This article was downloaded by: [University of Regina] On: 10 May 2013, At: 01:38 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Organic Preparations and Procedures International: The New Journal for Organic Synthesis

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/uopp20

REGIOSELECTIVE SYNTHESIS OF E-OXIMES CATALYZED BY FERRIC CHLORIDE UNDER SOLVENT-FREE CONDITIONS

Hossein Eshghi^{a b} & Asadollah Hassankhani^b

^a Department of Chemistry, Ferdowsi University of Mashhad, Mashhad, 91775-1436, IRAN

^b Department of Chemistry, Sistan & Baluchestan University, Zahedan, 98135-674, IRAN E-mail: Published online: 06 Feb 2009.

To cite this article: Hossein Eshghi & Asadollah Hassankhani (2005): REGIOSELECTIVE SYNTHESIS OF E-OXIMES CATALYZED BY FERRIC CHLORIDE UNDER SOLVENT-FREE CONDITIONS, Organic Preparations and Procedures International: The New Journal for Organic Synthesis, 37:6, 575-579

To link to this article: <u>http://dx.doi.org/10.1080/00304940509354989</u>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <u>http://www.tandfonline.com/page/terms-and-conditions</u>

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

REGIOSELECTIVE SYNTHESIS OF E-OXIMES CATALYZED BY FERRIC CHLORIDE UNDER SOLVENT-FREE CONDITIONS

Submitted by (06/08/05)

Hossein Eshghi*^{†,††} and Asadollah Hassankhani^{††}

 Department of Chemistry, Ferdowsi University of Mashhad Mashhad 91775-1436, IRAN
Department of Chemistry, Sistan & Baluchestan University

Zahedan 98135-674, IRAN E-mail: heshghi@ferdowsi.um.ac.ir

Oximes are useful for the isolation, purification and characterization of carbonyl compounds.^{1.2} They undergo a number of transformations such as the Beckmann and the Neber rearrangement, halogenation, nitration, deoxygenation, or reaction with organometallic reagents.³ The Beckmann rearrangement of cyclohexanone oxime to ε -caprolactam has been used as a powerful method for its manufacture industrially.⁴ Oximes are typically prepared by the reaction of a carbonyl compound with hydroxylamine hydrochloride and a base such as pyridine.⁵ Except in the case of symmetrical ketones, two isomeric oximes are generated, Z and E, which have different physical and biological activities.⁶ Chemical methods for the synthesis of oximes usually give a mixture of the two geometrical isomers which must be separated by chromatography or recrystallization. However, the reagents that have been used for the oximation of ketones or the Beckmann rearrangement can also catalyze the interconversion of these geometrical isomers.⁷ The rate of equilibrition of a mixture of Z and E isomers and the position of the equilibrium is temperature dependent;^{7a} therefore, temperature control is critical. Although the reaction of carbonyl compounds with hydroxylamine hydrochloride is accelerated by phasetransfer catalyst,⁸ microwave irradiation,⁹ or solvent-free conditions,¹⁰ the selectivity is not affected. A few methods are available of the synthesis of Z and E isomer of aldoximes.^{7d, 11,12} In many cases, E isomers were obtained from the Z forms by either the hydrochloride salt method¹³ or by column chromatography.¹⁴ Recently, it has been shown that antibodies^{7d} and molecular sieve $3Å^{15}$ can catalyze the stereoselective oxime formation. Thus, there is considerable interest in finding more selective methods of oximes synthesis. We now report a very simple and efficient procedure for the selective preparation of E-oximes from ketones and hydroxylamine hydrochloride using the FeCl₃•6H₂O in solventless conditions (Scheme).

