear magnetic resonance (NMR) spectra were determined in CDCl₃, unless indicated otherwise, using a Bruker DMX300 (300 MHz) spectrometer. Chemical shifts (δ) are given in ppm downfield from tetramethylsilane. HRMS measurements were carried out using a Fisons (VG) Micromass 7070E or a Finnigan MAT900S instrument. Flash chromatography was performed with Acros Organics silica gel (0.035-0.070 nm) using the indicated solvent (mixture). R_f values were obtained by using thin layer chromatography (TLC) on silica gel-coated glass plates (Merck silica gel 60 F₂₅₄) with the indicated solvent (mixture). Melting points were determined with a Büchi melting point B-545 apparatus. THF and Et₂O were distilled from sodium and benzophenone. Heptane, EtOAc and CH₂Cl₂ were distilled from CaH₂. Et₂NH was distilled from and stored over KOH. If necessary, other solvents were distilled from the appropriate drying agents prior to use. Unless stated otherwise, all commercially available reagents were used as received.

Methyl (2S)-2-[(*tert*-Butoxycarbonyl)amino]-4pentynoate (33)

A suspension of 13 (1.00 g, 8.84 mmol) in MeOH (30 mL) was treated dropwise at 0°C with SOCl₂ (1.4 mL, 19.0 mmol) and heated at reflux for 4 h. The reaction mixture was concentrated under vacuum to give the crude amino ester as the HCl salt. The crude residue was dissolved in dioxane/water (80 mL, 1:1, v/v), NaHCO₃ (2.23 g, 26.5 mmol) and Boc₂O (3.88 g, 17.8 mmol) were added and the reaction mixture stirred for 4 h at room temperature. Dioxane was evaporated under vacuum and the remaining aqueous solution was extracted with EtOAc $(3 \times 25 \text{ mL})$. The combined organic layers were dried (MgSO₄) and concentrated under vacuum. Purification by chromatography (EtOAc/heptane,1:6) afforded 33 as a colorless oil; yield: 1.62 g (7.13 mmol, 81%); $R_f = 0.65$ (EtOAc/heptane,1:1); $[\alpha]_{D}^{20}$: +47.7 (c 1.1, CH₂Cl₂); IR (neat): \tilde{v} = 3298, 2978, 1745, 1712, 1504, 1437 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 5.32$ (br d, J = 6.6 Hz, 1H), 4.46 (m, 1H), 3.76 (s, 3H), 2.73 (br m, 2H), 2.03 (t, J=2.1 Hz, 1H), 1.45 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ=170.9, 154.9, 80.3, 78.6, 71.7, 52.8, 52.1, 28.6, 23.1; HRMS (CI): calcd. for C₁₁H₁₈NO₄ (MH⁺): 228.1236; found: 228.1236.

Methyl (2S)-2-[(*tert*-Butoxycarbonyl)amino]-5hexynoate (34)

Following the same procedure as for **33**, (*S*)-homopropargylglycine **14** (0.98 g, 7.71 mmol) was protected and purified by chromatography (EtOAc/heptane, 1:6) to afford **34** as a white solid; yield: 1.14 g (4.72 mmol, 61%); R_f =0.24 (EtOAc/heptane, 1:4); $[\alpha]_D^{20}$: +9.9 (*c* 1.0, CH₂Cl₂); mp 59.0 °C; IR (neat): $\tilde{\nu}$ =3367, 3253, 2983, 1732, 1676, 1512 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ =5.24 (br d, *J*=6.9 Hz, 1H), 4.39 (m, 1H), 3.75 (s, 3H), 2.28 (dt, *J*=2.7, 7.5 Hz, 2H), 2.05 (m, 1H), 2.01 (t, *J*=2.4 Hz, 1H), 1.89 (m, 1H), 1.45 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ =172.7, 155.3, 82.8, 80.0, 69.3, 52.8, 52.4,

Adv. Synth. Catal. 2004, 346, 823-834

31.5, 28.3, 14.9; HRMS (CI): calcd. for $C_{12}H_{20}NO_4$ (MH⁺): 242.1392; found: 242.1395.

Methyl (2S)-2-[*tert*-Butoxycarbonyl)amino]-6heptynoate (35)

Following the same procedure as for **33**, (*S*)-bishomopropargylglycine **15** (1.00 g, 7.08 mmol) was protected and purified by chromatography (EtOAc/heptane,1:6) to afford **35** as a colorless oil; yield: 1.33 g (5.21 mmol, 74%); \mathbf{R}_f =0.20 (EtOAc/ heptane, 1:4); $[\alpha]_D^{20}$: +71.7 (*c* 1.0, CH₂Cl₂); IR (neat): $\tilde{\nu}$ = 3296, 2953, 1741, 1712, 1504 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ =5.03 (br d, *J*=6.9 Hz, 1H), 4.31 (m, 1H), 3.75 (s, 3H), 2.23 (dt, *J*=2.4, 6.9 Hz, 2H), 1.96 (t, *J*=2.7 Hz, 1H), 1.91 (m, 1H), 1.80–1.53 (m, 3H), 1.45 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ =172.9, 155.2, 83.4, 80.0, 69.1, 53.2, 52.5, 32.0, 28.6, 24.6, 18.4; HRMS (CI): calcd. for C₁₃H₂₂NO₄ (MH⁺): 256.1549; found: 256.1549.

Methyl (2S)-2-{[(4-Methylphenyl)sulfonyl]amino}-4pentynoate (50)

