Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

1-Amido-1-phenyl-3-piperidinylbutanes – CCR5 antagonists for the treatment of HIV: Part 2

Christopher G. Barber^{*}, David C. Blakemore, Jean-Yves Chiva, Rachel L. Eastwood, Donald S. Middleton, Kerry A. Paradowski

Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Sandwich, Kent CT13 9NJ, UK

ARTICLE INFO

Article history: Received 12 December 2008 Revised 5 January 2009 Accepted 6 January 2009 Available online 10 January 2009

Keywords: HIV CCR5 Antagonist Triazole Piperidine

ABSTRACT

Optimisation of a series of 4-piperidinyltriazoles led to the identification of compound **28a** which showed good whole cell antiviral activity, excellent selectivity over the hERG ion channel and complete oral absorption.

© 2009 Elsevier Ltd. All rights reserved.

HIV is a global health problem which is estimated to have caused the deaths of 25 million people.¹ Decades of research have not removed the need for new treatments but have identified many potentia points of intervention that could be targeted. One essential step in the viral life-cycle is the infection of host cells. During the early phases of infection, this has been shown to occur mainly through the CCR5 receptor.² Further, CCR5 antagonists have been shown to inhibit cellular infection by R5-tropic HIV highlight-ing their potential to form part of the treatment of HIV.³ Following the identification of maraviroc, we wished to identify additional CCR5 antagonists with the potential to maintain activity against resistant strains that may develop following long-term clinical use.⁴

We have previously described the identification of 3-piperidinylbutane **1** (Fig. 1).⁵ The eutomer showed good activity in our cell fusion assay and excellent metabolic stability to human liver microsomes (HLM). Our knowledge of the SAR around maraviroc (**2**) led us to conclude that we should be able to increase potency by 10-fold whilst maintaining the metabolic advantage we had over the isolipophilic maraviroc.

Synthesis of 4-piperidinyl triazole **5** was achieved in four steps from 1-benzylpiperidin-4-amine (**3**) via reaction of acetohydrazide with the imidoyl chloride formed by treatment of **4** with phosphorus pentachloride to give **5** after removal of the *N*-benzyl-protecting group (Scheme 1). Ethyl 3-amino-3-phenyl-proprionate (**6**) was *N*-protected, converted to Weinreb amide **7**, and then treated with methyl Grignard reagent to afford ketone **8**. Reductive amination of **8** with **5** in the presence of titanium tetra isopropoxide gave **9** without control of the nascent stereocentre. Subsequent deprotection and acylation furnished **10** which were tested as ~1:1 mixtures of isomers (Table 1).

While ureas 10n and 10o and carbamate 10m were not tolerated, potency could be enhanced through modification of the amidic group (10a-l). In particular, a significant advantage was observed when the substituent was cyclic with cyclopentyl and cyclohexyl analogues 10g and 10h showing sub-nanomolar activity in our cell fusion assay; however the attendant increase in lipophilicity had a detrimental effect upon metabolic stability. Attempts to reduce this metabolic vulnerability through inclusion of polarity at the 4-position of the cyclohexyl moiety resulted in significant potency loss (10i-l). This is in contrast to the SAR seen within the tropane series where polarity at the 4-position had been well-tolerated.9 Geminal difluoro groups can occasionally be tolerated in lipophilic-favouring environments while also blocking CYP450-mediated metabolism.¹⁰ Comparison of 1 and 10q, and of 10h and 10p showed in both cases improved metabolic stability without potency loss.

Chromatographic separation of the diastereoisomers of **10p** and **10q** gave examples **11a–d** (Table 2).

We determined the absolute stereochemistry of **11c** through synthesis using the route shown in Scheme 2. Ketone **8** was reduced with sodium borohydride to diastereomers **12** and **13** which were readily separable by column chromatography. Absolute ste-

^{*} Corresponding author. Tel.: +44 1304 641182.

E-mail address: christopher.barber@pfizer.com (C.G. Barber).

