## METAL-ASSISTED REACTIONS. PART 20.1 CATALYTIC TRANSFER HYDROGENOLYSIS OF PHENOLIC C-O BONDS

## Amadeu F. Brigas and Robert A.W. Johnstone\* (Department of Chemistry, University of Liverpool, Liverpool, L69 3BX)

After conversion of phenols into O-pseudosaccharyl ethers (2) catalytic transfer hydrogenolysis with Pd/C catalyst and sodium phosphinate as hydrogen donor gave arenes (ArH) in good yield. As an example of the application of this reaction in synthesis, cestrone was converted into cestratrienone in a high yielding, one step reaction.

In earlier work,<sup>2</sup> catalytic transfer hydrogenolysis<sup>3</sup> of C-O bonds in readily prepared heteroaromatic ethers of phenols to give arenes was described. Principally, the heteroaromatic group (R) in phenolic ethers (ArOR) was 5-phenyltetrazolyl. Whilst these ethers afford arenes (ArH) rapidly and in high yield, the reaction suffers economically from the relatively high cost of the 5-phenyltetrazolyl group which makes it unattractive on a large scale. Replacement of the 5-phenyltetrazolyl by the cheap, readily available pseudosaccharyl group gives easily prepared, crystalline phenolic ethers (2; reaction 1) which are easily hydrogenolysed.



In a typical experiment, cestrone (9.18 mmoles) was reacted with 3-chloro-1,2benzisothiazole-1,1-dioxide4 (pseudosaccharyl chloride; 1; 9.18 mmoles; reaction 1) in the presence of triethylamine (10 mmoles) in refluxing toluene to give the corresponding 3-O-pseudosaccharyl ether of cestrone (cestra-1,3,5(10)-trien-3-ol-17-one; 2, Ar = oestronyl) in quantitative yield. Crystalization from toluene gave colourless crystals, m.p. 162ºC. The pseudosaccharyl ether (2; 0.92 mmole) in benzene (150 ml) was hydrogenolysed by refluxing it with sodium phosphinate (sodium hypophosphite; 0.03 mol) as hydrogen donor in water (50 ml) for fifteen minutes in the presence of palladium-on-charcoal catalyst (10%; 1g). The reaction mixture was worked up by extraction with ether and washing the ether extracts with water to remove the saccharin (3) so produced. Evaporation of solvent gave cestra-1,3,5(10)-trien-17-ones, m.p. 134-135°C; [a]22 +168° (dioxane); (96% yield). Other examples are given in the Table. All pseudosaccharyl ethers gave satisfactory C.H.N analyses and the expected infrared, <sup>1</sup>H-nur and mass spectra; melting points are reported in the Table. Product arenes were identified by gas chromatography, gas chromatography-mass spectrometry and, in many instances by isolation of the arene and its identification by m.p. and ill-nmr.

Yields of arenes from this hydrogenolysis are generally high although, as with 5-phenyltetrazolyl ethers<sup>2</sup> there are some anomalies. Thus, where the phenolic ether contains an aldehyde substituent, the Pd catalyst appears to be poisoned but conversion of the aldehyde into a cyclic acetal with ethylene glycol allows hydrogenolysis to proceed. Chlorine substituents in the phenolic ethers may be hydrogenolysed and nitro substituents are reduced to amino.

| Ar-O-R (2) Þ<br>Ar =    | Melting<br>point (°C) | Reaction<br>time (min) | Yield of Arene <sup>c</sup><br>ArH (%) |
|-------------------------|-----------------------|------------------------|----------------------------------------|
| 1-Naphthy]              | 201-202               | 15                     | 90 *                                   |
| 2-Naphthy1              | 260-261               | 17                     | 94 *                                   |
| 3-Cyanopheny1           | 200-202               | 60                     | 56                                     |
| 4-Acetylphenyl          | 244-245               | 185                    | 80                                     |
| 4-Nitrophenyl           | 246-247               | 15                     | 100 d                                  |
| 4-Aldehydophenyl        | 252-254               | 185                    | · 16                                   |
| 4-Ketal•                | 204-206               | 15                     | 44 •                                   |
| 4-Methoxypheny1         | 185-186               | 180                    | 98                                     |
| 4-Chloro-2-methylphenyl | 184-185               | 180                    | 99 f                                   |
| 4-Carbometoxypheny1     | 216-217               | 45                     | 98                                     |
| 3.5-Dimethylphenyl      | 202-203               | 150                    | 100                                    |
| 4-Fluorophenyl          | 158-159               | 420                    | 63 •                                   |
| 3-Trifuoromethylphenyl  | 119-120               | 420                    | 80 9                                   |

TABLE. Melting Points of 3-O-Arylpseudosaccharyl Ethers and Yields of Arenes Resulting from their Hydrogenolysis<sup>a</sup>

- Typical reaction conditions are given on the text. For ethers wich do not contain a carbonyl group, only one third of the quoted weight of catalyst was used.
- b R = 3-(1,2-benzisothiazole-1,1-dioxide).

• Quoted yields are based on gas chromatographic results, using an internal standard and in some cases on isolation of arene (\*).

- d The product was aniline.
- 3-(4-Aldehydophenyl)-1,2-benzisothiazole-1,1-dioxide was converted into its cyclic ketal with 1,2-ethanediol. With extended reaction time the ketalbenzene was hydrolysed to benzaldehyde.
- f The product was toluene.
- 9 Toluene was used as solvent.

The authors thank the Eschenmoser Trust and JNICT-Portugal (AFB) for grants.

## REFERENCES

- <sup>1</sup> Part 19. R.A.W. Johnstone and P.J. Price, <u>J. Chem. Soc. Perkin 1</u>, 1982, 1069
- <sup>2</sup> B.J. Hussey, R.A.W. Johnstone and I.D. Entwistle, <u>Tetrahedron</u>, 1982, 38, 3775.
- <sup>3</sup> For many leading references see, R.A.W. Johnstone, A.H. Wilby and I.D. Entwistle, <u>Chem. Reviews</u>, 1985, 85, 129
- 4 J.R. Meadow and J.C. Cavagnol, J. Org. Chem., 1952, 17, 488
- <sup>5</sup> E. Caspi, E Cullen and P.K. Grover, <u>J. Chem. Soc.</u>, 1963, 212
- <sup>5</sup> The specific rotation given in reference 5,  $[a]_{5}^{24}$ , is +400° (dioxane). However, the specific rotation for cestrone,  $[a]_{5}^{25}$ , is +161° (dioxane), close to the value found here after removal of -OH from position 3, well away from the optically active centres. This suggests the value given in reference 5 may be erroneous.

(Received in UK 16 July 1990)