Various ketones were ground with hydroxylamine hydrochloride in the presence of $FeCl_3 \cdot 6H_2O$ in solvent-free media. In this approach, the corresponding *E*-ketoximes were

OPPI BRIEFS

obtained in quantitative yield in 10 minutes (*Table*). In the case of aryl substituted aliphatic ketones, the amount of $\text{FeCl}_3 \cdot 6\text{H}_2\text{O}$ was increased to 0.5 equimolar and the reactions were performed at ambient temperature for 15-30 minutes. Acetophenone and its derivatives which

Entry	R ₁	R ₂	FeCl ₃ •6H ₂ O	Temp.	Time	Yield ^{a,b}	bp/ Torr or mp (°C)	
		-	to Substrate (mole ratio)	(°C)	(min)	(%)	Found	Lit.
1	Et	Me	0.2	25	10	93	152-5/760	152-3/76017
2	n-Pro	Me	0.2	25	10	91	164-6/760	167/760 ¹⁷
3	n-Bu	Me	0.2	25	10	94	180-3/760	185/76018
4	i-Bu	Me	0.2	25	10	88	78-80/760	77-8/760 ¹⁷
5	C ₆ H ₅ CH ₂ CH ₂	Me	0.5	50	15	95	83-5	85 ¹⁹
6	C ₆ H ₅ CH ₂	Me	0.5	50	20	90	68-9	68-70 ¹⁸
7	C ₆ H ₅	Et	2	50	50	93	53-4	53-5 ¹⁷
8	C ₆ H ₅	Me	2	50	50	91	56-8	59-61 ¹⁵
9	p-MeC ₆ H ₄	Me	2	50	50	94	85-6	85-7 ¹⁵
10	$p-ClC_6H_4$	Me	2	50	50	89	93-4	93-5 ¹⁵
11	$p-NO_2C_6H_4$	Me	2	50	45	92	170-2	172-4 ^{7d}

Table 1. Conversion of Ketones into E-Ketoximes in the Presence of FeCl₃•6H₂O

a) Isolated yield. b) All the compounds give satisfactory spectral analysis (IR and ¹H NMR).

Table 2.¹H NMR Data of Products

Cmpd

¹H NMR Data (δ , 100 MHz, CDCl₃, 25°C)

- 1 1.1 (t, 3 H, J = 7.5 Hz, CH_3), 1.9 (s, 3 H, CH_3), 2.0-2.5 (m, 2H, CH_2), 8.3 (broad, = NOH)
- 2 0.9 (t, 3 H, J = 7.5 Hz, CH_3), 1.2-1.6 (m, 2 H, CH_2), 1.9 (s, 3 H, CH_3), 2.0-2.4 (m, 2H, CH_2), 8.7 (broad, = NOH)
- **3** 0.9 (t, 3 H, J = 7.5 Hz, CH₃), 1.0-1.6 (m, 4 H, CH₂CH₂), 1.9 (s, 3 H, CH₃), 1.9-2.3 (m, 2H, CH₂), 8.0 (broad, = NOH)
- 4 0.9 (d, 6 H, J = 7 Hz, CH_3), 2.0 (s, 3 H, CH_3), 1.9-2.6 (m, 3H, $CHCH_2$), 8.3 (broad, = NOH)
- **5** 1.9 (s, 3 H, CH_3), 2.5 (m, 2 H, CH_2), 2.8 (m, 2H, CH_2), 7.0-7.4 (m, 5 H, ArH), 7.7 (broad, = NOH).
- 6 1.8 (s, 3 H, CH_3), 3.5 (s, 2 H, CH_2), 7.0-7.3 (m, 5 H, ArH), 9.1 (broad, = NOH)
- 7 1.0 (t, 3 H, J = 7.5 Hz, CH₃), 2.6 (q, 2 H, J = 7.5 Hz, CH₂), 7.0-7.3 (m, 5 H, ArH), 9.6 (broad, = NOH).
- 8 2.3 (s, 3 H, CH_3), 7.0-7.6 (m, 5 H, ArH), 10.0 (broad, = NOH)
- 9 2.4 (s, 3 H, CH₃), 2.5 (s, 3 H, CH₃), 7.3 (d, 2H, J = 8 Hz, ArH), 7.5 (d, 2H, J = 8 Hz, ArH), 9.4 (broad, = NOH).
- 10 2.3 (s, 3 H, CH₃), 7.1-7.6 (m, 5H, ArH), 8.3 (broad, = NOH)
- 11 2.5 (s, 3 H, CH_3), 8.0 (d, 2H, J = 9.5 Hz, ArH), 8.0 (d, 2H, J = 9.5 Hz, ArH), 10.2 (broad, = NOH).

