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ABSTRACT

R= $<-CHO
G1 (n=0), G2 (n=1), G3 (n=2)

We have synthesized a new family of zz-conjugated dendrimers that are based on bis(enediynyl)benzene units by using both divergent and
convergent approaches. The compounds at all three generations have strong bluish-green fluorescence, especially the third-generation dendrimer,
which has the highest extinction coefficient and quantum efficiency in this series.

The past several decades have been witness to dramatiavith flexible backbone dendrimers:-conjugated dendritic
developments in the field of organic and polymer light- molecules have received considerable attention as a new class
emitting diodes (LEDs). Whereas low-molecular-weight of LED materialst These shape-persistent macromolecules,
organic materials can be processed into device structures bywhich have well-defined nanometer sizes and intrinsic
thermal evaporation under high vacuum, polymers can berigidity, exhibit interesting physical and chemical properties.
deposited simply by spin-coating or even printfrigxcellent Curiously, there have been few examplesrafonjugated
progress has been made in the efficiencies and lifetimes ofdendrimers based on bis(enediynyl)benzene (Figure 1).
devices and in the tuning of colors using both low-molecular-

weight organic materials and polymers. Dendrimers are_
organic macromolecules that have a regular array of highly

branched units surrounding a central cbfewide range of

synthetic methodologies have been applied to the efficient Il

synthesis of dendrimers. Two general approaches are used & P

commonly to synthesize these molecules, namely the diver- Nl

gent growth approach and the convergent appré#dbng Il

ann 1
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Scheme 1. Synthesis of Dendrimers Using a Divergent Method
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dendrimers that we prepared using both divergent andonly a few side products were formed in the Sonogashira
convergent synthetic methodologies. reactions in addition to the desired products.

The divergent approach we followed to prepare our den- A convenient method for dendrimer synthesis is the
drimers is illustrated in Scheme 1. The synthetic strategy assembly of dendrons to a core unit (i.e., the convergent
we used to construct the bis-enediyne linkages involved approach), which is used widely to form functional den-
alternating Sonogashira reactiéasd Corey-Fuchs dibro- drimers or simply to enlarge a compouttdVe adopted this
moolefinationg and began with 1,4-bis(2,2-dibromoethenyl)- method to synthesiz62 andG3, as indicated in Scheme 2,
benzene. The Sonogashira reactions between aryl bromides using the readily available ethynyldibenzaldehydgas a
(2, 4, and 5) and 4-ethynylbenzaldehyti€3) proceeded dendron. Pd/Cu-catalyzed cross-coupling2oédnd 4 with
smoothly to afford dendrimeis1, G2, andG3, respectively, dendron6 afforded the dendritic molecule&2 and G3,
in moderate yields (3376%). Considering the rigidity and  respectively, which bear peripheral aldehyde units.
steric hindrance 53, the yield of 36% is quite remarkable. All of these dendritic molecules are quite stable toward
The dibromoolefination reactions were relatively clean and air and commonly used organic solvents; they are slightly

2670 Org. Lett., Vol. 6, No. 16, 2004



Scheme 2. Synthesis of Dendrimers Using a Convergent
Method

EtzN
(PPh3)4Pd/Cul
—eeeeee -~

EtzN
(PPh3)4Pd/Cul

DMF
45-50°C
2h
31%

CHO

soluble in CHC4, THF, DMF, and DMSO. We confirmed
the structures of all these dendrimersi{and'3C NMR
spectroscopy, mass spectrometry, and elemental an&lysis.
The observed chemical shifts in tAel NMR spectra are
very similar within this series of compounds. All dendrimers
G1—G3 possess proton chemical shifts at ca. 10 ppm that
are due to their formyl groups. We confirmed the structures
of the dendrimers clearly by mass spectrometry. The mo-
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lecular ions in the FAB mass @1 and G2 were found at

