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readily derived via alkylation of the silyl-stabilized anion of 
o-(trimethylsilylmethy1)benzyldimethylamine (6)7 and the 
subsequent quaternalization with methyl halides. 

Reaction of o-(a-trimethylsily1pentyl)benzyltrimeth- 
ylammonium iodide (IC) with methyl acrylate was similarly 
caused by tetrabutylammonium fluoride to afford 1,2,3,4- 
tetrahydro-cis- 1 -butyl-2-carbomethoxynaphthalene (3-v)Io 
as  a major product in 88% yield. Some examples of cycload- 
ditions of o-xylylene intermediates with olefins and acetylenes 
a re  summarized in Table I. 

The  present method for generation of o-xylylenes and their 
trappings with olefins can be extended to intramolecular cy- 
cloaddition of o-xylylenes leading to polycycles. When a so- 
lution of 145 mg (0.55 mmol) of tetrabutylammonium fluoride 
in 10 m L  of acetonitrile was added dropwise over 1 h to a re- 
fluxing solution of 225 mg (0.44 mmol) of o-(1-trimethylsil- 
ylhept-6-eny1)benzyltrimethylammonium iodide ( le )"  in 5 
mL of acetonitrile, trans-octahydrophenanthrene (8)12 was 
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produced in 70% yield together with an  8% yield of the corre- 
sponding spiro[di-o-xylylene] derivative (9).13 W e  plan to 
report further studies on this reaction and its application to the 
synthesis of steroidal structure in the near future. 

Acknowledgment. W e  thank Dr. T. Suzuki of Kyoto Uni- 
versity for the I3C N M R  measurement. W e  are  grateful to 
Professor K. P. C .  Vollhardt for providing us with I3C N M R  
and 360-MHz N M R  spectra of trans-octahydrophenan- 
t hrene. 
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benzyltrimethylammonium iodide I and silyiationQ of the resulting 0- 
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stereochemistry of 8 was convincingly confirmed by comparison of its 13C 
NMR spectrum with that of trans-octahydrophenanthrene, which was 
provided by Professor Vollhardt. 

(13) Structure A was assigned to compound 9 on the basis of its IR and NMR 
spectra: IR (neat) 1640, 995, 909, 755 cm-l; NMR (CDC13 with Me,Si) b 
1.0-3.0(m,21 H),4.6-6.5(m, lIH),6.9-7.2(m,4H).Apossibilityofthe 
regioisomeric structure (E) for 9 was excluded by lack of IR absorption band 
at 890 cm-' characteric of the exomethylene structure. 
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(14) 3 4  NMR (100 MHz) (CDC13 with Me4Si) 6 1.28 (t, 6 H), 3.01 (br t, 2 H). 3.17 
(br d, 4 H), 4.21 (t, 4 H), 7.05 (s, 4 H). 
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nonaphthalene. 3-iv: NMR (CDC13 with Me4Si) 6 1.45 (d, 3 H), 1.8-2.3 (m, 
2 H), 2.6-3.3 (m, 4 H), 7.05 (br s, 4 H). 

(16) 44: NMR(lOOMHz)(CDCI:,with Me4Si)60.7-1.1 (m, 3H). 1.1-1.2(m, 10 
H),2.9-3.7(m,,2H),3.52-3.82(4~,6H), 7.0-7.4(m,4H),7.56and7.61 
(2% 1 H, olefinic proton). 
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Palladium(I1) Chloride Catalyzed 
Cope Rearrangements of Acyclic 1,5-Dienes1 

Sir. 
The Cope rearrangement of 1,5-dienes typically requires 

elevated temperatures.2 Catalytic methods for effecting this 
carbon-carbon-bond-forming transformation enhance its 
synthetic utility, and in recent years impressive accomplish- 
ments have been recorded in catalyzing Cope rearrangements 
of functionalized 1 $dienes3 The development of more general 
methods for catalyzing the rearrangement of simple 1,Sdienes 
remains, however, a challenging problems4 In 1966 Jonassen 
and c o - w o r k e r ~ ~ ~  reported that treatrhent of excess &,trans- 
1,5-cyclodecadiene a t  room temperature with bis(benzoni- 
trile)palladium( 11) chloride gave the crystalline palladium(I1) 
dichloride complex of cis- 1,2-divinylcyclohexane in 82% 
~ i e l d . ~ . ~  The  similar rearrangement of cis- 1,2-divinylcyclo- 
butanes to give palladium(I1) dichloride complexes of 1,5- 
cyclooctadienes has been extensively studied by Heimbach and 
co-workers9 These studies?-9 while clearly demonstrating that 
stoichiometric amounts of palladium(I1) chloride can promote 
the Cope rearrangement of strained cyclic 1,5-dienes, leave 
unanswered questions of the generality or potential catalytic 
nature of this reaction. In this communication we report for 
the first time that palladium(I1) promoted Cope rearrange- 
ments can be conducted in a catalytic fashion to produce the  
rearranged diene, rather than the diene-palladium(I1) di- 
chloride complex. We  moreover report that Cope rearrange- 
ments of many unstrained, conformationally flexible, acyclic 
1S-dienes are dramatically catalyzed by pal ladium(II)  
chloride salts and occur readily at room temperature. 