A suspension of 13 (500 mg, 4.42 mmol) in MeOH (20 mL) was treated dropwise at 0°C with SOCl₂ (0.7 ml, 9.5 mmol) and heated at reflux for 4 h. The reaction mixture was concentrated under vacuum to give the crude amino ester as the HCl salt. The crude residue was suspended in CH₂Cl₂ (75 mL), pyridine (2.2 mL, 28.4 mmol) and p-TsCl (1.68 g, 8.81 mmol) were added and the reaction mixture was stirred for 65 h at room temperature. Saturated aqueous CuSO₄ (100 mL) was added to the reaction mixture and the layers were separated. The aqueous layer was extracted with CH_2Cl_2 (3 × 50 mL) and the combined organic layers were washed with saturated aqueous NaHCO₃ (50 mL), brine (50 mL), dried (MgSO₄) and concentrated under vacuum. The crude product was purified by chromatography (EtOAc/heptane,1:3) to afford **50** as a white solid; yield: 970 mg (3.45 mmol, 78%); $R_f = 0.28$ (EtOAc/heptane, 1:2); $[\alpha]_{D}^{20}$: +16.5 (c 1.0, CH₂Cl₂); mp 83.2 °C; IR (neat): $\tilde{v} =$ 3261, 2950, 1705, 1593, 1433 cm⁻¹; ¹H NMR (300 MHz, CDCL): & 771 (1 L 2011) CDCl₃): $\delta = 7.71$ (d, J = 8.1 Hz, 2H), 7.27 (d, J = 8.1 Hz, 2H), 5.45 (d, J=9.0 Hz, 1H), 4.10 (m, 1H), 3.60 (s, 3H), 2.66 (m, 2H), 2.41 (s, 3H), 2.02 (t, J=2.7 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 169.8$, 143.7, 136.7, 129.6, 127.1, 77.6, 72.4, 54.2, 53.1, 24.4, 21.9; HRMS (EI): calcd. for C₁₃H₁₅NO₄S: 281.0722; found: 281.0722.

General Procedure for the Sonogashira Cross-Coupling Reactions

To a solution of the acetylene-containing amino acid, aryl halide (1.2 equivs.) and Et₂NH (5 equivs.) in Et₂O, CuI (10 mol %) and the Pd catalyst (5 mol %) were added. The mixture was stirred at room temperature under an N₂ atmosphere for the indicated time. The reaction mixture was poured into a saturated aqueous solution of NH₄Cl and after separation of the organic layer the aqueous layer was extracted with Et₂O (2 ×). The combined organic layers were washed with brine, dried (MgSO₄) and concentrated under vacuum. The crude product was purified by flash chromatography to afford the pure product.

829

Methyl (2S)-5-(2-Aminophenyl)-2-[(tertbutoxycarbonyl)amino]-4-pentynoate (43)

According to the general procedure, to a solution of 33 (303 mg, 1.33 mmol), 2-iodoaniline (351 mg, 1.60 mmol) and Et₂NH (0.70 mL, 6.73 mmol) in Et₂O (18 mL), CuI (28 mg, 0.15 mmol) and PdCl₂(PPh₃)₂ (47 mg, 0.07 mmol) were added and the resulting mixture was stirred for 2 h. Work-up and purification by chromatography (EtOAc/heptane, 1:3) afforded **43** as a light-brown oil; 356 mg (1.12 mmol, 84%); $R_f = 0.28$ (EtOAc/heptane, 1:2); $[\alpha]_{D}^{20}$: +82.2 (c 0.5, CH₂Cl₂); IR (neat): $\tilde{v} = 3369$, 2978, 1743, 1711, 1618, 1493 cm⁻¹; ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3): \delta = 7.17 \text{ (dd}, J = 1.5, 7.6 \text{ Hz}, 1\text{H}), 7.04 \text{ (m},$ 1H), 6.59 (m, 2H), 5.57 (br d, J = 8.3 Hz, 1H), 4.56 (m, 1H), 4.31 (s, 2H), 3.73 (s, 3H), 2.95 (d, *J*=5.2 Hz, 2H), 1.42 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 171.6$, 155.1, 148.2, 131.9, 129.3, 117.3, 114.1, 107.3, 88.8, 80.4, 80.0, 52.5, 52.3, 28.1, 24.1; HRMS (EI): calcd. for C₁₇H₂₂N₂O₄: 318.1580; found: 318.1580.

Methyl 2-[(tert-Butoxycarbonyl)amino]-5-phenyl-4pentynoate (23)

According to the general procedure, to a solution of 16 (384 mg, 1.69 mmol), iodobenzene (417 mg, 0.49 mmol) and Et₂NH (0.88 mL, 8.50 mmol) in Et₂O (18 mL), CuI (33 mg, 0.17 mmol) and PdCl₂(PPh₃)₂ (60 mg, 0.09 mmol) were added and the resulting mixture was stirred for 2 h. Work-up and purification by chromatography (EtOAc/heptane, 1:6) afforded **23** as a yellow oil; yield: 448 mg (1.48 mmol, 87%); $R_f = 0.28$ (EtOAc/heptane, 1:4); IR (neat): $\tilde{v} = 3375$, 2977, 1747, 1716, 1598 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 7.38$ (m, 2H), 7.28 (m, 3H), 5.42 (d, J = 8.3 Hz, 1H), 4.56 (m, 1H), 3.79 (s, 3H), 2.95 (m, 2H), 1.46 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 171.1, 154.9, 131.5, 128.0, 127.6, 122.8, 83.7, 83.4, 79.8,$ 52.3, 52.1, 28.1, 23.6; HRMS (EI): calcd. for C17H21NO4: 303.1471; found: 303.1471.

Methyl 5-[2-(Acetylamino)phenyl]-2-[(tertbutoxycarbonyl)amino]-4-pentynoate (25)

According to the general procedure, to a solution of 16 (367 mg, 1.62 mmol), N^1 -(2-iodophenyl)acetamide (465 mg, 1.78 mmol) and Et_2NH (0.84 mL, 8.16 mmol) in Et_2O (18 mL), CuI (32 mg, 0.17 mmol) and PdCl₂(PPh₃)₂ (57 mg, 0.08 mmol) were added and the resulting mixture was stirred for 2 h. Work-up and purification by chromatography (EtOAc/heptane, 1:2) afforded 25 as a colorless oil; yield: 471 mg (1.31 mmol, 81%); $R_f = 0.21$ (EtOAc/heptane, 1:2); IR (neat): $\tilde{v} = 3329$, 2980, 1738, 1693, 1579, 1518, 1444 cm⁻ ¹H NMR (300 MHz, CDCl₃): $\delta = 8.25$ (s, 1H), 8.22 (s, 1H), 7.20 (m, 2H), 6.88 (m, 1H), 5.64 (d, J = 8.2 Hz, 1H), 4.52 (m, 1H), 3.68 (s, 3H), 2.93 (dd, J = 5.0, 17.2 Hz, 1H), 2.83 (dd, J =5.9, 17.0 Hz, 1H), 2.22 (s, 3H), 1.33 (s, 9H); ¹³C NMR $(75 \text{ MHz}, \text{ CDCl}_3): \delta = 171.5, 169.1, 155.2, 139.3, 131.5, 129.0,$ 123.0, 119.8, 111.8, 90.7, 80.1, 79.0, 52.5, 52.1, 28.0, 24.2, 24.0; HRMS (EI): calcd. for $C_{19}H_{24}N_2O_5$: 360.1685; found: 360.1674.

