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Abstract: The 1,3-dipolar cycloaddition of a-aminonitrile oxides,
formed from a-amino-acids, to enamines of b-ketoesters affords 3-
(1-aminoalkyl)isoxazole-4-carboxylic esters that are converted via
pyrrolo[3,4-c]isoxazol-4-ones into 5-substituted 3-acetyltetramic
acids.
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During our synthetic studies towards the 3-acyltetramic
acids 1, a group of biologically active metabolites con-
taining the (enolised) tricarbonyl motif 21 and exemplified
by the structurally simplest example, tenuazonic acid 3,2

we have developed the strategy summarized in Scheme 1,
path A.3 This uses 5-(1-aminoalkyl)isoxazole-4-carboxyl-
ic esters 4 as latent tricarbonyl units, and the highly polar
enolic functionality is masked until late in the sequence.

The path A approach is successful for 5-(1-aminomethyl)-
isoxazoles 4 (R1 = H) but we have so far been unable to ex-
tend it to more substituted examples, 4 (R1 ≠ H),4 and
thence to 5-substituted 3-acyltetramic acids. We report
now on a second-generation isoxazole strategy that over-
comes this difficulty.

N–O Bond cleavage and hydrolysis of isoxazoles, to re-
veal a 1,3-dicarbonyl functionality, renders the N–O re-
giochemistry irrelevant. Our new strategy is thus based on
3-(1-aminoalkyl)isoxazole-4-carboxylic esters 5, Scheme
1, path B. The 4-carboxyisoxazoles of path A are prepared
by 1,3-dipolar cycloaddition of nitrile oxides to enamines
of g-amino-b-ketoesters derived from a-amino-acids;
path B involves reversing the origins of dipole and dipo-
larophile components, i.e. a-aminonitrile oxides derived
from a-amino-acids, with enamines of b-ketoesters as di-
polarophiles.

Initially methyl esters of the N-benzyloxycarbonyl-(S)-a-
amino-acids alanine, isoleucine, leucine and phenylala-
nine were reduced (DIBAL-H, toluene, –78 °C) to the cor-
responding aldehydes, which were not stored but
converted directly (NH2OH·HCl, NaOAc, EtOH aq., 70
°C) to the corresponding stable, solid oximes 6a-d as syn/
anti mixtures, without epimerisation. Subsequently this
was repeated with the N-tert-butoxycarbonylamino-esters
to afford oximes 6e-h (Scheme 2, Table 1).5 Treatment of
the oximes 6 with N-chlorosuccinimide (CHCl3, reflux)
resulted in C-chlorination. When these crude hydroxi-

 Scheme 1  (P = Protecting group)
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moyl chlorides were treated with Et3N in the presence of
an enamine formed from ethyl or tert-butyl acetoacetate
and pyrrolidine (toluene, reflux),6 the nitrile oxides
formed in situ underwent regiospecific cycloaddition with
spontaneous elimination of pyrrolidine7 to afford the ap-
propriate protected 3-(1-aminoalkyl)isoxazole-4-carbox-
ylates 7a-l in good yields (Table 1).8

The next stage was closure to a pyrroloisoxazolone. Treat-
ment of the 3-(N-benzyloxycarbonylalkyl)isoxazoles 7a-
c with HBr-AcOH (33% w/v; 20 °C, 16h) afforded, on
basification, amino-esters 8a-c (89, 79 and 96%, respec-
tively), which distilled unchanged and could not be cyc-
lised by a range of techniques. This is in accord with our
earlier findings for ethyl 5-aminomethyl-3-methylisox-
azole-4-carboxylate.3 In order to further activate the C-4
carboxy group, the N-benzyloxycarbonyl-4-carboxylic
acids 9a-d were prepared. Acids 9a (88%), 9b (62%) and
9c (66%) were obtained by saponification (NaOH aq., re-
flux, 4 h) of ethyl esters 7a-c, respectively; alternatively
and more efficiently, the acids 9a-d were prepared by ac-
idolysis (TFA, CH2Cl2, 0 °C, 3 h) of the tert-butyl esters
7i-l, respectively, in high yield (Table 2). Conversion into

the mixed anhydrides 10a-d (EtOCOCl, Et3N, THF,
0Æ20 °C) was complete after 16 h, as judged by 1H NMR
spectroscopy. However, on brief treatment of these anhy-
drides with HBr-HOAc (33% w/v; 20 °C, 1 h), instead of
the cyclisation expected on the basis of our earlier report
on the path A strategy,3 the major products isolated were
the amino-acids 11a-d as their HBr salts (Table 2).9

We decided therefore to complete lactam closure to the
desired 5,6-dihydro-4H-pyrrolo[3,4-c]isoxazol-4-ones
from the amino acids 11. In addition to the results above,
amino-acids 11a (86%) and 11b (94%) were also obtained
by hydrolysis (1M NH3 aq., reflux, 3 h) of the amino-es-
ters 8a and 8b, respectively. The method of choice for
preparation of amino-acids 11 was, however, direct aci-
dolysis (TFA, 20 °C, 4 h) of the N-tert-butoxycarbonyl-
isoxazole tert-butyl esters 7e-h, to afford amino-acids
11a-d, respectively, isolated as their HCl salts (2M HCl,
20 °C, 0.5 h) (Table 2). After evaluating a number of C-
activation protocols, we opted for lactam formation using
the water-soluble carbodiimide 1-(3-dimethylaminopro-
pyl)-3-ethylcarbodiimide hydrochloride (EDCI), to per-
mit extractive removal of the urea by-product. Thus the
HCl salts of 11a-d in DMF were treated with N-hydro-
xysuccinimide and EDCI (0Æ20 °C, 12 h) to afford pyr-
roloisoxazolones 12a-d in good yield (Table 2).10 The
identity of lactams 12b and 12c was confirmed by X-ray
crystal structure determinations.11

Scheme 2

Figure 1 X-ray crystal structure 
of pyrroloisoxazolone 12b of pyrroloisoxolone 12c

Figure 2 X-ray crystal structure 
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Unmasking of the tricarbonyl functionality was accom-
plished via hydrogenolysis of the bicyclic lactams 12a-d
(1 atm. H2, 10% Pd-C, MeOH, 20 °C, 12 h) and hydrolysis
of   the  intermediate  enamino-ketones  (2M NaOH aq.,
90 °C, 16 h) to afford the 3-acetyltetramic acids 13b-d
(Table 2).12 5-(1-Methylpropyl)-3-acetyltetramic acid
13b has the structure of the antitumour13 fungal metabo-
lite tenuazonic acid, and examination by 1H NMR
spectroscopy14 revealed that this hydrolysis step had gen-
erated  tenuazonic  acid 3  and  its  C-5 epimer as a 1:2
mixture  of  diastereoisomers.15,16  When  we employed
the    minimum   conditions   found   to  give  complete
hydrolysis  (0.05M NaOH aq., 50 °C, 20 h),  the  mixture
was  improved  to  4:1  in  favour of natural tenuazonic
acid 3.17

We have thus demonstrated that the isoxazole strategy for
preparation of 5-substituted 3-acyltetramic acids is suc-
cessful using 3-aminoalkylisoxazole-4-carboxylates; the
shortest route is 6Æ7 Æ11Æ12Æ13. Elaboration studies
on the pyrroloisoxazolones 12 as building blocks for more
complex 3-acyltetramic acids are underway.
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