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(–)-Blebbistatin (1), a recently discovered small molecule in-
hibitor of the ATPase activity of non-muscle myosin II has
been prepared from methyl 5-methylanthranilate (6) in three
steps. This flexible synthetic route has also been used to pre-
pare a nitro group-containing analogue 12 that has modified
fluorescence properties and improved stability under micro-
scope illumination. The key step in the synthesis of 1 and its
analogues was the asymmetric hydroxylation of the quino-

Recent developments at the chemistry–biology interface
have revitalised the search for specific small molecule mod-
ulators of protein function.[1] These molecules, once discov-
ered and with their activity optimized, play an important
role in improving our understanding of complex biological
processes.[2] For example, a programme to identify selective
inhibitors of the myosin protein subfamilies[3] has led to the
discovery of several novel biological reagents including (–)-
blebbistatin (1) (Figure 1).[4,5] In the two years since its dis-
covery 1 has had a significant impact on biomedical re-
search, with reports of its use in dissecting the mechanism
of cancerous cell migration,[6] severing-induced axon retrac-
tion[7] and cell cycle control.[8] In a recent application,[4] 1
was used to study the role of non-muscle Myosin II
(nmMII) in cytokinesis, the final and critical stage in the
complex process that leads to the formation of two daugh-
ter cells from one mother cell. (+)-Blebbistatin (2) (the en-
antiomer of 1) is also an important compound. As a result
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lone intermediate 3 using the Davis oxaziridine methodology.
The absolute stereochemistry of (–)-blebbistatin (1) was
shown to be S by X-ray crystal structure analysis of a heavy
atom (bromine) containing analogue 11, which was sub-
sequently reduced and shown to be identical to 1.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim,
Germany, 2005)

of its reduced activity against nmMII, it can function as a
control compound in these types of studies.[4] To date, no
experimental evidence that supports the assignment of the
absolute stereochemistry of 1 has been reported despite its
prominent role as a novel molecular tool. Unambiguous as-
signment of the absolute stereochemistry of (–)-blebbistatin
(1) is also essential for the refinement of computational

Figure 1. A flexible approach to (–)-blebbistatin (1) and its ana-
logues.
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models of the interaction of 1 and 2 with myosins.[9] These
studies are designed to identify putative binding sites.

Here we clarify several chemical issues relating to (–)-
blebbistatin (1) and its analogues. We describe an efficient
and flexible synthetic approach to highly optically enriched
(–)-blebbistatin (1) and prove, for the first time, that the
absolute stereochemistry of (–)-blebbistatin (1) is S (Fig-
ure 1). In addition, we report that incorporation of a nitro
functional group into the blebbistatin core structure im-
proves the physical properties of blebbistatin, extending the
utility of these reagents. The nitro analogue of 1 is not fluo-
rescent (Figure 5) and is also stable for extended periods of
time at wavelengths typically used for the fluorescence-
based imaging of live cells, unlike (–)-blebbistatin 1 (Fig-
ure 6).[10]

Our approach to (–)-blebbistatin (1) relies on late stage
asymmetric oxidation of the quinolone 3 to the previously
unknown heterocyclic core structure in 1 (Figure 1). It was
envisaged that conversion of 3 to 1 could be carried out
using Davis oxaziridine methodology.[11] 3 can be accessed
rapidly from commercially available starting materials via
the corresponding amidine 4.

Reaction of the pyrrolidinone 5 with the anthranilate 6
in the presence of phosphorus oxychloride gave the desired
amidine 4 in 41% yield (Figure 2). 1H NMR analysis of the
reaction between 5 and POCl3 did not support the efficient
formation of an imonium intermediate.[12] Reaction of 5
and 6 under microwave irradiation in the absence of POCl3
did not produce the desired amidine 4 even in the presence
of a dehydrating agent. Attempts to optimize this reaction
by addition of base[12] or by the use of alternative reagents
(SOCl2, MeOTf, PCl5) proved unsuccessful. The pyrrolidin-
one dimer 7 was also isolated on a number of occasions.[13]

Cyclisation of 4 to the desired quinolone 3 was carried out
using excess lithium bis(trimethylsilyl)amide (LiHMDS) in
high yield. The quinolone 3, an off-white solid, was found