4-[3-(2-Aminophenyl)-2-propynyl]-1,3-oxazolan-2-one (26)

To a solution of 17 (535 mg, 1.68 mmol) in THF (20 mL), LiBH₄ (73 mg, 3.36 mmol) was added at 0 °C. The reaction mixture was allowed to reach room temperature and stirred for 24 h. Upon completion, the reaction mixture was quenched by adding water (1 mL) and stirred further for 15 min at room temperature, after which time the mixture was poured into water (30 mL). The aqueous solution was extracted with EtOAc (100 mL) and the organic layer was washed with water $(2 \times 30 \text{ mL})$, brine $(2 \times 30 \text{ mL})$, dried (MgSO₄) and concentrated under vacuum. The crude product was purified by chromatography (EtOAc/heptane, 1:1) to afford the corresponding amino alcohol 32 as a light-yellow oil; yield: 386 mg (1.33 mmol, 79%); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.21$ (d, J = 7.6 Hz, 1H), 7.05 (m, 1H), 6.63 (m, 2H), 5.34 (d, J =8.6 Hz, 1H), 4.31 (br s, 2H), 3.86 (br s, 1H), 3.71 (m, 3H), 2.71 (d, J = 6.1 Hz, 2H), 1.43 (s, 9H).

To a solution of amino alcohol 32 (366 mg, 1.26 mmol) in THF (30 mL), NaH (52 mg of a 60% dispersion in mineral oil, 1.31 mmol) was added. The reaction mixture was heated at reflux for 22 h, diluted with MeOH (3 mL) and concentrated under vacuum. The crude product was purified by chromatography (EtOAc/heptane, 3:1) to afford 26 as a light-yellow solid; yield: 179 mg (0.83 mmol, 66%); $R_f = 0.13$ (EtOAc/heptane, 2:1); mp 147.2 °C; IR (neat): $\tilde{\nu}$ =3352, 1732, 1614 cm⁻ ¹H NMR (300 MHz, CDCl₃): $\delta = 7.24$ (dd, J = 1.7, 8.3 Hz, 1H), 7.11 (dt, J=1.6, 7.7 Hz, 1H), 6.67 (m, 2H), 5.68 (br s, 1H), 4.57 (dd, J = 8.3, 8.9 Hz, 1H), 4.28 (dd, J = 4.6, 8.9 Hz, 1H), 4.13 (m, 3H), 2.76 (dd, J=1.4, 5.6 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): δ=157.3, 150.8, 132.5, 129.9, 123.5, 118.1, 114.6, 88.3, 81.2, 69.4, 66.0, 26.7; HRMS (EI): calcd. for C₁₂H₁₂N₂O₂: 216.0899; found: 216.0898.

Methyl (2S)-6-(2-Aminophenyl)-2-[(tertbutoxycarbonyl)amino]-5-hexynoate (36)

According to the general procedure, to a solution of 34 (518 mg, 2.15 mmol), 2-iodoaniline (565 mg, 2.58 mmol) and Et₂NH (1.12 mL, 10.7 mmol) in Et₂O (20 mL), CuI (40 mg, 0.21 mmol) and PdCl₂(PPh₃)₂ (75 mg, 0.107 mmol) were added and the resulting mixture was stirred for 2 h. Work-up and purification by chromatography (EtOAc/heptane, 1:3) afforded **36** as a light-brown oil; yield: 562 mg (1.69 mmol, 79%); $R_f =$ 0.27 (EtOAc/heptane, 1:2); $[\alpha]_D^{20}$: +4.9 (c 1.0, CH₂Cl₂); IR (neat): $\tilde{v} = 3461$, 3369, 2975, 1734, 1701, 1617 cm⁻¹; ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3): \delta = 7.20 \text{ (dd}, J = 1.4, 7.7 \text{ Hz}, 1\text{H}), 7.03 \text{ (m},$ 1H), 6.60 (m, 2H), 5.33 (br d, J=8.5 Hz, 1H), 4.50 (br m, 1H), 4.32 (br s, 2H), 3.69 (s, 3H), 2.53 (t, J=6.9 Hz, 2H), 2.11 (m, 1H), 1.92 (m, 1H), 1.42 (s, 9H); ¹³C NMR (75 MHz, $CDCl_3$): $\delta = 172.9$, 155.4, 148.2, 132.0, 129.0, 117.3, 114.1, 107.9, 93.1, 79.8, 78.3, 52.6, 52.3, 31.5, 28.2, 16.0; HRMS (EI): calcd. for C₁₈H₂₄N₂O₄: 332.1736; found: 332.1734.

Methyl (2S)-7-(2-aminophenyl)-2-[(tertbutoxycarbonyl)amino]-6-heptynoate (37)

According to the general procedure, to a solution of 35 (322 mg, 1.26 mmol), 2-iodoaniline (337 mg, 1.54 mmol) and Et₂NH (0.67 mL, 6.43 mmol) in Et₂O (18 mL), CuI (27 mg,

830

© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

asc.wiley-vch.de

0.14 mmol) and PdCl₂(PPh₃)₂ (49 mg, 0.07 mmol) were added and the resulting mixture was stirred for 2 h. Work-up and purification by chromatography (EtOAc/heptane, 1:3) afforded **37** as a yellow oil; yield: 341 mg (0.98 mmol, 78%); R_f =0.26 (EtOAc/heptane, 1:2); $[\alpha]_D^{20}$: +10.8 (*c* 1.0, CH₂Cl₂); IR (neat): $\tilde{\nu}$ =3356, 2978, 1738, 1712, 1614, 1493, 1454 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ =7.22 (dd, *J*=1.2, 7.5 Hz, 1H), 7.07 (m, 1H), 6.65 (m, 2H), 5.02 (br m, 1H), 4.32 (br m, 1H), 4.15 (s, 2H), 3.75 (s, 3H), 2.52 (t, *J*=6.9 Hz, 1H), 2.30 (t, *J*=6.6 Hz, 1H), 2.08–1.56 (m, 4H), 1.46 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ =172.9, 155.2, 147.3, 132.0, 128.9, 117.8, 114.2, 108.6, 94.4, 80.1, 77.9, 53.3, 52.5, 32.2, 28.6, 25.1, 19.6; HRMS (EI): calcd. for C₁₉H₂₆N₂O₄: 346.1893; found: 346.1900.