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter \odot 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2009.01.008

Figure 1. Comparison of maraviroc with α-methyl piperidine 1.

reochemistries were determined by treatment of **12** and **13** with sodium hydride which resulted in cyclic carbamates **14** and **15**, respectively. nOe determinations of these cyclic carbamates enabled stereochemical assignment with reference to published values.¹¹ Direct conversion of **13** to the mesylate was low yielding which we believe resulted from competing intramolecular attack at the mesylate by the β -carbamate oxygen. This forced a change in protecting group to imine **16** which was successfully converted to the crude mesylate. This was undertaken at $-40 \,^{\circ}$ C with triethylamine added last to prevent formation of the corresponding chloride which would result in the scrambling of stereochemistry. Displacement of the mesylate by **5** followed by deprotection gave amine **17** which was converted to **11c** as before.

Compounds **11a** and **11c** showed good levels of metabolic stability and potency but the latter showed a superior window over activity at the hERG ion channel. Compound **11c** also showed excellent activity in a whole cell antiviral assay⁸ (IC₉₀ = 1.8 nM) comparable to maraviroc (IC₉₀ = 2.8 nM). Good metabolic stability in rat and dog liver microsomal preparations was also demonstrated. However, a rat PK study gave a relatively high clearance of 92 ml/min/kg which in conjunction with a modest volume of distribution (V_d) of 10 L/kg resulted in a half-life of just 1.3 h. Oral bioavailability was limited to 6% which was ascribed to PGP-mediated efflux on the basis of an efflux ratio of 39 in MDCK cells. This showed little advantage over maraviroc which had shown a similar level of bioavailability in rat pharmacokinetic studies and a slightly shorter $t_{1/2}$ (0.9 h) as a result of a modest clearance (74 ml/min/kg) and V_d (6.5 L/kg).

SAR from the tropane series suggested a potential solution to this poor oral absorption. We had noticed that isomeric triazoles **2** and **18** had shown significantly different biophysical properties (Table 3). In particular, the efflux ratio in caco-2 cells was improved with 1,2,4-triazole **18** over that seen with the 1,3,4-triazole **2** – a difference that remained when comparing isolipophilic analogues between the two series (data not shown).⁹ Further, the disconnect between log *D* and clog *P* led us to determine K_{a} s which in turn demonstrated that **18** was considerably more basic than **2** – which has been ascribed to the interaction between the nitrogen lone pair and the triazole's dipole.⁹ This analysis led us to conclude that the 1,2,4-triazoles could show an improved PK profile as a consequence of higher caco-2 flux and reduced metabolic clearance despite the increased lipophilicity.

Scheme 1. Preparation of 1-amido-1-phenyl-3-piperidinylbutanes. Reagents and conditions: (i) ^{*i*}BuCOCl, NaOH, Et₂O, rt, 96%; (ii) PCl₅, CH₂Cl₂, rt then AcNHNH₂ *t*-amyl alcohol then Δ toluene, 60%; (iii) NH₄CO₂H, Pd(OH)₂, EtOH, 60 °C, quant.; (iv) Boc₂O, Et₃N, THF, rt, quant.; (v) MeNHOMe.HCl, ^{*i*}PrMgCl, THF, 4 °C, 54%, (vi) MeMgBr, THF, 90%; (vii) Ti(O^{i} Pr)₄, **5**, EtOH, rt, 18 h then NaBH₃CN, rt, 21%; (viii) HCl, EtOH, rt, quant.; (ix) **3a–k**, **3o** and **3p**–R²O₂H, *O*-(7-azabenzotriazol-1-yl)-*N*,*N*,*N'*,*N'*-tetramethyluronium hexafluorophosphate, Et₃N, CH₂Cl₂, rt; **3l–n**–RCOCl, Et₃N, DMF, rt.

Table 1 1,3,4-Triazoles

Compound	R ¹	Fusion IC ₅₀ ^a (nM)	Log <i>D</i> _{7.4}	HLM Cl
10a	Ме	89.2		<8
10b	CF ₃ CH ₂ -	85.3		11.4
10c	CF ₃ CH ₂ OCH ₂ -	52.8		61.6
10d	cycloPrCH ₂ -	3.16	1.9	
10e	ⁱ Pr	3.11	_	<8
10f	cycloPr	3.93		<8
10g	cyclopentyl	0.137		
10h	cyclohexyl	0.513	2.5	139
10i		164		10.8
10j	o=s	4.87		
10k		6.12	0.5	
101		28.7		<8
10m	MeO	315	1.5	<7
10n	0 N	176	-	<8
100		187		
10p ⁶	F F	0.84	2.0	19.0
10q ⁷	F F	0.38	2.0	<7

^a For details of cell fusion assay, see Ref. 8.