Figure 2. Preparation of (±)-blebbistatin. Reagents and conditions: a) i) POCl3, CH2Cl2, 25 °C, 3 h; ii) 40 °C, 16 h, 41%; b) LiHMDS
(3 equiv.), –78 °C to 0 °C, 3 h, 90%; c) O2, hν, DMSO, 25 °C, 3 h, 29%; or O2, hν, 25 °C, 3 h, THF, 26%. LiHMDS = lithium bis(trimethyl-
silyl)amide.
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to be stable in the absence of air and light, and was readily
prepared and stored for extended periods of time in multi-
gramme quantities. However, it was observed that a DMSO
solution of 3 slowly decomposed in air in the presence of
light to give (±)-blebbistatin. The rate and yield of this pro-
cess was increased by irradiation of 3 in DMSO or THF
using a medium-pressure mercury lamp (400 W, unfiltered)
or upon irradiation (365 nm) of 3 supported on silica gel.
Interestingly, (±)-blebbistatin was initially discovered fol-
lowing biological assays carried out with an “aged” DMSO
solution of 8 (Figure 2). The azatacrine[14] analogue 8 is not
an inhibitor of nmMII and the observed activity of the
“aged” sample results from degradation of 8 to (±)-blebbis-
tatin.

As a result of the above observations care was taken to
exclude any oxygen from the subsequent oxidation reac-
tions. In initial experiments, treatment of the anion gener-
ated from 3 using LiHMDS or LDA with oxaziridine 9 or
10 at –10 °C or 0 °C, respectively, gave high yields of op-
tically enriched (–)-blebbistatin (1) (Figure 3, Entries 1–
3).[11] However, little or no reaction was observed when
these transformations were carried out at temperatures of
–40 °C or below. Generation of the sodium enolate of 3
using NaHMDS resulted in a more reactive enolate that
reacted with 10 at –78 °C to give highly optically enriched
(–)-blebbistatin (1) in 69% yield and 90% ee as judged by
chiral HPLC analysis of the crude reaction mixture (Fig-
ure 3, Entry 4). A single recrystallisation from acetonitrile
of the crude reaction mixture prepared according to Entry
3 (Figure 3) provided a route to 1 in �99% ee ([α]D26 = –464
(c = 0.2 in dichloromethane).[15,16] (S)-(–)-Blebbistatin (1)
inhibits nmMIIa with an IC50 of 7.1 μM (see supporting
information; for supporting information see also the foot-
note on the first page of this article), whilst 2 is significantly
less active than 1. This result clarifies the conflicting litera-
ture reports.[4,9]
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Figure 3. Preparation of enantiomerically enriched blebbistatin
using the Davis oxaziridine methodology. Reagents and conditions:
a) LiHMDS or LDA or NaHMDS (1.2 equiv.), THF, oxaziridine
9 or 10 (2.4 equiv.). The Table summarizes the yield and enantio-
meric excess (ee) obtained as a function of base, temperature and
reagent. All ee values were determined using chiral HPLC analysis
of the crude reaction mixture (see supporting information). LDA =
Lithium diisopropylamide, NaHMDS = sodium bis(trimethylsilyl)-
amide.

In order to assign by crystallographic analysis the abso-
lute stereochemistry of (–)-blebbistatin (1), we decided to
prepare an analogue that contained a heavy atom (bro-
mine). Purification of the products resulting from direct
bromination of 1 (or intermediates en route to 1) with NBS
proved difficult. Additionally, reactions to acylate the terti-
ary alcohol functionality in 1 with various bromobenzoyl

Figure 4. Assignment of the absolute stereochemistry of (–)-blebbistatin (1). Reagents and conditions: a) NBS, DMF, 25 °C, 2 days, 50%;
b) i) POCl3, CH2Cl2, 25 °C, 3 h; ii) 6, 40 °C, 16 h, 26%; c) LiHMDS (3 equiv.), –78 °C to 0 °C, 3 h, 60%; d) i) LiHMDS (1.2 equiv.),
THF, –78 °C, 30 min; ii) 10 (2.4 equiv.), –10 °C, 16 h, 68%, 88% ee; e) recrystallisation from acetonitrile �99% ee. [α]D26 = –526 (c = 0.1,
CH2Cl2); f) H2, 1% Pd/C, Et3N, DMF/MeOH, 25 °C, 24 h, 99%. NBS = N-bromosuccinimide, DMF = N,N-dimethylformamide.
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chlorides gave the desired products, but did not yield suffic-
iently high quality crystals for X-ray analysis. Attempts to
prepare an analogue of 1 with a bromine atom in place of
the methyl substituent also proved unsuccessful due to the
low yield of the reaction between methyl 5-bromoanthra-
nilate and pyrrolidinone 5. X-ray quality crystals of the bro-
mine-containing analogue 11 were successfully prepared
using similar methods to those described previously (see
Figure 4 legend for further details). A highly enantiomer-
ically enriched sample of 11 (�99% ee as judged by chiral
HPLC analysis) was then reduced using hydrogen and 1%
palladium on carbon in the presence of triethylamine.[17]

