2006 Vol. 8, No. 14 3033-3035

Efficient Synthesis of Fused Bicyclic Glutarimides. Its Application to (±)-Alloyohimbane and Louisianin D

Hung-Wei Chen,[†] Ru-Ting Hsu,[‡] Meng-Yang Chang,[§] and Nein-Chen Chang*,[†]

Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, Department of Nursing, Shu-Zen College of Medicine and Management, Kaohsiung County 821, Taiwan, and Department of Applied Chemistry, National University of Kaohsiung, Kaohsuing 804, Taiwan

ncchang@mail.nsysu.edu.tw

Received April 21, 2006

ABSTRACT

The reaction of α -sulfonyl acetamide 1 with various cyclic unsaturated esters 2 to fused bicyclic glutarimides is reported. Syntheses of (\pm) -alloyohimbane (4) and louisianin D (5) have been accomplished.

Bicyclic pyridines, piperidines, δ -lactams, and 2-pyridones are important core structures that are found in numerous biologically active compounds.¹ Although many methods have been reported for the synthesis of such compounds,² we envisioned that our previously developed [3+3] annulation of α -sulfonyl acetamide with α,β -unsaturated esters to give polysubstituted glutarimides³ would be ideal for

constructing fused bicyclic glutarimides which could be further converted to nitrogen-containing polycyclic alkaloids. ^{2b,4}

Thus, the reaction of α -sulfonyl acetamide 1 with various cyclic unsaturated esters 2 was investigated. The results are shown in Table 1. It is interesting to note that 3a and 3b are both cis-fused bicyclic compounds. The structures of 3a and 3b were unequivocally established by single-crystal X-ray

[†] National Sun Yat-Sen University.

[‡] Shu-Zen College of Medicine and Management.

[§] National University of Kaohsiung.

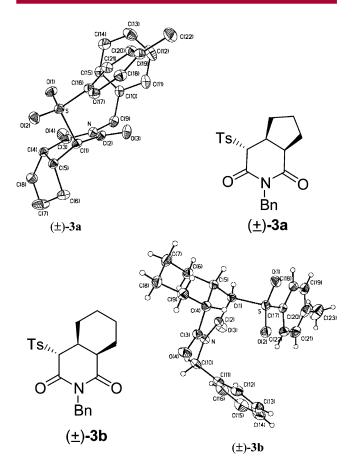
^{(1) (}a) Frederlesen, S. M.; Stermitz, F. R. J. Nat. Prod. 1996, 59, 41. (b) Stefanska, A. L.; Cassel, R.; Ready, S. J.; Warr, S. R. J. Antibiot. 2000, 53, 357. (c) Nakamura, M.; Kido, K.; Kinjo, J.; Nohara, T. Phytochemistry 2000, 53, 253. (d) Nakamura, M.; Chi, Y.-M.; Yan, W.-M.; Yonezawa, A.; Nakagugi, Y.; Toyokichi, Y.; Hashimoto, F.; Kinjo, J.; Nohara, T.; Sakurada, S. Planta Med. 2001, 67, 114. (e) Skaltsounis, A.-L.; Michel, S.; Tillequin, F.; Koch, M.; Pusset, J.; Chauviere, G. Helv. Chim. Acta 1985, 68, 1679. (f) Cook, C. E.; Wani, M. C.; Jump, J. M.; Jee, Y. M.; Fail, P. A. J. Med. Chem. 1995, 38, 753. (g) Ho, H. Y.; Chow, Y. S. J. Chem. Ecol. 1993, 19, 39. (h) Torsell, K.; Wahlberg, K. Acta Chem. Scand. 1967, 21, 53. (i) Scott, J. A.; Crews, F. T. J. Pharmacol. Exp. Ther. 1983, 224, 640.

⁽²⁾ For pyridines, see: (a) Jones, K.; Escudero-Hernandez, M. L. *Tetahedron* **1998**, *54*, 2275. (b) John, K.; Fiumana, A.; Escudero-Hernandez, M. L. *Tetrahedron* **2000**, *56*, 397. For piperidines, see: (c) Hong, B.-C.; Gupta, A. K.; Wu, M.-F.; Liao, J.-H.; Lee, G.-H. *Org. Lett.* **2003**, *5*, 1689. (d) Gunter, M.; Gais, H.-J. *J. Org. Chem.* **2003**, *68*, 8037. For δ-lactams, see: (e) Li, T.-T.; Lesko, P.; Ellison, R. H.; Subramanian, N.; Fried, J. H. *J. Org. Chem.* **1981**, *46*, 111. (f) Gracias, V.; Frank, K. E.; Milligan, G. L.; Aube, J. *Tetrahedron* **1997**, *48*, 16241. For 2-pyridones, see: (g) Yamamoto, Y.; Takagish, H.; Itoh, K. *Org. Lett.* **2001**, *3*, 2117.

Y.; Takagish, H.; Itoh, K. *Org. Lett.* **2001**, *3*, 2117.
(3) Chang, M.-Y.; Chang, B.-R.; Tai, H.-M.; Chang, N.-C. *Tetahedron Lett.* **2000**, *41*, 10273.