 $^{\rm b}$ Units $\mu l/min/mg$ microsomal protein.

Table 2

Enantiopure difluorocycloalkyl-1,3,4-triazoles

R ¹	F F F		F	
Compound	11a	11b	11c	11d
α-Me Stereo	_	_	R	S
fusion IC ₅₀ (nM)	1.3 (<i>n</i> = 2)	62(n=4)	0.48 (<i>n</i> = 3)	49.9 (<i>n</i> = 4)
Log D	1.9	2.0	2.2	2.2
HLM	<7	16	12	<7
hERG ^a IC _{50 (µM)}	2.3	2.1	>10	>10

^a The concentration required to inhibit [³H]dofetilide binding to hERG stably expressed on HEK-293 cells.

A small set of 1,2,4-triazoles were prepared with the difluorocyclohexyl amide moiety (Scheme 3).

N-Benzylpiperidin-4-one **19** was reductively coupled to *N*-Bochydrazine and deprotected to yield 4-piperidinyl hydrazine **21** which was heated with aminoenamines **24** in the presence of acetic acid to yield 1,2,4-triazoles **26** following debenzylation. Reductive amination with *N*-Boc ketone **8** followed by deprotection and amide coupling gave targets **27–33** as a mixture of isomers at the α -methyl centre which were separated by column chromatography (Table 4).

Potency was reduced by 6-fold for 1,2,4-triazole **28a** over the isomeric 1,3,4-triazole **11c**. As expected, lipophilicity was increased but this did not impact upon the rate of microsomal clearance. In fact, **28a** shows remarkably little metabolic vulnerability illustrating the inherent stability of this chemotype despite a measured log*D* of 3 and a significant free fraction in human and rat plasma (fraction unbound = 0.15 and 0.24, respectively). Potency

Scheme 2. Determination of absolute stereochemistry of 11c. Reagents and conditions: (i) NaBH₄, EtOH, 70% anti:syn 2:1, chromatographic separation; (ii) NaH, THF, reflux; (iii) HCl, Et₂O; (iv) benzhydrylideneamine, CH₂Cl₂; (v) MsCl, CH₂Cl₂, -40 °C, then Et₃N; (vi) 5, K₂CO₃, MeCN, reflux; (vii) HCl, CH₂Cl₂.

Table 3

A comparison of 1,2,4 and 1,3,4 triazoles

^a Apical-to-basal/basal-to-apical.

^b Units µl/min/mg microsomal protein.

Scheme 3. Preparation of 1,2,4-triazoles. Reagents and conditions: (i) H₂NNHBoc, AcOH, CH₂Cl₂, rt, 18 h, 95%; (ii) NaBH₄, CH₂Cl₂, AcOH, rt, 24 h, quant.; (iii) HCl, MeOH, rt, 12 h, quant.; (iv) toluene, 120 °C, 6 h, 80%; (v) AcOH, 90 °C, 3 h, 80%; (vi) Pd(OH)₂, NH₄CO₂H, EtOH, 60 °C, 3 h, 91%; (vii) Ti(OⁱPr)₄, EtOH, **8**, rt, 16 h then NaBH₃CN, rt; (viii) HCl, EtOAc, rt, quant.; (ix) acid, O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate, Et₃N, CH₂Cl₂, rt.

Table 4 1,2,4-triazoles

	F N N N N N R^2 R^1 N R^2	
--	---	--

Compound	\mathbb{R}^1	\mathbb{R}^2	Fusion IC_{50} (nM)	$Log D_{7.4}$	HLM Cl ^a
27a (27b)	Et	Me	12 (252)	2.5 (2.7)	7 (25)
28a (28b)	ⁱ Pr	Me	3.08 (385)	3.0 (2.7)	15 (23)
29a (29b)	Me	Et	28 (549)	2.9 (2.8)	39 (166)
30a (30b)	Et	Et	15.7 (292)	3.3 (3.1)	40 (91)
31a (31b)	cycloPr	Me	15 (1000)	2.9 (2.9)	35 (99)
32a (32b)	CH ₂ OMe	Me	92.3 (4200)	2.6 (2.6)	13 (65)
33a (33b)	cycloBu	Н	20.9 (302)	3.1 (3.0)	117 (>440)

Key: More active isomer (less active isomer).

