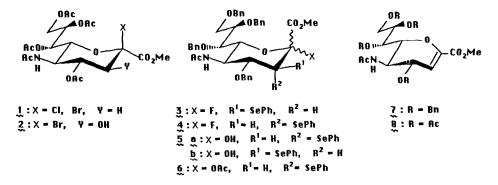
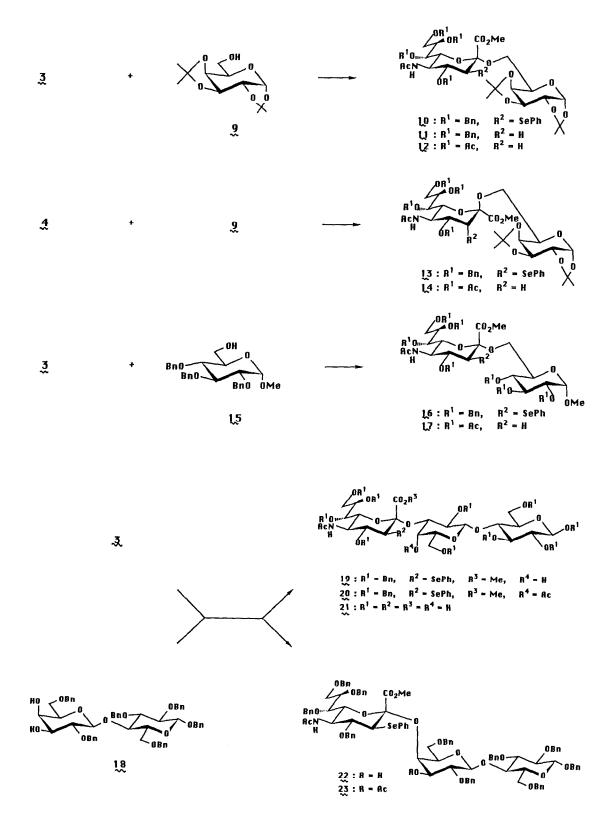
AN EFFICIENT APPROACH TO STEREOSELECTIVE GLYCOSYLATION OF N-ACETYLNEURAMINIC ACID: USE OF PHENYLSELENYL GROUP AS A STEREOCONTROLLING AUXILIARY


Yukishige Ito and Tomoya Ogawa* RIKEN (The Institute of Physical and Chemical Research) Wako-shi, Saitama, 351-01 Japan


Abstract: α -Selective glycosylation of N-acetylneuraminic acid was achieved by use of the fluoride 3 which carries 3β -phenylselenyl substituent.

N-Acetylneuraminic acid (NeuAc) which is one of the principal constituents of glycoconjugate¹⁾²⁾³⁾ exists at the non-reducing ends of glycan chains solely as a 2α -glycoside. Hence α -selective glycoside formation of NeuAc is of definite significance. Commonly employed glycosyl donors, namely 2-chloro⁴⁾ or - bromo⁵⁾ derivatives 1 usually result in poor stereoselectivity and low yield of glycosylated products⁶⁾. A considerable improvement was made by Kondo et al.⁷⁾, who employed the 2β -bromo- 3β -hydroxy derivative 2 and succeeded in the first synthesis of α -NeuAc($2\rightarrow 8$)NeuAc derivatives. However, the degree of α -selectivity was not predictable and α : β ratio ranges from 4.3:1 to 1:1.2 depending on the substrate. On the other hand, stereoselective syntheses of 2-deoxyglycosides aided by the neighbouring group participation of sulfide or selenide substituents are well precedented⁸). Accordingly, it was expected 3β -thio or -seleno substituted donors derived from NeuAc to give α -glycosylated products via episulfonium or episelenonium ions in a predictable manner. We report here the highly stereoselective synthesis of 2α -glycosides of NeuAc by use of the 3β -selenyl fluoride 3.

Obviously, the most crucial for the senario described above is the stereoselective introduction of 3β -selenyl substituent. This seemingly difficult problem could be simplified by choosing the hydroxy-selenide 5 as an intermediate, which is epimerizable to 3β (equatorial) configuration 5b, irrespective of the original stereochemistry at C-2 and C-3.