m/z 643.3 and 1659.1, which are consistent with the calcu-
lated values ofrVz 643.2 and 1659.5, respectively. MALDI-
TOF analysis verified the monodisperse naturec@f the
mass of its molecular iomyz 3691.2, is consistent with the
calculated value afivz3691.1. The values dfl, of G1—G3
obtained by gel permeation chromatography (GPC) measure-
ments using polystyrene standarcési0, 860, and 1500,
respectively-were lower than the mass spectrometry-derived
molecular weightd? These significant deviations between
GPC and MS results, especially f@&3, may reflect the
dissimilar shapes of these dendrimers, which are compact
and spherical in solution, and the polystyrene standttds.

Table 1 summarizes the photophysical properties of den-
dritic moleculesG1—G3, 4, and5 in CHCI; solutions. We
determined the fluorescence quantum yielgs) (of the
fluorophores in CHG| using a 0.1 N aqueous NaOH solution
of fluorescein as a standattl.

The UV—vis absorption spectrum of the1 dendrimer
displays an absorption maximum at 433 nm. The relative
blue shifts observed fd62 andG3 probably are due to the
substitution effect of the aldehyde group: As the generations
increase, the formyl groups are located further from the core
(Figure 2a). The emission maxima of the dendrimers are
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Figure 2. Normalized (a) absorbance and (b) fluorescence spectra
of dendrimersG1—G3 recorded in CHGl at 20 °C. Emission
spectra were obtained upon excitation at the absorption maxima.
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s divergent or convergent methods. This approach is also very

Table 1. Photophysical Data of the Dendrimers in CHCI versatile for the syntheses of the dendrimers that possess
different photophysical properties, which can be achieved

-1 -1 b, d .. . T

compd  Aas/nm®  e/mol™* cm e/ ¢F through variations in the nature of the building molecules
G1 433 22500 497 0.38 and the functional groups presented at the peripheries. The
4 411 45300 497 0.35 second point is that this synthetic approach, which is based
G2 415 61 500 468 0.79 on bis(enediynyl)benzene units, can be utilized in the design
> 415 57300 465 0.52 of functional materials because of their excellent quantum
G3 418 86 000 469 0.80 o

efficiencies.
20nly the largest absorption maximum is listed in each cayéave- We have prepared a new family efconjugated dendrim-

length of emission maximum when excited at the absorption maximum. hich b d bi di Db .
¢ Peaks contain a shoulder having a longer wavelefigfiuantum efficien- ers, which are based on bis(enediynyl)benzene units, as

cies were measured using fluorescein in 0.1 N NaOH as a staridard, potential candidates for materials applications by applying
436 nm. two synthetic approaches: a divergent method using alternat-
ing dibromoolefination and Pd/Cu-catalyzed cross-coupling

) ) . ) and a convergent method using Pd/Cu-catalyzed cross-
affected by this shift pattern in the abso_rphon spectra. The coupling between bromoaryl compounds and ethynyldiben-
fluorescence spectra of all these dendritic molecules show, 5 4ehyde as a dendron. The resulting dendrimers maintain
two strong emission bands in the visible region, which results || ico . structures in terms of the linking units involved
in their bluish-green colors (Figure 2b). Although dendrimer henyeen the generations. All three generations of dendrimers

G3 has alonger conjugation length th&, its absorbance o, hinit strong bluish-green fluorescence, especially the third-
and emission maxima are not red-shifted significantly, which generation oneG3, which has the highest extinction coef-
presumably arises because of the torsion between the benzenﬁcient and quantum efficiency in the whole series of

rings that is caused by the increased steric hindrance as th%ompounds. Hence, we believe that this approach will be

number of generations increases. Interestingly, of this seriesy,jicape for the construction of other structurally uniform
of dendrimers,G2 and G3 possess the highest quantum

L ) and well-definedr-conjugated functional dendrimers.
efficiencies ¢ = 0.79 and 0.80, respectively).
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