OPPI BRIEFS

failed in above conditions reacted only in the presence of two equivalents $FeCl_3 \cdot 6H_2O$ at ambient temperature for 45-50 minutes. However, symmetrical ketones such as 3-pentanone, cyclopentanone and cyclohexanone give the corresponding oximes as the only products in high yields under these conditions.

The purity of the products was determined by ¹H NMR and IR spectra, which showed the exclusive formation of the corresponding *E*-ketoximes whose structure was confirmed by melting points comparison. In all the IR spectra, the OH and C=N groups of ketoximes were observed around 3250 and 1640-1670 cm⁻¹, respectively and in ¹H-NMR spectra the OH group appeared around δ 7.7-10.2 as a broad singlets. The chemical shift values of methyl and methylene groups that are syn to the hydroxyl group are always higher than those of the corresponding anti group.²⁰ Our data did not show the presence of the Z-isomers in the crude products, except for 5% of Zisomer in the cases of *entries 5 and 6* in the *Table*. Also, we only detected and isolated the *E*ketoximes according to TLC examinations and melting point comparison. We suggest that it is due to the fact that the Z-E equilibrium is very rapid and highly shifted towards the E-ketoxime as the thermodynamic product. The regioselectivity may be rationalized by the different steric hindrance around the oxime double bond of the plausible intermediates as formed by interaction of hydroxyl group and FeCl_a. Recently, excess of anhydrous ferric chloride was used as a reagent for the Beckmann rearrangement of ketoximes under solvent-free conditions in 80-90°C.16 We suggested that the Lewis acid strength of the hydrated ferric chloride is diminished such that only the oximes are obtained chemoselectively and rearrangement does not occur.

In conclusion, the reported procedure is a novel method for the facile preparation of ketoximes in solvent-free media. In addition, this simple and readily available reagent affords various ketoximes in good to excellent yields (85-95%), and high stereoselectivity in shorter reaction time (10-50 min).

EXPERIMENTAL SECTION

All materials and solvents were obtained from Merck Co. (Germany) and Fluka (Switzerland). All mps were recorded in open capillary measurements and are uncorrected. IR spectra were determined on a Shimadzu IR 470 spectrophotometer. ¹H NMR spectra were obtained on Bruker-80 and 100 MHz instruments using TMS as an internal standard.

Preparation of *E***-Ketoximes. General Procedure.**- A mixture of the ketone (1 mmol), hydroxylamine hydrochloride (0.14 g, 2 mmol) and FeCl₃•6H₂O (0.054-0.54 g, 0.2-2 mmol) was grounded thoroughly in a mortar for 10 minutes. Usually, an immediate color change was observed. The completion of the reaction was monitored by TLC examination (CH₂Cl₂/CH₃OH 9:1). After the completion of the reaction, water (15 mL) was added to the mixture. The resulting solution was extracted with CH₂Cl₂ (2 x 10 mL). The extracts were combined and washed with saturated sodium hydrogen bicarbonate (10 mL). The organic layer was dried and evaporated

under vacuum to give the ketoximes in high purity (based on TLC, ¹H NMR, IR and mps). The structures of the products were confirmed by the melting points^{7d,15,17-19} and ¹H NMR^{15,17,20} comparisons.