^{(4) (}a) Bergmeier, S. C.; Seth, P. P. *J. Org. Chem.* **1999**, *64*, 3237. (b) Beierle, J. M.; Osimboni, E. B.; Metallinos, C.; Zhao, Y.; Kelly, T. R. *J. Org. Chem.* **2003**, *68*, 4970. (c) Kogure, N.; Nishiya, C.; Kitajima, M.; Takayama, H. *Tetahedron Lett.* **2005**, *46*, 5857.

Table 1. Formation of Fused Bicyclic Glutarimides


	Ŕ 1	2	R 3
Entry	α-sulfonyl amide	Michael acceptor	product (yleid %)
1	Ts NH Bn	EtOO	Ts., 3 4 5 5 N O Bn
2	Ts NH Bn 1a	2a Eto O	(±)-3a(88%) ^a Ts.,, O Bn (±)-3b (83%) ^a
3	Ts ONH Bn	EtOO	Ts _(i)
4	Ts NH PMB	2c N Bn MeO O	Ts _{//,} PMB (±)-3d (64%) ^a
5	Ts N O NH	EIO 0 2e	Ts _{//,} N O N O (±)-3e (35%) ⁹

 a All yields were based on α -toluenesulfonyl acetamide.

analysis (Figure 1). The stereochemistries of 3c-e were determined by comparing their ¹H NMR spectra with those of 3a and 3b.

To demonstrate the utility of this one-pot process, the formal synthesis of (\pm) -alloyohimbane (4) was investigated. As shown in Scheme 1, regioselective reduction of 3e by sequential addition of triethylamine in THF and LAH reduction at refluxing temperature furnished 6. Treatment of 6 with sodium amalgam gave 4,5-annulated lactam 7. The spectral data of 7 were in agreement with those reported in the literature. 4a Lactam 7 has been converted to alloyohimbane (4). 4a,5 Thus, the formal synthesis of alloyohimbane (4) was accomplished.

For the synthesis of louisianin D (5)^{4b} produced by a species of *Streptomyces*,⁶ glutarimide **3a** was chosen as the

Figure 1. X-ray structures of (\pm) -3a and (\pm) -3b.

starting material. Following the procedure developed in our laboratory, ⁷ **3a** was reduced regioselectively to the corresponding hydroxylactam **8**. Treatment of **8** with boron triflouride furnished enlactam **9**. Allylation of **9** followed by dehydrosulfonation produced double-bond migrated 2-pyridone **10**. To accomplish the synthesis of louisianin D, **10** was first converted to the corresponding 2-chloropyridine **11**, which was then reduced to bicyclic pyridine **12** by treatment of **11** with zinc in acetic acid. ⁸ Regioselective hydroxylation of **12** with LHMDS and oxygen yielded **13**, ⁹ which was then further oxidized with the swern-oxidation

Scheme 1. Formal Synthesis of
$$(\pm)$$
-Alloyohimbane

3034 Org. Lett., Vol. 8, No. 14, 2006

^{(5) (}a) Sparks, S. M.; Shea, K. J. *Tetahedron Lett.* **2000**, *41*, 6721. (b) Aube, J.; Wang, Y. G.; Hammond, M.; Tanol, M.; Takusagawa, F.; Vandervelde, D. J. *J. Am. Chem. Soc.* **1990**, *112*, 4879.

⁽⁶⁾ Takamatsu, S.; Kim, Y.-P.; Hayashi, M.; Furuhata, K.; Takayanagi, H.; Komiyama, K.; Woodruff, H. B.; Omura, S. *J. Antibiot.* **1995**, *48*, 1090. (7) Chang, B.-R.; Chen, C.-Y.; Chang, N.-C. *Tetrahedron Lett.* **2002**, *43*, 3233.

⁽⁸⁾ Pampin, M. C.; Estevez, J. C.; Estevez, R. J.; Maestro, M.; Castedo, L. *Tetrahedron* **2003**, *59*, 7231.

reagent to afford **5** (Scheme 2). The spectral data of **5** were in agreement with those reported in the literature.⁶

In conclusion, we have developed a one-pot reaction procedure to cis-fused bicyclic glutarimides. Syntheses of (\pm) -alloyohimbane (4) and louisianin D (5) were reported. Further application of fused bicyclic glutarimides to more complicated pentacyclic indole alkaloids is underway in our laboratory.

Acknowledgment. Financial support from the National Science Council of the Republic of China is gratefully acknowledged.

Supporting Information Available: Additional spectroscopic data for all new compounds (¹H NMR in CDCl₃) and X-ray crystallographic data in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org. OL060958K

(9) (a) Boch, M.; Korth, T.; Nelke, J. M.; Pike, D.; Radunz, H.; Winterfeldt, E. *Chem. Ber.* **1972**, *105*, 2126. (b) Tang, C. S. F.; Morrow, C. J.; Rapoport, H. *J. Am. Chem. Soc.* **1975**, *97*, 159. (c) Shen, W.; Coburn, C. A.; Bornmann, W. G.; Danishefsky, S. J. *J. Org. Chem.* **1993**, *58*, 611. (d) Ragan, J. A.; Jones, B. P.; Meltz, C. N.; Teixeira, J. J., Jr. *Sythesis* **2002**, *4*, 483. (e) Stork, G.; Fujimoto, D. N. A.; Koft, E. R.; Balkovec, J. M.; Tata, J. R.; Dake, G. R. *J. Am. Chem. Soc.* **2001**, *123*, 3239.

Org. Lett., Vol. 8, No. 14, 2006