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ABSTRACT

A synthetic strategy for the construction of the [7�5�5] all-carbon tricyclic core of numerous calyciphylline A-type Daphniphyllum alkaloids has
been developed using a key intramolecular Pauson�Khand reaction. A subsequent base-mediated double-bond migration and a regio- and
stereoselective radical late stage allylic oxygenation provide access to the substitution patterns of daphnilongeranin B and daphniyunnine D.

One of the major challenges in the total synthesis of the
architecturally complex and biologically interestingDaph-
niphyllum alkaloids1 is the construction of the DEF ring
system, the [7�5�5] all-carbon tricyclic core. This complex
motif is present in approximately half of the family of
over 200 molecules. Of particular interest to our group is
the calyciphylline A-type subclass due to their unique

structural features, biological activity, and the lack of
reports of the total synthesis of any of its members.2

Calyciphylline A (1)3 and nine other related natural
products bearing this [7�5�5] fused ring system are
represented in Figure 1: daphnipaxianine A�C (8, 9, 5),4
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daphlongamine F andG (10, 7),5 daphnilongeranin B (2),6

daphniyunnine C�E (6, 3, 4).7 Although direct synthetic
approaches toward the [6�5]bicycle (ACrings inFigure1),
[6�6�5] tricycle (ABC rings), and [6�5�7] tricycle (ACD
rings) of this subgroup of alkaloids have been reported by
our group8 and others,9 no specific study of a realistic
endgame involving a synthesis of the aforementioned core
of this subgroup has been reported.10,11 For a successful
total synthesis of anymember of this subclass, a robust and
practical route for the rapid assembly of this common
structuralmotif is required.Hereinwe present our findings
toward this aim.

Our retrosynthetic analysis focused on construction of
the main tetracycle 12 in which the pendant terminal
alkyne and cycloheptene functionalities provided an ideal
entry to the DEF ring system (11) via the intramolecular
Pauson�Khand reaction12 (IPKR). In order to test our
hypothesis and to demonstrate the possible versatility in
the total synthesis of the resultant tricyclic core, we chose
to target the cyclopentenone-containing portion of daph-
nilongeranin B (2) and daphniyunnine D (3), since the
latter shows interesting cytotoxic activity against two
tumor cell lines, P-388 and A-549, with IC50 values of 3.0
and 0.6 μM, respectively.7

For the synthesis of daphnilongeranin B (2), following
the IPKR, we envisioned a double-bond migration to the
most substituted and thermodynamically most stable cy-
clopentenone isomer (Scheme 1).13 This novel two-step

tandem strategy was a realistic alternative to a controlled
late stage construction of a strained cycloheptyne moiety,
necessary if a direct one-step IPKR approach was to be
adopted.14 A late stage regio- and stereoselective allylic
oxygenation would provide the second target, daphniyun-
nine D (3).

Scheme 1. Retrosynthetic Analysis of Daphnilongeranin B and
Daphniyunnine D

Figure 1. Daphniphyllum alkaloids bearing the [7�5�5] all-
carbon tricyclic core.
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The use of the IPKR is growing in the synthetic com-

munity with examples of construction of a related all-

carbon skeleton as well as oxygen, nitrogen, and sulfur

containing [5�5�5],15 [6�5�5],16 [7�5�5],10,14a,17 and

[8�5�5]14b,17c fused ring systems.18 However, in order to

test our proposal and to demonstrate the potential versa-

tility of the construction of this all-carbon [7�5�5] tricy-

clic core, we focused our efforts on the construction of

molecule 13 as a model substrate (Scheme 2).
Our route to the IPKR substrate 13 is presented in

Scheme 2. The commercially available cycloheptanone
14 was readily transformed into ketoester 15, in 98%
yield, using sodiumhydride and diethylcarbonate.A direct
enolate alkylation approach for introducing the butyne side
chain, using 1-but-3-ynyl tosylate and 4-iodobut-1-yne,
was investigated andwas partly successful; 17was isolated,
but only in 14�27% yield. Accordingly, we examined an
alternative pathway for the introduction of the pendant
alkyne, via a two-step sequence. First a Michael addition
to acrolein19 efficiently provided the aldehyde 16 in 85%
yield. Subsequently, the Ohira�Bestmann modification20

of the Seyferth�Gilbert homologation,21 using ethanol22

as solvent, afforded the alkyne 17 in 85% yield.
We then turned our attention to the preparation of the

IPKR substrate from 17. The attempted direct transfor-
mation of the ketone to the required alkene via a Shapiro
reaction23 only led to complex mixtures and prompted us
to adopt a sequential route. Reduction of the ketone using
the Luche conditions24 in methanol gave 18 in 78% yield.
Pleasingly, a one-potmesylation of the alcohol in pyridine,
followed by elimination, gave the desired IPKR substrate
13 in 72% yield.

