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Acuminatin Methyl Ether by Radical Cyclisation of Epoxides Using a 
Transition-Metal Radical Source
Kalyan Kumar Rana, Chandrani Guin, Subhas Chandra Roy*
Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Calcutta � 700 032, India
Received 10 April 2001

Abstract: Short, efficient and stereoselective synthesis of a furano
lignans, (�)- Dihydrosesamin and (�)-Acuminatin Methyl Ether has
been achieved in good overall yield through the radical cyclisation
of epoxides using a Ti(III) reagent as the radical initiator.
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Lignans have attracted considerable interest over the
years due to their widespread occurrence in nature1 and
broad range of biological activities2. A major subgroup of
lignans is comprised of tri- and tetrasubstituted tetrahy-
drofurans, the synthesis of which poses interesting and of-
ten unsolved problems of stereocontrol. Dihydrosesamin
is one of the representative biologically active furano lig-
nans with two identical aromatic moieties, which was iso-
lated from Daphne tangutica Maxim. and has been used in
the treatment of rheumatism and toothache.3a Acuminatin
methyl ether1c (also named as 3 ,4 -dimethoxy-3,4-meth-
ylenedioxy-7,9 -epoxylignan-9-ol)3b with two different
aromatic groups was isolated from kernels of germinated
seeds of Virolamichelii.3b Although only a few interesting
syntheses providing these natural products have been re-
ported,4 intramolecular radical cyclisation of epoxides has

not yet been explored. We report here, short and stereose-
lective synthesis of (�)-dihydrosesamin (4a) and (�)-
acuminatin methyl ether (4b) in good overall yield by in-
tramolecular radical cyclisation of epoxides using a
Ti(III) species as the radical source. The radical initiator
Cp2TiCl was generated5 in situ from commercially avail-
able titanocene dichloride and zinc dust in tetrahydrofu-
ran.

Thus, the known6e isomeric mixture of epoxides 1 on
treatment with the bromide 2 in the presence of NaH in
THF-DMSO afforded the epoxides 3 (Scheme 1) as an
isomeric mixture in a ratio of 1:1 in 78-80% yield.7 The
ratio was determined from the distinguishable signals of
the secondary proton attached to the epoxide carbon in 1H
NMR at � 3.14 (m, ½ H) and 3.19 (m, ½ H) in 3a and at �
3.13 (m, ½ H) and 3.20 (m, ½ H) in 3b. Two isomers
could not be separated by the usual chromatographic
methods. The crude epoxide 3 was treated with Cp2TiCl
in THF (prepared in situ from Cp2TiCl2 and Zn-dust in
THF) at room temperature for 1 h followed by acidic
workup to furnish the cyclised product 4 together with a
minor isomer in a ratio of 5:1 in 89–90% yield. Although,
theoretically four isomers were possible, only two isomers
were formed where the protons on C-2 and C-3 were

Scheme 1
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trans. This can be rationalised from our earlier results6

and by invoking well-known conformational effects in the
intermediates8 although the NOE experiment (no en-
hancement) on C2-H and C3-H remained inconclusive.
The ratio of the two isomers was determined from the 1H
NMR spectrum of the crude cyclised product. The C-2
benzylic proton appeared as doublet at � 4.79 (J = 6.4 Hz)
for the major isomer and at � 4.58 (J = 8.0 Hz) for the mi-
nor isomer in the crude product from 3a and doublet at �
4.79 (J = 6.5 Hz) for the major isomer and at � 4.60
(J = 7.9 Hz) for the minor isomer in the crude product
from 3b. The major isomers 4a and 4b were separated by
preparative TLC (20% ethyl acetate in petroleum ether) in
64% and 63% yields respectively. The spectral data9 of
the major isomer 4a was identical with those of
dihydrosesamin3a,8 and the spectra data9 of 4b was identi-
cal with those of acuminatin methyl ether.3b The observed
stereochemistries of the major products were further sup-
ported by performing the NOESY experiment on 4a in
CDCl3. Since neither the minor isomer nor a derivative
formed by reaction of its hydroxy group could be separat-
ed chromatographically in pure form, its stereochemistry
remains uncertain. To our knowledge, this is the first re-
port of the synthesis of acuminatin methyl ether (4b). The
stereochemistry of the major product was finally con-
firmed by synthesising the bicyclic compound 5b from
3b. Thus, when 3b was treated with Cp2TiCl in THF fol-
lowed by addition of iodine, a major compound 5b along
with a trace of another compound were furnished. The
major compound 5b was separated by preparative TLC in
88% yield and its spectral data10 were identical with a nat-
ural compound, kobusin,11 which is also named as methyl
piperitol12 or spinescin.13

In conclusion, we have successfully achieved short and
stereoselective total synthesis of furano lignans contain-
ing both similar or different aromatic substituents, dihy-
drosesamin and acuminatin methyl ether in good overall
yield by radical cyclisation of epoxides using a transition-
metal radical source.
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