REFERENCES

- T. W. Greene and P. G. Wuts, "Protective Groups in Organic Synthesis", 2nd edn. P 24, Wiely, New York, 1999.
- 2. A. R. Hajipour, S. Khoee and A. E. Ruoho, Org. Prep. Proced. Int., 35, 527 (2003).
- 3. E. Abele and E. Lukevics, Org. Prep. Proced. Int., 32, 235 (2000).
- 4. R. E. Gawley, Org. React., 35, 1 (1988) and references cited therein.
- 5. I. J. Finar and G. H. Lord, J. Chem. Soc., 3314 (1957).
- a) J. V. Burakevich, A. M. Lore and G. P. Volpp, J. Org. Chem., 36, 1 (1971); b) U. Brandt and G. von Jagow, FEBS Lett., 287, 215 (1991); c) H. Tecle, D. J. Lauffer, T. Mirzadegan, W. H. Moos, D. W. Moreland, M. R. Pavia, R. D. Schwarz and R. E. Davis, Life Sci., 52, 505 (1993).
- a) P. A. S. Smith and E. P. Antoniades, *Tetrahedron*, 9, 210 (1960); b) H. Kusama, Y. Yamashita and K. Narasaka, *Bull. Chem. Soc. Jpn*, 68, 373 (1995); c) K. Narasaka, H. Kusama, Y. Yamashita and H. Sato, *Chemistry Lett.*, 489 (1993); d) T. Uno, B. Gong and P. G. Schultz, *J. Am. Chem. Soc.*, 116, 1145 (1994).
- a) T. Liu and Y. Chen, *Guangzhou Huagong*, 25, 28 (1997); *Chem. Abstr.* 129, 122416t (1998); b) L. O. Krbechek, *US Patent*, 5,349,088 (1994); *Chem. Abstr.* 121, 300583q (1994).
- a) M. Puciova and S. Toma, Collect. Czech. Chem. Commun., 57, 2407 (1992); Chem. Abstr. 118, 191946a (1993); b) A. K. Mitra, A. De and N. Kurchaudhuri, J. Indian Chem. Soc., 76, 218 (1999); c) A. R. Hajipour, S. E. Mallakpour and G. Imanzadeh, J. Chem. Res. (S), 228 (1999).
- A. R. Hajipour, I. Mohammadpoor-Baltork, K. Nikbaght and G. Imanzadeh, Synth. Commun., 29, 1697 (1999).
- 11. H. Sharghi and M. H. Sarvari, Synlett, 99 (2001).
- 12. G. Zvilichovsky and L. Heller, Synthesis, 563 (1972).
- 13. C. R. Hauser and D. S. Hoffenberg, J. Org. Chem., 20, 1491 (1955).
- A. I. Vogel, "Text Book of Practical Organic Chemistry", 4th Ed. Longman, London, 1113 (1986).

- 15. M. A. Bigdeli, M. M. Alavi Nikje, S. Jafari and M. M. Heravi, J. Chem. Research (S), 20 (2002).
- 16. M. M. Khodaie, F. A. Meybodi, N. Rezai and P. Salehi, Synth. Commun., 31, 2047 (2001).
- R. C. Weast and J. G. Grasselli, Handbook of Data on Organic Compounds; 2nd Edn. (1989).
- J. Buckingham and S. M. Donghy, (Eds.) Dictionary of Organic Compounds; Chapman and Hall: New York, 5th Edn. (1982).
- 19. F. Richter, *Beilsteins Handbuch der Organischen Chemie*; Springer-Verlag: Berlin, Germany, II, 244, (1948).
- 20. J. Esteban, A. M. Costa, F. Urpi and J. Vilarrasa, Tetrahedron Lett., 45, 5563 (2004).

TWO-STEP PROTIC SOLVENT-CATALYZED REACTION OF PHENYLETHYLAMINE WITH METHYL ACRYLATE

Submitted by H. Fakhraian* and M. Babaie Panbeh Riseh

(06/14/05)

Department of Chemistry Imam Hossein University, Tehran, IRAN E-mail: fakhraian@yahoo.com

The reaction of phenylethylamine (1) with methyl acrylate (2), performed in two steps, led to N-(β -carbomethoxyethyl)phenethylamine (3) and N, N-bis-(β -carbomethoxyethyl)phenethylamine (4). Compounds 3 and 4 are useful for the preparation of important and valuable compounds, e. g. 1-(2-phenethyl)piperidine-4-one and its derivatives, utilized in the synthesis of analgesics such as *fentanyl*, ¹⁻⁸ carfentanyl, ⁹ 3-methylfentanyl, ¹⁰⁻¹³ and lactam analogues of *fentanyl*.¹⁴