As a precursor of the hydroxy-selenide 5 2,3-dehydro derivative 7, $[\alpha]_D$ -3.3° (c 1.0)⁹) was chosen, which in turn was synthesized from tetraacetate 8⁴)¹⁰) (1. NaOMe, MeOH, 2. PhCH₂Br, KOH, BaO, Bu₄NI, DMSO, 3. CH₂N₂, Et₂O-MeOH; 76% overall). A mixture of 7 and phenylselenenyl acetate¹¹) (PhSeOAc; 2.0 equiv) in 1,2-dichloroethane was treated with trimethylsilyl triflate (TMSOTf; 0.1 equiv) at 0°C for 30 min to give acetoxy-selenide 6¹²) (79%) together with hydroxy-selenides 5a (11%) and 5b (8%). Treatment of a mixture of 6, 5a and 5b thus obtained with 0.1M methanolic sodium methoxide (room temp. 18h) caused deacetylation as well as epimerization at C-3 to give a 66:34 mixture of 5b and 5a in a 94% yield, which is readily separated by silica gel chromatography. After recycling of recovered 5a twice, crystalline β selenide 5b¹³) was obtained in an 83% overall yield from 7. Conversion of 5b to the fluoride 3 was easily achieved by treatment with DAST¹⁴) (diethylaminosulfur trifluoride) in 2:1 toluene-1,2-dichloroethane at -40°C (88%; $\alpha:\beta \ge 20:1$).

entry ^{a)}	fluoride	alcohol(equiv)	promoter ^{b)}	solvent	temp,time	products yield(%)
						10 13 7
1	3	9 (1.5)	Α	$(CICH_2)_2$	r.t., 5h	18 _ 69
2	3	9 (1.5)	Α	toluene	r.t., 18h	34 _ 60
3	3	9 (1.5)	Α	CCl ₄	r.t., 18h	46 _ 33
4	3	9 (1.5)	Α	Et ₂ O	r.t., 18h	5 _ 82
5	3	9 (1.6)	В	CCl ₄	r.t., 4h	45 5 43
6	3	9 (1.6)	С	CCl ₄	r.t., 16h	42 21 20
7	4	9 (1.2)	Α	(CICH ₂) ₂	r.t., 1h	- 82 -
						16 7
8	3	15(2.0)	Α	CCl ₄	r.t., 3h	72 19
9	3	18(2.1)	A	CCl4	r.t., 18h	<u>19 22 7</u> 20 5 68

 Table 1
 Reactions of fluorides 3 and 4 with alcohols

a) All reactions were carried out under atmosphere of dry nitrogen in the presence of molecular sieves 4A. b) A: AgOTf-SnCl₂, B: Sn(OTf)₂, C: n-Bu₃SnOTf.

The reaction of 3 with 1,2,3,4-di-O-isopropylidene- α -D-galactopyranose 9¹⁵) (1.6 equiv) was effected in the presence of silver triflate (2.0 equiv), tin(II)chloride¹⁶) (2.0 equiv) and molecular sieves 4A to give the α -glycoside 10¹⁷) as an essentially single isomer. As shown in table 1, yields were highly dependent on the polarity of a solvent employed (entry 1-4). In every case the only isolable by-product was the 2,3dehydro derivative 7 which can be recycled for the preparation of 3. Tin(II)triflate¹⁸) and tri-n-butyltin triflate¹⁹) were also effective as the promoter, but the formation of β -glycoside 13 as a minor product was observed (entry 5,6). This was presumably derived from 3α -selenyl fluoride 4 or corresponding triflate, generated from 3 through the intermediacy of 7 by the addition of highly electrophilic phenylselenenyl triflate (PhSeOTf)²¹). Phenylselenyl group of 10 was removed (n-Bu₃SnH, AIBN, toluene; 82%) and 11²²) thus obtained was converted to the known tetraacetate 12⁵) (1. H₂, Pd/C, MeOH, 2. Ac₂O, DMAP, pyridine; 92%). Also β -glycoside was synthesized stereoselectively by choosing 4 as a glycosyl donor which has 3α configuration (entry 7). Thus, the fluoride 4 derived from α -selenide 5a (DAST, THF, -20°C, 70%) was reacted with 1.2 equiv of 9 (AgOTf, SnCl₂, MS4A, ClCH₂CH₂Cl) to give an 82% yield of β -linked disaccharide 13. The stereochemistry of 13 was confirmed by converting to the tetraacetate 14²³).