Treatment of 2-methyl-3-phenyl-l,5-hexadiene (1)lo with 
0.06 equiv of PdC12(PhCN)* in tetrahydrofuran (THF) at  
room temperature for 24 h produced dienes 2' and 3' I in 
a 93:7 ratio (87% yield after bulb-to-bulb distillation). In  
contrast, thermal Cope rearrangement of diene 1 required 
elevated temperatures (half-life, 13 h; 177 OC; C6D6 solvent) 
and proceeded less stereoselectively, to yield 2 and 3 in a 
kinetically ~ o n t r o l l e d ' ~  3:1 ratio. Although the ' H  N M R ,  IR, 
and mass spectra for stereoisomers 2 and 3 are nearly identical, 
stereochemical assignments follow unambiguously from I3C 
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Table I. Bis(benzonitrile)palladium(II) Chloride Catalyzed Cope Rearrangements of Methyl-Substituted 3-Phenyl- 1,5-hexadienes (4) a 

Journal of the  American Chemical Society / 102:2 / January 16, 1980 

PH 
I 

R1CH=CR2CR3CH2CR5=CHR6(q) - P H - C R ~ = C R ~ C H R ~ C H R ~ C R ~ = C H ~ ( ~ )  

product composition 
starting substituted reaction yield, % Cope Cope 

entry 4 time, h % recovery? product 5d  stereoselectivity, 70 

I unsubstitutede 24 93 ndf 
2 1-methyl 24 88 ndf 
3 2-methylg 30 92 99 93 E 
4 5-methylg 5 96 100 97 E 
5 6-methyl 24 91 ndf 
6 1,2-dimethylg 48 89 81 >90 E 
7 (E)-2,6-dimethylg 48 91 59 >90 E 
8 (E)-3,6-dimethyle 24 89 ndf 
9 2,5-dimethyl 24 90 ndf 

10 (E)-2,3,6-trimethylg 18 88 100 71 E 

a A 0.1 M THF solution of the starting diene (>98% pure) was treated with 0.10 equiv of PdC12(PhCN)2 at room temperature with stirring. 
Reactions were allowed to proceed until isomer ratios became constant or for 24 h if no conversion was observed. By GLC analysis. Combined 
yield of 4 and 5 isolated after concentration and bulb-to-bulb distillation to remove the catalyst. The remainder of the material was the starting 
diene 4. In no case were significant products other than 5 detected (estimated detection limits, 2-4%). For entries 3 and 7 reversibility was 
confirmed by treatment of the Cope product with PdC12(PhCN)2. e A suspension was formed upon catalyst addition. f None detected by GLC. 
g The values reported represent the mean of three experiments. Isomer ratios were reproducible within 52%. 

NMR spectra which show character is ti^'^ absorptions for the 
E isomer 2 a t  17.9 (CH3) and 40.2 ppm (C-3), and for the Z 
isomer 3 a t  24.0 (CH3) and 32.1 ppm (C-3). The catalyzed 
rearrangement of 1 was remarkably free of competing side 
reactions, e.g., carbon-carbon double-bond isomerizations,l6 
and GC-MS analysis showed that Cl3H16 isomers other than 
1-3 comprised <1% of the crude reaction product. W e  have 
examined a number of potential catalysts and reaction con- 
ditions for the transformation of eq 1. The  PdC12(PhCN)2 

Ph$ / _t P h J j  + p+ ( , )  

I 2 3 

catalyzed rearrangement showed significant solvent effects 
and was considerably faster in the  benzene than in THF or 
CH2C12. In benzene the Cope rearrangement of 1 was com- 
plete within 1 h at room temperature [0.10 equiv of 
PdC12(PhCN)2], and a catalytic rate acceleration of l O l o  (1  
M catalyst) can be estimated for this transformation.” In- 
terestingly, Pd(OAc)z, Pd(Ph3P)4, and Hg(OCOCF3)2I9 were 
ineffective catalysts.20 In all of the solvents that we examined, 
the PdC12(PhCN)2 catalyzed rearrangement of 1 left 0.5--2% 
of 1 unchanged a t  long reaction times. Tha t  this reflected the 
equilibrium conversion a t  25 OC was confirmed by treatment 
of the pure E diene 2 with PdC12(PhCN)2 (0.10 equiv, T H F ,  
25 OC) to give after 36 h a mixture of 1 (O.6%), 2 (92%), and 

To  explore the scope of the PdCl2 catalyzed Cope rear- 
rangement, a series of methyl-substituted 3-phenyl- 1,5-hex- 
adieneslOs’l were treated identically (Table I) with 0.10 equiv 
of PdC12(PhCN)2 a t  room temperature in THF.  With half of 
the substituted dienes examined (Table I), rearrangement 
occurred readily under these mild conditions to give the cor- 
responding Cope products” in high yields. As was’ observed 
with 1, the catalyzed Cope rearrangements were extremely 
clean, and only traces of other products were detected. The  
successful rearrangement of (E)-2,6-dimethyl-3-phenyl- 
1,s-hexadiene to give ( E ) -  and (Z)-2,4-dimethyl-l-phenyl- 
1,s-hexadiene (eq 2) is particularly significant, since it dem- 

3 (7.4%). 