Methyl (2S)-5-(2-Aminophenyl)-2-[di(*tert*butoxycarbonyl)amino]-4-pentynoate (41)

To a solution of **33** (274 mg, 1.21 mmol) in MeCN (5 mL), DMAP (46 mg, 0.38 mmol) and Boc₂O (528 mg, 2.42 mmol) were added and the resulting mixture was stirred at room temperature for 20 h. Upon completion, the reaction mixture was concentrated under vacuum and purified by chromatography (EtOAc/heptane, 1:9) to afford **40** as a colorless oil; yield: 360 mg (1.10 mmol, 91%); ¹H NMR (300 MHz, CDCl₃): $\delta =$ 5.16 (dd, J = 6.6, 8.4 Hz, 1H), 3.72 (s, 3H), 2.93 (m, 2H), 1.96 (t, J = 2.7 Hz, 1H), 1.50 (s, 18H).

According to the general procedure, to a solution of biscarbamate 40 (337 mg, 1.03 mmol), 2-iodoaniline (272 mg, 1.24 mmol) and Et_2NH (0.55 mL, 5.26 mmol) in Et_2O (18 mL), CuI (22 mg, 0.12 mmol) and PdCl₂(PPh₃)₂ (37 mg, 0.05 mmol) were added and the resulting mixture was stirred for 2 h. Work-up and purification by chromatography (EtOAc/heptane, 1:4) afforded 41 as a brown oil; yield: 394 mg (0.94 mmol, 91%); $R_f = 0.15$ (EtOAc/heptane, 1:4); $[\alpha]_{D}^{20}$: -89.2 (c 0.5, CH₂Cl₂); IR (neat): $\tilde{v} = 3465, 3373, 2980,$ 1790, 1743, 1695, 1616 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 7.17 (dd, J = 1.2, 7.5 Hz, 1H), 7.03 (dt, J = 1.5, 8.1 Hz, 1H),$ 6.59 (m, 2H), 5.22 (dd, J=6.3, 9.3 Hz, 1H), 4.21 (s, 2H), 3.75 (s, 3H), 3.25 (dd, J=6.3, 17.4 Hz, 1H), 3.18 (dd, J=9.3, 17.4 Hz, 1H), 1.48 (s, 18H); 13 C NMR (75 MHz, CDCl₃): $\delta =$ 169.8, 169.4, 151.8, 151.5, 148.0, 132.1, 129.1, 117.4, 114.0, 108.0, 90.6, 83.6, 79.4, 73.5, 67.4, 57.0, 52.6, 28.3, 21.9 HRMS (EI): calcd. for C₂₂H₃₀N₂O₆: 418.2104; found: 418.2099.

Methyl 5-(2-Aminophenyl)-2-{[(4methylphenyl)sulfonyl]amino}-4-pentynoate (46)

According to the general procedure, to a solution of **45** (402 mg, 1.43 mmol), 2-iodoaniline (377 mg, 1.72 mmol) and Et₂NH (0.75 mL, 7.20 mmol) in Et₂O (18 mL), CuI (29 mg, 0.15 mmol) and PdCl₂(PPh₃)₂ (50 mg, 0.07 mmol) were added and the resulting mixture was stirred for 2 h. Work-up and purification by chromatography (EtOAc/heptane, 1:2) afforded **46** as a light-brown oil; yield: 473 mg (1.27 mmol, 89%); R_f= 0.16 (EtOAc/heptane, 1:2); IR (neat): \tilde{v} =3377, 3275, 1739, 1616, 1493 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ =7.75 (d, J=8.3 Hz, 2H), 7.27 (d, J=8.2 Hz, 2H), 7.13 (m, 2H), 6.65 (m, 2H), 5.51 (d, J=8.9 Hz, 1H), 4.22 (m, 3H), 3.61 (s, 3H), 2.94 (d, J=5.2 Hz, 2H), 2.41 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ =170.5, 148.3, 143.6, 136.7, 131.9, 129.5, 129.4,

Adv. Synth. Catal. 2004, 346, 823-834

139.1 °C; IR (neat): \tilde{v} =3442, 3357, 2972, 1730, 1668, 1649, 1603, 1402 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ =7.06 (m, 2H), 6.59 (m, 2H), 5.00 (dd, *J*=2.1, 3.5 Hz, 1H), 4.92 (dd, *J*=2.5, 11.2 Hz, 1H), 4.50 (br s, 2H), 3.77 (s, 3H), 3.07 (ddd, *J*=2.1, 11.2, 18.9 Hz, 1H), 2.53 (dt, *J*=3.5, 17.0 Hz, 1H), 1.14 (s,

According to the general procedure, to a solution of 17

(424 mg, 1.33 mmol) in MeCN (10 mL), PdCl₂(MeCN)₂

(35 mg, 0.13 mmol) was added and the resulting mixture was

stirred for 2 h. Purification by chromatography (EtOAc/hep-

tane, 1:3) afforded **19** as a white solid; yield: 227 mg (0.71 mmol, 54%); $R_f=0.27$ (EtOAc/heptane, 1:3); mp

127.0, 117.3, 114.3, 107.2, 88.1, 80.9, 54.5, 52.7, 25.0, 21.3; HRMS (EI): calcd. for $C_{19}H_{20}N_2O_4S$: 372.1144; found: 372.1145.

General Procedure for the Pd- and Ag-Catalyzed Cyclization Reactions

To a solution of the cyclization precursor in MeCN, the catalyst (10 mol %) was added. The mixture was stirred at reflux temperature under an N_2 atmosphere for the indicated time. The reaction mixture was concentrated under vacuum and purified by flash chromatography to afford the pure product.