Units µl/min/mg microsomal protein.

was reduced for all other difluorocyclohexylamide analogues tested (27a and 29a-33a). Compound 28a showed the best balance of potency and metabolic stability together with an improved MDCK efflux ratio (A – B/B – A = 2) together and high flux (api-cal-basal $P_{apps} = 23 \times 10^{-6}$ cm/s). Whole cell antiviral activity was also good (IC₉₀ = 2.6 nM) and little activity was seen against the hERG channel (IC₅₀ > 10 μ M). While **11c** showed no measureable inhibition against human CYP isoforms, modest activity against CYP3A4 was observed for **28a** (IC₅₀ = 3.4 μ M). No activity was observed for other isoforms (1A2, 2C9 or 2D6) up to 30 µM.

An oral rat PK study showed 28a to be fully absorbed. This was a significant improvement over both 2 and 11c. However, the halflife had not been extended as despite a reduction in clearance to 30 ml/min/kg, the volume of distribution dropped to 2.5 L/kg giving a $t_{1/2}$ of 1 h. This was unexpected given the rise in log D measured from 11c to 28a.

We have demonstrated with **28a** that within the α -methyl piperidine chemotype, it is possible to combine both maraviroc-like levels of antiviral activity with complete oral absorption. Replacement of the 1,2,4-triazole of **11c** with regioisomeric 1,3,4-triazole exhibited by 28a led to an increase in lipophilicity that was not matched by a reduction in metabolic stability. While this change

significantly improved oral absorption, it had no impact upon the $t_{1/2}$ in rats giving a pharmacokinetic profile equivalent to maraviroc. These results have prompted further investigation into alternative heterocyclic systems which will be disclosed shortly.

Acknowledgements

We thank Manuel Perez for NMR analyses.

References and notes

 Report UNAIDS, 2008. http://www.unaids.org/en/KnowledgeCentre/HIVData/ EpiUpdate/EpiUpdArchive/2007/default.asp.

- 2. Repik, A.; Richards, K. H.; Clapham, P. R. Curr. Opin. Invest. Drugs 2007, 8, 130.
- 3. Barber, C. G. Curr. Opin. Invest. Drugs 2004, 5, 851.
- 4. Westby, M.; Smith-Burchnell, C.; Mori, J.; Lewis, M.; Mosley, M.; Stockdale, M.; Dorr, P.; Ciaramella, G.; Perros, M. J. Virol. **2007**, *81*, 2359.
- 5. Barber, C. G.; Blakemore, D. C. Bioorg. Med. Chem. Lett. 2009, 19, 1075.
- Price, D. A.; Gayton, S.; Selby, M. D.; Ahman, J.; Haycock-Lewandowski, S.; Stammen, B. L.; Warren, A. *Tetrahedron Lett.* 2005, 46, 5005.
- 7. Elend, D.; Fengas, D.; Fray, M. J. Synth. Commun. 2005, 35, 657.
- Dorr, P.; Westby, M.; Dobbs, S.; Griffin, P.; Irvine, B.; Macartney, M.; Mori, J.; Rickett, G.; Smith-Burchnell, C.; Napier, C.; Webster, R.; Armour, D.; Price, D.; Stammen, B.; Wood, A.; Perros, M. Antimicrob. Agents Chemother. 2005, 49, 4721.
- 9. Wood, A.; Armour, D.; King, F. D.; Lawton, G.. In Prog. Med. Chem.; Elsevier: Amsterdam, 2005; 43.
- 10. Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
- 11. Hioki, H.; Izawa, T.; Yoshizuka, M.; Kunitake, R.; Itô, S. *Tetrahedron Lett.* **1995**, 36, 2289.