Ph,& ~ P h d  

( 2 )  

Me Me 

onstrates that  a [3,3] shift is involved in the catalyzed rear- 
rangement. There are significant structural limitations to the 
PdC12(PhCN)2 catalyzed Cope rearrangement under these 
conditions, since five of the substituted 1 ,5-hexadienes ex- 
amined gave no trace of Cope products. In the case of entries 
1 and 8 this failure may be due to precipitation of the catalyst 
as an insoluble diene-palladium(I1) dichloride complex, since 
cloudy suspensions were formed in these cases upon addition 
of the catalyst. The  methyl substituent effects observed are  
dramatic. I t  would appear that ,  a t  least under these experi- 
mental conditions, the PdC12(PhCN)2 catalyzed Cope rear- 
rangement of acyclic 1,5-dienes requires a substituent a t  either 
C-2 or C-5. Interestingly, if both these positions are substituted 
(entry 9), no rearrangement occurs. Although we feel a de- 
tailed discussion of the mechanism of the PdCl2 catalyzed 
rearrangement is premature a t  this point, we note that the 
critical role indicated for substituents a t  carbons 2 and 5 of the 
acyclic 1 $diene may be rationalized by a “cyclization-induced 
rearrangement” mechanism.lga In such a process (eq 3), 

6-6-5 - - ( 3 )  

- P d X  

preferential Pd(I1) complexation with the least substituted 
double bond2’ would be followed by cyclization to a cyclohexyl 
cation,Z2 if a donor substituent was present a t  C-2. A substit- 
uent a t  C-5 should hinder this transformation by disfavoring2’ 
initial 7r complexation. 

To  confirm that the 3-phenyl substituent did not play a 
significant role (other than providing a thermodynamic driving 
force) in the catalyzed rearrangements reported here, we ex- 
amined 2-ethyl-3-methyl- 1,Shexadiene (6) under similar 
conditions. When 6 was treated a t  room temperature for 8 h 
with 0.10 equiv of PdCI2(PhCN)2, it was readily e q ~ i l i b r a t e d ~ ~  

\PI$ 
/ \  

I 

6 ( 3 4 % )  7 (66%) 

in high yield with its Cope isomer 7 (eq 4). Diene 7 is believed 
to be primarily the E s t e r e ~ i s o m e r , ~ ~  since it was homogeneous 
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by G L C  and showed only a single vinyl methyl absorption a t  
6 1.57 in the 90-MHz 'H N M R  spectrum. 

The  ability to conduct the Cope rearrangement of acyclic 
1 $dienes in a catalytic fashion a t  room temperature should 
have significant implications in synthesis. W e  are  continuing 
to explore the scope, mechanism, and synthetic applications 
of this mild carbon-carbon-bond-forming reaction. 
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Reduction of cu,&Acetylenic Ketones 
with B-3-Pinanyl-9-borabicyclo[3.3.l]nonane. 
High Asymmetric Induction in Aliphatic Systems 

Sir: 
The introduction of asymmetry in a molecule by means of 

a chiral reagent is a potentially attractive strategy in natural 
product synthesis. One  of the simplest and most useful trans- 
formations of this type is the reduction of a prochiral ketone 
to a carbinol. Several reagents will perform this reduction with 
high asymmetric induction in simple aryl How- 
ever, these reagents have been less successful with the aliphatic 
ketones of interest to most synthetic chemists. Herein we report 
that the chiral reducing agent prepared from (+)-a-pinene and 
9-borabicyclo[3.3.1]nonane (9-BBN) will reduce a ,P-a-  
cetylenic ketones under mild conditions to secondary propar- 
gylic alcohols of exceptionally high enantiomeric purity. Since 
the products from such reductions are useful intermediates in 
synthetic organic ~ h e m i s t r y , ~  such a reagent may be of enor- 
mous practical value. 

B-3-Pinanyl-9-BBN has been shown to be highly effective 
in the reduction of aldehydes to  chiral 1-deuterio primary al- 
c o h o l ~ . ~  The alcohols from these reductions a re  consistently 
of the same c ~ n f i g u r a t i o n . ~  Similarly, all of the acetylenic 
ketones which we have examined are  consistently reduced to 
the propargylic alcohols of the same absolute configuration. 
Alcohols of the opposite configuration may be obtained with 
the reagent prepared from (-)-&-pinene. These reactions are 
thought to proceed through the bimolecular exchange mech- 
anism6 depicted in Scheme 1. The  acetylene moiety seems to 
have the same steric influence as hydrogen in aldehyde re- 
ductions.la This is to be contrasted to the LiAlH4-Darvon. 
alcohol or N-methylephedrine complexes which, it has been 

Scheme I 
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