Methyl 5-{2-[(*tert*-Butoxycarbonyl)amino]phenyl}-3,4dihydro-2*H*-2-pyrrolecarboxylate (18)

According to the general procedure, to a solution of **17** (340 mg, 1.07 mmol) in MeCN (10 mL), PdCl₂(MeCN)₂ (28 mg, 0.11 mmol) was added and the resulting mixture was heated to reflux for 3 h. Purification by chromatography (EtOAc/heptane, 1:6) afforded **18** as a white solid; yield: 222 mg (0.70 mmol, 65%). An X-ray crystal structure determination was carried out after recrystallization from hexane. R_f = 0.45 (EtOAc/heptane,1:2); mp 78.0°C; IR (neat): \tilde{v} =2980, 1734, 1720, 1604, 1576, 1522, 1446 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ =11.9 (s, 1H), 8.42 (d, *J*=8.4 Hz, 1H), 7.40 (m, 2H), 6.96 (t, *J*=8.3 Hz, 1H), 4.99 (m, 1H), 3.78 (s, 3H), 3.25–3.00 (m, 2H), 2.35–2.09 (m, 2H), 1.52 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ =177.4, 172.9, 153.5, 140.9, 131.9, 130.5, 120.8, 118.5, 118.4, 79.7, 74.4, 52.2, 36.9, 28.3, 25.1; HRMS (EI): calcd. for C₁₇H₂₂N₂O₄: 318.1580; found: 318.1576.

Crystal data: transparent colorless, regular thick platelets, triclinic, space group P₋₁, C₁₇H₂₂N₂O₄, 318.37, unit-cell dimensions: a = 5.9502(6) Å; $\alpha = 76.621(12)^{\circ}$, b = 9.4955(8) Å; $\beta = 79.367(8)^{\circ}$, c = 16.0415(19) Å; $\gamma = 77.358(10)^{\circ}$, Z = 2, calculated density: 1.241 Mg/m³. Data collection: Enraf-Nonius CAD4/ ω -2 ϑ diffractometer, Mo-K α (graphite mon.)/0.71073 Å, crystal size $0.31 \times 0.23 \times 0.11$ mm, T = 293(2) K, θ range 2.82 to 27.47°, 1352 ([Io > 2 σ (Io)]) reflections measured, semi-empirical absorption correction from ψ -scans. Structural analysis and refinement: full-matrix least-squares on F², goodness-of-fit on F² 1.005, SHELXL-97 weight parameters 0.063700, 0.000000, final R indices [I > 2 σ (I)]: R1=0.0710, wR2=0.1262, SHELXL-97 (Sheldrick, 1997).

1-(*tert*-Butyl) 2-Methyl 5-(2-aminophenyl)-2,3dihydro-1*H*-1,2-pyrroledicarboxylate (19)

 $\ensuremath{\mathbb O}$ 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

9H); ¹³C NMR (75 MHz, CDCl₃): δ = 173.7, 152.1, 145.3, 142.4, 129.2, 129.0, 119.1, 116.6, 114.2, 108.4, 80.5, 60.5, 52.6, 32.0, 27.7; HRMS (EI): calcd. for C₁₇H₂₂N₂O₄: 318.1580; found: 318.1583.

Methyl 2-[(*tert*-Butoxycarbonyl)amino]-5-oxo-5phenylpentanoate (27)

According to the general procedure, to a solution of **23** (438 mg, 1.44 mmol) in MeCN (16 mL), PdCl₂(MeCN)₂ (37 mg, 0.14 mmol) was added and the resulting mixture was stirred at room temperature for 70 h. Purification by chromatography (EtOAc/heptane, 1:4) afforded **27** as a light-yellow solid; yield: 149 mg (0.46 mmol, 32%); R_f =0.39 (EtOAc/heptane, 1:2); mp 109.4°C; IR (neat): \tilde{v} =3359, 1736, 1699, 1680, 1599, 1514, 1448 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ =7.92 (d, *J*=7.2 Hz, 2H), 7.48 (m, 3H), 5.14 (br d, *J*=7.2 Hz, 1H), 4.37 (m, 1H), 3.73 (s, 3H), 3.08 (m, 2H), 2.30 (m, 1H), 2.08 (m, 1H), 1.41 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ =198.5, 172.7, 155.3, 136.6, 133.1, 128.5, 128.0, 80.1, 53.3, 52.6, 34.8, 28.6, 27.3; HRMS (CI): calcd. for C₁₇H₂₄NO₅ (MH⁺): 322.1654; found: 322.1659.

1-(*tert*-Butyl) 2-Methyl 5-[2-(acetylamino)phenyl]-2,3dihydro-1*H*-1,2-pyrroledicarboxylate (29)

According to the general procedure, to a solution of 25 (376 mg, 1.04 mmol) in MeCN (14 mL), PdCl₂(MeCN)₂ (29 mg, 0.11 mmol) was added and the resulting mixture was stirred for 2 h. Purification by chromatography (EtOAc/heptane, 1:3) afforded 29 as a white solid; yield: 184 mg (0.51 mmol, 49%); $R_f = 0.25$ (EtOAc/heptane, 1:2); mp 108.7 °C; IR (neat): \tilde{v} =3357, 2974, 1738, 1684, 1643, 1581, 1524, 1443 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 8.69$ (br s, 1H), 8.44 (d, J = 8.3 Hz, 1H), 7.27 (m, 1H), 7.16 (dd, J = 1.6, 7.6 Hz, 1H) 6.97 (m, 1H), 5.07 (dd, J=2.0, 3.4 Hz, 1H), 4.98 (dd, J = 2.3, 11.0 Hz, 1H), 3.82 (s, 3H), 3.12 (ddd, J = 2.0, 11.0, 1.0)17.0 Hz, 1H), 2.55 (dt, J=2.9, 17.0 Hz, 1H), 2.24 (s, 3H), 1.08 (s, 9H); ${}^{13}C$ NMR (75 MHz, CDCl₃): $\delta = 173.7$, 169.3, 151.4, 140.9, 136.8, 128.9, 128.4, 122.6, 122.5, 119.7, 110.2, 81.3, 60.6, 52.9, 32.3, 27.6, 24.7; HRMS (EI): calcd. for $C_{19}H_{24}N_2O_5$: 360.1685; found: 360.1682.