The resulting sample of (–)-blebbistatin (1) was shown by
chiral HPLC and 1H NMR analysis to be identical to a
sample of 1 prepared as described in Figure 3, hence con-
firming that the absolute stereochemistry of (–)-blebbistatin
(1) is S (as drawn).[15,16] Formation of 1 presumably pro-
ceeds through an analogous transition state to the one pro-
posed by Davis.[11,16] Blebbistatin analogue 11 can also
function as a useful precursor for the synthesis of a radio-
labelled derivative of 1 (by palladium-catalysed tritiation)
and for the preparation of (S)-(–)-blebbistatin (1) analogues
functionalised at C4�. Preliminary data on the activity of
compounds substituted at C4� shows that they retain
nmMII ATPase inhibitory activity.[4]

An informative method of studying protein function in a
cell uses fluorescence microscopy techniques on live cells
that are expressing a green fluorescent protein (GFP)-lab-
eled version of the protein of interest.[18] Unfortunately, the
fluorescence of 1 is one factor that limits its application in
this type of experiment.[19] In order to observe GFP-labeled
proteins it is necessary to irradiate live cells with light at a
wavelength between 420 and 490 nm (488 nm in confocal
microscopy applications). The light that is subsequently
emitted is collected using pass filters with a typical wave-
length range of between 520 and 570 nm. As shown in Fig-
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ure 5 (solid line), 1 exhibits significant fluorescence emis-
sion in the GFP emission wavelength range with an emis-
sion maximum at 601 nm. It was proposed that addition of
a nitro functional group to the chromophore within (S)-
(–)-blebbistatin (1) would modify the fluorescence proper-
ties without having a major effect on the biological activity,
hence overcoming this limitation.[20] Optically enriched 12
was prepared (see Figure 5 legend for details[16]) and subse-
quent analysis of the fluorescence properties of 12 showed
that there was a significant reduction in fluorescence emis-
sion in the required wavelength range following excitation
at 440 nm. Biochemical and cell-based assays using 12
showed that it retained the desired biological activity (see
supporting information).

Figure 5. Preparation of a blebbistatin analogue containing a nitro
functionality resulting in improved optical properties. Reagents and
conditions: a) MeOH, H2SO4, 65 °C, 96 h, 81%; b) i) POCl3, 5,
CH2Cl2, 25 °C, 3 h; ii) 40 °C, 72 h, 22%; c) LiHMDS (2.5 equiv.),
–78 °C to 0 °C, 96 h, 44%; d) i) LiHMDS (1.2 equiv.), THF, –78 °C,
30 min; ii) 10 (3.1 equiv.), –10 °C, 32 h, 31%, 76% ee. Fluorescence
emission spectrum of (–)-blebbistatin (1) (solid line) and its nitro
analogue 12 (dashed line) in the wavelength range 450–800 nm after
excitation at 440 nm.

A recent microscopy-based study has identified a further
limitation of (S)-(–)-blebbistatin (1) that limits its use in
live-cell imaging experiments. It was shown that prolonged
exposure to filtered light (450–490 nm) results in degrada-
tion of (±)-blebbistatin to an unidentified non-inhibitory
product via cytotoxic intermediates.[10] In analogous experi-
ments performed by us the blebbistatin analogue 12 was
shown to be stable to prolonged irradiation at the same
wavelengths (see B in Figure 6), whereas 1 decomposed (see
A in Figure 6). This coupled with its reduced fluorescence
and retained biological activity suggests that analogue 12
will be an excellent reagent for imaging experiments with
live cells, a situation where (S)-(–)-blebbistatin (1) itself is
sub-optimal.
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Figure 6. A) UV spectra of (S)-(–)-blebbistatin (1) in PBS (solid
line). The UV spectra of 1 after exposure to filtered light (436 and
510 nm) for 3 hours (dashed line), showing that complete degrada-
tion of 1 occurs under these conditions consistent with literature
reports.[10] B) UV spectra of 12 in PBS (solid line) and 12 after
exposure to filtered light (436 and 510 nm) for 3 hours (dashed
line) indicating that 12 is stable under these conditions. PBS =
phosphate-buffered saline.

In summary, we report that the absolute stereochemistry
of the selective small molecule myosin inhibitor (–)-blebbis-
tatin (1) is S. In addition, we describe a flexible and efficient
route to highly optically enriched 1 (�99% ee) using the
Davis oxaziridine methodology. (S)-(–)-Blebbistatin (1) has
already been used as a small molecule tool in a number of
biological studies.[6–8,21] The synthetic approach we report
enables rapid access to both enantiomers of blebbistatin (1
and 2) and its analogues in large quantities. We have also
demonstrated that incorporation of a nitro functionality
into the chromophore of 1 tunes its fluorescent properties
and improves its stability, extending the scope of biological
experiments in which analogues of (S)-(–)-blebbistatin (1)
can be used.
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