Reacting 13 with the cheap and commercially available
dicobalt octacarbonyl25 transiently produced the co-
balt�alkyne complex 19whichwas subsequently subjected
to a range of different conditions known to initiate the [2þ
2 þ 1] cycloaddition (Table 1).26 Boiling the complex in
acetonitrile, in the absence of a promoter, gave 20 in an
encouraging 43% yield (entry 1). Using DMSO, PhSMe,
and CyNH2 as promoters, however, only resulted in
gradual degradation of the complex even at rt after 24 h
with no evidence of product formation (entries 2�4). The
use of an amine N-oxide promoter, trimethylamine N-
oxide (TMANO), gave a 39% yield (entry 5), whereas
NMO proved to be more effective giving the desired
product in 44% yield (entry 6). Pleasingly, rapid purifica-
tion of 19 by flash column chromatography (fcc) on silica
gel prior to addition of the NMO led to further improve-
ment;20wasafforded in58%yield (entry 7)with a 4:1 dr in
favor of 20a, the stereochemistry of which was determined
by NOE experiments.
With the direct IPKR product 20 in hand, an investiga-

tion of the crucial migration of the carbon�carbon double
bond to the more substituted position then followed.13

While 2-tert-butylimino-2-diethylamino-1,3-dimethyl-
perhydro-1,3,2-diazaphosphorine (BEMP) and DBU in
dichloromethane only gave traces and a 52% yield of
product 21 respectively, potassium carbonate (K2CO3) in
ethanol smoothly accomplished the transformation with
an excellent 92% yield (Scheme 3). Much to our delight,
only one diastereoisomer was obtained possessing the
desirable relative stereochemistry present in the DEF rings
of daphnilongeranin B (2).27

In order to further demonstrate the versatility of this
IPKRstrategy to access the typical [7�5�5] ring structures
of the calyciphylline A-type alkaloids, we examined the
allylic oxygenation of structure 21. This late stage oxyge-
nation would furnish the tricyclic substitution pattern of
the targeted daphniyunnineD (3) and/or daphniyunnine E
(4). Inspired by Corey’s method for allylic oxidation,28 use
of stoichiometric Pearlmann’s catalyst combined with
K2CO3 and t-BuOOH in CH2Cl2 gave the desired product

Scheme 2. Synthesis of the IPKR Substrate 13
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22 in a promising 20% yield (50% based on recovered
startingmaterial), demonstrating the possibility of this late

stage functionalization of the fused tricyclic ring system.
Employing the radical oxygenation conditions reported by
Watt29 as an alternative gave rise to 22 as a single regio-
and stereoisomer in an acceptable 34% yield.30

In summary we report a robust and practical route for
the rapid assembly of the [7�5�5] all-carbon tricyclic core
common in the Daphniphyllum alkaloid family using an
IPKR as a key step. In combination with a mild, efficient,
and stereoselective carbon�carbon double-bond migra-
tion, essential to the construction of the DEF rings of
daphnilongeranin B (2), we have demonstrated the versa-
tility of the derived core. A further late stage regio- and
stereoselective allylic oxygenation completed the synthesis
of the model DEF tricyclic ring system of the biologically
active daphniyunnine D (3).
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Table 1. Optimization of the IPKR

entry solvent

promoter

(equiv)

temp

(�C)
time

(h)

yield %

(dr 20a:20b)

1a MeCN heat reflux 24 43

(4.0:1.0)

2 CH2Cl2 DMSO

(6 equiv)

rt 24 0

(N/A)

3 CH2Cl2 PhSMe

(6 equiv)

rt 24 0

(N/A)

4 CH2Cl2 CyNH2

(6 equiv)

rt 24 0

(N/A)

5 CH2Cl2 TMANOb

(9 equiv)

rt 24 39

(3.4:1.0)

6 CH2Cl2 NMO

(9 equivc)

rt 24 44

(4.0:1.0)

7d CH2Cl2 NMO

(9 equiv)

rt 22 58

(3.7:1.0)

aCH2Cl2 from the initial step was removed under reduced pressure,
and to the resultant dark colored oil was added MeCN. bTrimethyla-
mine N-oxide. cAn initial 6 equiv were added, followed by a further 3
equiv after 18 h. dThe cobalt�alkyne complex formed in the initial step
was purified by fcc before subjecting it to the stated conditions.

Scheme 3. Synthesis of the Tricyclic Core 22
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