5-(2-Aminophenyl)-7,7a-dihydro-1*H*-pyrrolo[1,2-*c*]-[1,3]oxazol-3-one (30)

According to the general procedure, to a solution of **26** (120 mg, 0.56 mmol) in MeCN (10 mL), PdCl₂(MeCN)₂ (14 mg, 0.05 mmol) was added and the resulting mixture was stirred for 2 h. Purification by chromatography (EtOAc/heptane, 2:1) afforded **30** as a light-yellow oil; yield: 38 mg (0.18 mmol, 32%); R_f =0.19 (EtOAc/heptane, 2:1); IR (neat): \tilde{v} =3462, 3356, 1745, 1616, 1491, 1454 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ =7.28 (dd, *J*=1.5, 7.5 Hz, 1H), 7.13 (dt, *J*=1.8, 7.7 Hz, 1H), 6.71 (m, 2H), 5.45 (t, *J*=2.7 Hz, 1H), 4.79 (m, 1H), 4.67 (t, *J*=8.7 Hz, 1H), 4.21 (dd, *J*=6.6, 8.7 Hz, 1H), 4.16 (br s, 2H), 2.73 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ =157.4, 145.0, 141.3, 130.0, 129.9, 118.3, 116.4, 116.3, 112.1, 69.9, 59.9, 36.0; HRMS (EI): calcd. for C₁₂H₁₂N₂ O₂: 216.0899; found: 216.0891.

Methyl (2S)-2-[(*tert*-Butoxycarbonyl)amino]-4-(1*H*-2-indolyl)butanoate (38)

According to the general procedure, to a solution of **36** (556 mg, 1.67 mmol) in MeCN (16 mL), PdCl₂(MeCN)₂ (43 mg, 0.17 mmol) was added and the resulting mixture was stirred for 30 min. Purification by chromatography (EtOAc/heptane, 1:4) afforded **38** as a light-brown oil; yield: 334 mg (1.00 mmol, 60%); R_f =0.14 (EtOAc/heptane, 1:3); $[\alpha]_D^{20}$: -26.8 (*c* 0.5, CH₂Cl₂); IR (neat): \tilde{v} =3381, 2954, 1693, 1504, 1454 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ =9.15 (br s, 1H), 7.50 (d, *J*=7.5 Hz, 1H), 7.32 (d, *J*=7.8 Hz, 1H), 7.06 (m, 2H), 6.22 (s, 1H), 5.22 (br d, *J*=8.1 Hz, 1H), 4.43 (br m, 1H), 3.67 (s, 3H), 2.82 (m, 2H), 2.14 (m, 1H), 1.93 (m, 1H), 1.47 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ =172.7, 155.9, 138.2, 136.0, 128.6, 121.0, 119.7, 119.4, 110.8, 99.9, 80.7, 52.8, 52.7, 34.5, 28.6, 24.3; HRMS (EI): calcd. for C₁₈H₂₄N₂O₄: 332.1736; found: 332.1727.

Methyl (2S)-2-[(*tert*-Butoxycarbonyl)amino]-5-(1*H*-2indolyl)pentanoate (39)

According to the general procedure, to a solution of **37** (226 mg, 0.65 mmol) in MeCN (12 mL), PdCl₂(MeCN)₂ (17 mg, 0.07 mmol) was added and the resulting mixture was stirred for 30 min. Purification by chromatography (EtOAc/heptane, 1:4) afforded **39** as a light-brown oil; yield: 125 mg (0.36 mmol, 55%); R_f =0.17 (EtOAc/heptane, 1:3); $[\alpha]_D^{20}$: +5.2 (*c* 0.5, CH₂Cl₂); IR (neat): $\tilde{\nu}$ =3377, 2949, 1734, 1691, 1504, 1456 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ =8.30 (br s, 1H), 7.49 (d, *J*=7.2 Hz, 1H), 7.25 (m, 1H), 7.05 (m, 2H), 6.20 (s, 1H), 5.11 (br d, *J*=7.2 Hz, 1H), 4.40 (br m, 1H), 3.72 (s, 3H), 2.79 (m, 2H), 1.91–1.65 (m, 4H), 1.47 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ =172.9, 155.5, 138.9, 135.9, 128.6, 120.9, 119.7, 119.4, 110.4, 99.6, 80.3, 53.0, 52.5, 32.8, 28.6, 27.5, 25.5; HRMS (EI): calcd. for C₁₉H₂₆N₂O₄: 346.1893; found: 346.1894.

Methyl (2S)-2-[Di(*tert*-butoxycarbonyl)amino]-3-(1*H*-2-indolyl)propanoate (42)

According to the general procedure, to a solution of **41** (327 mg, 0.78 mmol) in MeCN (12 mL), PdCl₂(MeCN)₂ (20 mg, 0.08 mmol) was added and the resulting mixture was stirred for 3 h. Purification by chromatography (EtOAc/heptane, 1:6) afforded **42** as a white solid; yield: 170 mg (0.41 mmol, 52%); R_f =0.28 (EtOAc/heptane, 1:3); mp 143.0 °C; $[\alpha]_D^{20}$: -99.9 (*c* 1.0, CH₂Cl₂); IR (neat): $\tilde{\nu}$ =3392, 2983, 1743, 1726, 1685, 1456 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ =8.45 (s, 1H), 7.47 (d, *J*=8.1 Hz, 1H), 7.24 (d, *J*= 7.7 Hz, 1H), 7.04 (m, 2H), 6.25 (d, *J*=1.2 Hz, 1H), 5.15 (t, *J*= 6.9 Hz, 1H), 3.75 (s, 3H), 3.61 (dd, *J*=6.6, 15.0 Hz, 1H), 3.28 (dd, *J*=7.2, 15.0 Hz, 1H), 1.40 (s, 18H); ¹³C NMR (75 MHz, CDCl₃): δ =171.1, 151.7, 136.1, 134.9, 128.5, 121.2, 119.9, 119.5, 110.6, 101.8, 83.6, 58.4, 52.7, 30.1, 28.2; HRMS (EI): calcd. for C₂₂H₃₀N₂O₆: 418.2104; found: 418.2105.

asc.wiley-vch.de

Methyl (2S)-2-[(*tert*-Butoxycarbonyl)amino]-3-(1*H*-2indolyl)propanoate (44)

According to the general procedure, to a solution of **43** (351 mg, 1.10 mmol) in MeCN (12 mL), AgOTf (29 mg, 0.11 mmol) was added and the resulting mixture was stirred for 20 h. Purification by chromatography (EtOAc/heptane, 1:3) afforded **44** as a light-yellow oil; yield: 261 mg (0.82 mmol, 75%); R_f =0.29 (EtOAc/heptane, 1:2); $[\alpha]_D^{20}$: +46.8 (*c* 1.0, CH₂Cl₂); IR (neat): $\tilde{\nu}$ =3378, 2976, 1692, 1498 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ =8.27 (s, 1H), 7.51 (d, *J*=7.5 Hz, 1H), 7.28 (m, 1H), 7.08 (m, 2H), 6.25 (d, *J*= 1.5 Hz, 1H), 5.13 (br d, *J*=10.8 Hz, 1H), 4.63 (br m, 1H), 3.74 (s, 3H), 3.27 (d, *J*=5.4 Hz, 2H), 1.45 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ =172.3, 155.2, 136.2, 133.3, 128.4, 121.5, 120.0, 119.7, 110.7, 102.0, 80.5, 53.4, 52.8, 31.6, 28.6; HRMS (EI): calcd. for C₁₇H₂₂N₂O₄: 318.1580; found: 318.1578.