Similarly, glucopyranoside 15^{24} (2.0 equiv) was reacted with 3 (1.6 equiv AgOTf, 1.6 equiv SnCl₂, MS4A, CCl₄, r.t. 3h) and the α -product 16^{25}) was obtained in a 72% yield together with 7 (19%) (entry 8). 16 was then transformed into the heptaacetate 17 in three steps (1. n-Bu₃SnH, AIBN, toluene, 2. H₂, Pd/C, MeOH, 3. Ac₂O, DMAP pyridine), ¹H-NMR of which revealed the anomeric configuration unambiguously²⁶). The present method could be applied to the reaction with secondary hydroxy group (entry 9). Thus the lactose derivative 18^{27})²⁸ (2.1 equiv) was reacted with 3 to give α -glycosides 19 (20%) and 22 (5%) together with 7 (68%). Regiochemistry of 19 and 22 was determined by ¹H-NMR of corresponding acetates 20^{29} and 23^{30} . 19 was converted (1. Ph₃SnH, AIBN, toluene, 95%, 2. LiOH, aq. dioxane, 99%, 3. H₂, Pd/C, MeOH, 98%) to 21 which was reported previously²⁷).

In summary, stereoselective glycosylation of NeuAc was achieved by using rationally designed glycosyl donor 3.

Acknowledgment. We are indebted to Mr. Y. Shitori of MECT Co. for a generous supply of Nacetylneuraminic acid. We thank Dr. J. Uzawa and Mrs. T. Chijimatsu for recording and measuring the NMR spectra and Dr. H. Yamazaki and his staff for the elemental analyses. We also thank Ms. A. Takahashi and Ms. K. Moriwaki for their technical assistance.

Reference and Notes

- 1) A. Rosenberg and C.-L. Schengrund, "Biological Roles of Sialic Acid", Plenum Publishing Co., New York, 1976.
- 2) J. Montreuil, Adv. Carbohydr. Chem. Biochem., 37, 157 (1980).