Methyl 3-(1*H*-2-Indolyl)-2-{[(4methylphenyl)sulfonyl]amino}propanoate (47)

According to the general procedure, to a solution of 46 (360 mg, 0.97 mmol) in MeCN (12 mL), AgOTf (25 mg, 0.10 mmol) was added and the resulting mixture was stirred for 20 h. Purification by chromatography (EtOAc/heptane, 1:3) afforded 47 as a white solid; yield: 310 mg (0.83 mmol, 86%). An X-ray crystal structure determination was carried out after recrystallization from Et₂O. $R_f = 0.37$ (EtOAc/heptane, 1:1); mp 146.3 °C; IR (neat): $\tilde{v} = 3356, 3239, 1714, 1593,$ 1450, 1429 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 8.26$ (s, 1H), 7.64 (d, J=8.4 Hz, 2H), 7.26 (d, J=7.8 Hz, 1H), 7.15 (m, 3H), 7.05 (m, 2H), 6.14 (t, J = 1.2 Hz, 1H), 5.33 (d, J = 5.7 Hz, 1H), 4.21 (br d, J=5.1 Hz, 1H) 3.56 (s, 3H), 3.24 (d, J=5.1 Hz, 2H), 2.38 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): $\delta =$ 171.8, 143.8, 136.2, 136.0, 132.4, 129.6, 128.2, 127.1, 121.6, 120.0, 119.7, 110.9, 102.0, 56.0, 53.0, 32.2, 21.8; HRMS (EI): calcd. for C₁₉H₂₀N₂O₄S 372.1144, found 372.1144.

Crystal data: transparent colorless, regular fragments, triclinic, space group P_{-1} , $C_{19}H_{20}N_2O_4S$, 372.43, unit-cell dimensions: a = 10.6303(5) Å; $\alpha = 73.937(5)^\circ$, b = 11.7369(8) Å; $\beta = 88.550(6)^\circ$, c = 15.9793(11) Å; $\gamma = 75.558(5)^\circ$, Z = 4, calculated density: 1.335 Mg/m³. Data collection: Nonius KappaCCD/ area detector ϕ and ω scan, Mo-K α (graphite mon.)/ 0.71073 Å, crystal size $0.18 \times 0.16 \times 0.08$ mm, T = 208(2) K, θ range 3.56 to 27.50°, 4836 ([Io > 2 σ (Io]]) reflections measured, no absorption correction. Structural analysis and refinement: full-matrix least-squares on F², goodness-of-fit on F² 1.016, SHELXL-97 weight parameters 0.066500, 0.298900, final R indices [I > 2 σ (I)]: R1 = 0.0624, wR2 = 0.1269, SHELXL-97 (Sheldrick, 1997).

Methyl (2S)-3-Benzo[b]furan-2-yl-2-{[(4methylphenyl)sulfonyl]amino}-propanoate (51)

According to the general procedure, to a solution of **50** (344 mg, 1.22 mmol), 2-iodophenol (333 mg, 1.51 mmol) in Et₂NH (18 mL), CuI (24 mg, 0.13 mmol) and PdCl₂(PPh₃)₂ (45 mg, 0.06 mmol) were added and the resulting mixture was stirred at reflux temperature for 4 h. Work-up and purification by chromatography (EtOAc/heptane, 1:2) afforded **51** as a light-yellow solid; yield: 337 mg (0.90 mmol, 74%); R_f =0.23

 Science Products, Geleen, The Netherlands) and Roy P. M. Storcken are kindly acknowledged for conducting the enzymatic resolution of the amino acid amides. Christien A. Schortinghuis is kindly thanked for performing chiral HPLC analyses.
e (47)
solution of 46 agOTf (25 mg, References and Notes

Acknowledgements

373.0986.

- [1] N. P. Botting, Chem. Soc. Rev. 1995, 24, 401.
- [2] G. W. Beadle, H. K. Mitchell, J. F. Nyc, Proc. Natl. Acad. Sci. 1947, 33, 155.

(EtOAc/heptane, 1:2); mp 118.2 °C; $[\alpha]_{D}^{20}$: +5.7 (c 1.0, CH₂ Cl₂); IR (neat): $\tilde{\nu}$ =3252, 2954, 1744, 1593, 1454, 1429,

1416 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 7.60$ (d, J =

8.4 Hz, 2H), 7.42 (d, J=6.6 Hz, 1H), 7.30-7.08 (m, 5H), 6.41

(d, J=0.9 Hz, 1H), 5.36 (d, J=9.0 Hz, 1H), 4.32 (m, 1H), 3.57

(s, 3H) 3.19 (d, J=5.7 Hz, 2H), 2.33 (s, 3H); ¹³C NMR

 $(75 \text{ MHz}, \text{CDCl}_3)$: $\delta = 170.7, 154.7, 152.1, 143.5, 136.5, 129.4,$

128.2, 127.0, 123.9, 122.7, 120.6, 110.9, 105.5, 54.7, 53.0, 32.9,

21.8; HRMS (EI): calcd. for C₁₉H₁₉NO₅S: 373.0984; found:

DSM Research is kindly acknowledged for their hospitality dur-

ing the enzymatic resolutions. Theo Sonke (DSM Research, Life

- [3] a) F. Werner-Flemayer, E. R. Werner, D. Fuchs, A. Hausen, F. Reibnegger, A. Wachter, *Adv. Exp. Med. Biol.* 199 1, 294, 505; b) J. M. Carlin, Y. Ozaki, G. I. Byrne, R. R. Brown, E. C. Borden, *Experientia* 1989, 45, 535.
- [4] T. W. Stone, *Pharmacol. Rev.* **1993**, *45*, 309.
- [5] M. P. Heyes, Biochem. Soc. Trans. 1993, 21, 83.
- [6] a) D. G. Malone, P. W. Dolan, R. R. Brown, M. V. Kalayoglu, G. I. Byrne, Y. Ozaki, *Rheumatol.* **1994**, *21*, 1011; b) A. R. Blight, K. Saito, M. P. Heyes, *Brain Res.* **1993**, 632, 314.
- [7] S. G. Cady, M. Sono, Arch. Biochem. Biophys. 1991, 291, 326.
- [8] a) A. C. Peterson, M. T. Migawa, M. J. Martin, L. K. Hamaker, K. M. Czerwinski, W. Zhang, R. A. Arend, P. L. Fisette, Y. Ozaki, J. A. Will, R. R. Brown, J. M. Cook, *Med. Chem. Res.* 1994, *3*, 531; b) A. C. Peterson, A. J. Laloggia, L. K. Hamaker, R. A. Arend, P. L. Fisette, Y. Ozaki, J. A. Will, R. R. Brown, J. M. Cook, *Med. Chem. Res.* 1993, *3*, 473.
- [9] B. C. J. van Esseveldt, F. L. van Delft, R. de Gelder, F. P. J. T. Rutjes, Org. Lett. 2003, 5, 1717.
- [10] a) C. Ma, X. Liu, X. Li, J. Flippen-Anderson, S. Yu, J. M. Cook, J. Org. Chem. 2001, 66, 4525; b) C. Ma, S. Yu, X. He, X. Liu, J. M. Cook, Tetrahedron Lett. 2000, 41, 2781.
- [11] a) S. Cacchi, G. Fabrizi, L. M. Parisi, Org. Lett. 2003, 5, 3843; b) K. Hiroya, S. Itoh, M. Ozawa, Y. Kanamori, T. Sakamoto, Tetrahedron Lett. 2002, 43, 1277; c) D. R. Adams, M. A. J. Duncton, J. R. A. Roffey, J. Spencer, Tetrahedron Lett. 2002, 43, 7581; d) J. Ezquerra, C. Pedregal, C. Lamas, J. Barluenga, M. Pérez, M. A. García-Martín, J. M. González, J. Org. Chem. 1996, 61, 5804.
- [12] a) J. Tsuji, Palladium Reagents and Catalysts; Wiley: New York, 1995; b) E.-i. Negishi, A. de Meijere, (Eds.), Hand-

Adv. Synth. Catal. 2004, 346, 823-834

asc.wiley-vch.de

 $\ensuremath{\mathbb O}$ 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

book of Organopalladium Chemistry for Organic Synthesis. Wiley, 2002.

- [13] a) B. Gabriele, G. Salerno, A. Fazio, M. R. Bossio, *Tetrahedron Lett.* **2001**, *42*, 1339; b) R. Grigg, V. Savic, *Chem. Commun.* **2000**, 873.
- [14] a) S. Cacchi, G. Fabrizi, D. Lamba, F. Marinelli, L. M. Parisi, *Synthesis* 2003, 728; b) M. S. Yu, L. Lopez de Leon, M. A. McGuire, G. Botha, *Tetrahedron Lett.* 199 8, 39, 9347; c) R. C. Larock, E. K. Yum, M. D. Refvik, *J. Org. Chem.* 1998, 63, 7652; d) S. Cacchi, V. Carcinelli, F. Marinelli, *J. Organomet. Chem.* 1994, 475, 289; e) R. C. Larock, E. K. Yum, *J. Am. Chem. Soc.* 1991, 113, 6689; f) D. E. Rudisill, J. K. Stille, *J. Org. Chem.* 1989, 54, 5856.
- [15] For a review on applications of unsaturated amino acids, see: F. P. J. T. Rutjes, L. B. Wolf, H. E. Schoemaker, J. Chem. Soc. Perkin Trans. 1 2000, 4197.
- [16] Referred to as propargylglycine; 2-amino-5-hexynoic acid is homopropargylglycine, etc.
- [17] a) L. B. Wolf, *Ph. D. Thesis*, University of Amsterdam (NL), **2001**; b) L. B. Wolf, T. Sonke, K. C. M. F. Tjen, B. Kaptein Q. B. Broxterman, H. E. Schoemaker, F. P. J. T. Rutjes, *Adv. Synth. Catal.* **2001**, *343*, 662; c) T. Sonke, B. Kaptein, W. H. J. Boesten, Q. B. Broxterman, J. Kamphuis, F. Formaggio, C. Toniolo, F. P. J. T. Rutjes, H. E. Schoemaker, in: *Stereoselective Biocatalysis*, (Ed.: R. N. Patel), Marcel Dekker: New York, **2000**; p. 23.
- [18] Amino acids 16 and 45 have been synthesized from racemic propargylglycine via esterification followed by Nprotection. Racemic propargylglycine is commercially available, but alternatively can be synthesized via alkyla-

tion of diethyl acetamidomalonate with propargyl bromide (1.2 equivs.) and NaH (1.1 equivs.), followed by ester and amide hydrolysis with concomitant decarboxylation in 2 M HCl under reflux conditions.

- [19] G. T. Crisp, T. A. Robinson, Tetrahedron 1992, 48, 3239.
- [20] A. L. Spek PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, 2002.
- [21] Crystallographic data (excluding structure factors) of compounds 18 and 47 have been deposited with the Cambridge Crystallographic Data Centre as supplementary publications no. CCDC-203097 (compound 18) and no. CCDC-237704 (compound 47). Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK [Fax: int. code+44(1223)336-033; E-mail: deposit@ccdc.cam.ac.uk].
- [22] K. Imi, K. Imai, K. Utimoto, *Tetrahedron Lett.* 1987, 28, 3127.
- [23] For similar Pd-catalyzed coupling cyclization approaches to 2-substituted benzo[b]furans, see: a) W.-M. Dai, K. W. Lai, *Tetrahedron Lett.* 2002, 43, 9377; b) P. G. Wyatt, M. J. Allen, J. Chilcott, A. Foster, D. G. Livermore, J. E. Mordaunt, J. Scicinski, P. M. Woollard, *Bioorg. Med. Chem. Lett.* 2002, 12, 1399; c) G. W. Kabalka, L. Wang, R. M. Pagni, *Tetrahedron* 2001, 57, 8017; d) M. Inoue, M. W. Carson, A. J. Frontier, S. J. Danishefsky, J. Am. Chem. Soc. 2001, 123, 1878.
- [24] For more information, see: www.chiralix.com.