- R. Schauer (ed.), "Sialic Acids. Chemistry, Metabolism and Function", Cell Biology Monographs, Vol.10 (1982).
- 4) R. Kuhn, P. Lutz and D. L. MacDonald, Chem. Ber., 99, 611 (1966).
- 5) H. Paulsen and H. Tietz, Carbohydr. Res., 125, 47 (1984).
- 6) For previous efforts, see: H. Paulsen and U. von Deessen, *Carbohydr. Res.*, 146, 147 (1986) and references cited therein.
- 7) K. Okamoto, T. Kondo and T. Goto, Tetrahedron Lett., 27, 5229, 5233 (1986).
- K. C. Nicolaou, T. Ladduwahett, J. L. Randall and A. Chucholowski, J. Am. Chem. Soc., 108, 2466 (1986);
 G. Jaurand, J.-M. Beau and P. Sinäy, J. Chem. Soc. Chem. Commun., 1981, 572; Y. Ito and T. Ogawa, Tetrahedron Lett., 28, 2723 (1987).
- 9) Values of $[\alpha]_D$ were measured for CHCl₃ solutions at 20±3°C. Compounds having $[\alpha]_D$ recorded gave satisfactory elemental analysis.
- 10) K. Okamoto, T. Kondo and T. Goto, Bull. Chem. Soc. Jpn., 60, 631 (1987).
- 11) Prepared in situ from phenylselenenyl chloride and silver acetate. H. J. Reich, J. Org. Chem., 39, 428 (1974), K. B. Sharpless and R. F. Lauer, *ibid.*, 39, 429 (1974).
- 12) m.p. 104-106°C, $[\alpha]_D$ +7.1° (c 1.0), δ_{H} (CDC1₃) 4.770 (dd, 10.3, 4.2 Hz, H-4), 3.884 (d, 4.2 Hz, H-3), 3.785 (s, CO₂Me), 1.742 (s, OAc), 1.685 (s, NHAc).
- 13) m.p. 103-105^{*}C, $[\alpha]_D$ -0.5^{*} (c 0.5), $\delta_H(CDCI_3)$ 4.129 (d, 1.5 Hz, OH), 4.035 (dd, 10.7, 9.8 Hz, H-4), 3.629 (s, CO₂Me), 3.590 (dd, 10.7, 1.5 Hz, H-3), 1.723 (s, NHAc).
- 14) W. Rosenbrook, D. A. Riley and R. A. Lartey, *Tetrahedron Lett.*, 26, 3 (1985); G. H. Posner and S. R. Haines, *ibid.*, 26, 5 (1985).
- 15) O. T. Schmidt, Methods Carbohydr. Chem., 2, 318 (1963).
- 16) T. Mukaiyama, Y. Murai and S. Shoda, Chem. Lett., 1981, 431.
- 17) $[\alpha]_D$ -2.6° (c 1.1), $\delta_H(CDCl_3)$ 5.480 (d, 4.9 Hz, H-1a), 4.318 (dd, 10.7, 9.8 Hz, H-4b), 3.632 (s, CO₂Me), 3.209 (d, 10.7 Hz, H-3b).
- 18) R. J. Batchelor, J. N. R. Ruddick, J. R. Sams and F. Aubke, *Inorg. Chem.*, 16, 1414 (1977), T. Mukaiyama, N. Iwasawa, R. W. Stevens and T. Haga, *Tetrahedron*, 40, 1381 (1984).
- 19) E. J. Corey and T. M. Eckrich, Tetrahedron Lett., 25, 2419 (1984).
- 20) $[\alpha]_D$ -22.4° (c 0.7), $\delta_H(CDC1_3)$ 5.449 (d, 4.9 Hz, H-1a), 4.001 (d, 3.9 Hz, H-3b), 3.750 (s, CO₂Me), 1.721 (s, NHAc).
- 21) S. Murata and T. Suzuki, Chem. Lett., 1987, 849.
- [α]_D -29.8° (c 1.2), δ_H(CDCl₃) 5.479 (d, 4.9 Hz, H-1a), 4.122 (dd, 10.7, 1.7 Hz, H-6b), 3.955 (ddd, 7.0, 4.3, 1.7 Hz, H-8b), 3.803 (ddd, 10.5, 10.0, 8.8 Hz, H-5b), 3.642 (s, CO₂Me), 2.790 (dd, 12.5, 4.3 Hz, H-3beq), 1.760 (s, NHAc), 1.745 (dd, 12.5, 11.9 Hz, H-3bax).
- 23) $\delta_{H}(C_6D_6)$ 5.717 (dd, 3.5, 2.0 Hz, H-7b), 5.451 (d, 5.1 Hz, H-1a), 5.352 (ddd, 11.7, 10.0, 4.9 Hz, H-4b), 3.309 (s, CO₂Me), 2.559 (dd, 12.7, 4.9 Hz, H-3beq), 1.818 (dd, 12.7, 11.7 Hz, H-3bax).
- 24) J. M. Kuster and I. Dyong, Liebigs Ann. Chem., 1975, 2179.
- 25) $[\alpha]_D + 21.1^{\circ}$ (c 0.9), $\delta_{\rm H}$ (CDCl₃) 4.577 (d, 3.7 Hz, H-1a), 4.230 (dd, 11.0, 2.0 Hz, H-6b), 3.884 (t, 9.3 Hz, H-4b), 3.817 (ddd, 7.6, 4.0, 2.0 Hz, H-8b), 3.662 (dd, 7.6, 2.0 Hz, H-7b), 3.605 (s, CO₂Me), 3.231 (d, 9.3 Hz, H-3b), 1.566 (s, NHAc).
- 26) δ_H(CDCl₃) 5.346 (ddd, 9.0, 5.6, 2.4 Hz, H-8b), 5.297 (dd, 9.0, 1.7 Hz, H-7b), 4.937 (d, 3.7 Hz, H-1a), 4.876 (ddd, 12.2, 9.5, 4.8 Hz, H-4b), 4.260 (dd, 12.5, 2.4 Hz, H-9b), 4.049 (dd, 12.5, 5.6 Hz, H-9b'), 3.807 (s, CO₂Me), 2.624 (dd, 12.8, 4.8 Hz, H-3beq), 1.978 (dd, 12.8, 12.2 Hz, H-3bax).
- 27) T. Ogawa and M. Sugimoto, Carbohydr. Res., 135, C5 (1985).
- 28) H. Paulsen, M. Paal, D. Hadamczyk and K.-M. Steiger, Carbohydr. Res., 131, C1 (1984); H. Paulsen, D. Hadamczyk, W. Kutschker and A. Bünsh, Liebigs Ann. Chem., 1985, 129.
- 29) $[\alpha]_D$ -6.6° (c 1.5), $\delta_H(CDCl_3)$, 5.453 (d, 3.4 Hz, H-4b), 4.093 (dd, 10.7, 2.0 Hz, H-6c), 3.720 (dd, 7.0, 2.0 Hz, H-7c), 3.666 (s, CO₂Me), 1.996 (s, OAc), 1.620 (s, NHAc).
- 30) $[\alpha]_D$ +17.3° (c 0.4), δ_H (CDCl₃) 4.462 (dd, 10.4, 3.7 Hz, H-3b), 4.001 (dd, 10.4, 1.5 Hz, H-6c), 3.428 (s, CO₂Me), 1.854 (s, OAc), 1.540 (s, NHAc).

(Received in Japan 28 August 1987)