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Abstract: a-Selective glycosylation of N-acetylneuraminic acid was achieved by use of the fluoride 3 

which carries 3B-phenylselenyl substituent. 

N-Acetylneuraminic acid (NeuAc) which is one of the principal constituents of glycoconjugatel)2)3) 

exists at the non-reducing ends of glycan chains solely as a 2a-glycoside. Hence a-selective glycoside 

formation of NeuAc is of definite significance. Commonly employed glycosyl donors, namely 2-chloro4) or - 

bromos) derivatives 1 usually result in poor stereoselectivity and low yield of glycosylated products@. A 

considerable improvement was made by Kondo et al.‘), who employed the 2l3-bromo-3B-hydroxy 

derivative 2 and succeeded in the first synthesis of a-NeuAc(2+8)NeuAc derivatives. However, the degree 

of a-selectivity was not predictable and a:8 ratio ranges from 4.3:1 to 1:1.2 depending on the substrate. On 

the other hand, stereoselective syntheses of 2-deoxyglycosides aided by the neighbouring group 

participation of sulfide or selenide substituents are well precedenteda). Accordingly, it was expected 3p- 

thio or -seleno substituted donors derived from NeuAc to give a-glycosylated products via episulfonium OI 

episelenonium ions in a predictable manner. We report here the highly stereoselective synthesis of 2a- 

glycosides of NeuAc by use of the 38-selenyl fluoride 3. 

Obviously, the most crucial for the senario described above is the stereoselective introduction of 38- 

selenyl substituent. This seemingly difficult problem could be simplified by choosing the hydroxy-selenide 

5 as an intermediate, which is epimerizable to 30 (equatorial) configuration 5b, irrespective of the original 

stereochemistry at C-2 and C-3. 
As a precursor of the hydroxy-selenide 5 2,3-dehydro derivative 7. [a]D -3.3’ (c 1.0)9) was chosen, 

which in turn was synthesized from tetraacetate 84)to) (1. NaOMe. MeOH, 2. PhCHzBr, KOH, BaO, Bu4N1, 

DMSO, 3. CHzN2, Et20-MeOH; 76% overall). A mixture of 7 and phenylselenenyl acetatell) (PhSeOAc; 2.0 

equiv) in 1,2-dichloroethane was treated with uimethylsilyl triflate (TMSOTE 0.1 equiv) at O’C for 30 min 

to give acetoxy-selenide 612) (79%) together with hydroxy-selenides 5a (11%) and 5b (8%). Treatment of 

a mixture of 6, 5a and 5b thus obtained with O.lM methanolic sodium methoxide (room temp. 18h) caused 

deacctylation as well as epimerization at C-3 to give a 66:34 mixture of 5b and 5a in a 94% yield, which is 

readily separated by silica gel chromatography. After recycling of recovered 5a twice, crystalline p- 

selenide 5b13) was obtained in an 83% overall yield from 7. Conversion of 5b to the fluoride 3 was easily 

achieved by treatment with DASTt4) (diethylaminosulfur trifluoride) in 2:l toluene-13-dichloroethane at - 

40°C (88%; a:B>20:1). 
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Table 1 Reactions of fluorides 3 and 4 with alcohols 
products 

entrya) fluoride alcohol(equiv) promoterb) solvent temp,time yield(%) 

1 3 9 (1.5) A 
10 13 7 

V332)2 r.t., 5h 18 69 _ 

2 3 9 (1.5) 
3 3 9 (1.5) 

4 3 9 (1.5) 

5 3 9 (1.6) 

6 3 9 (1.6) 

7 4 9 (1.2) 

8 3 lS(2.0) 

9 3 lS(2.1) 

toluene r.t., 18h 34 60 _ 
cc4 r.t., 18h 46 33 _ 

Et20 r.t., 18h 5 82 

cc4 rs., 4h 45 5 43 

ml, r.t., 16h 42 21 20 

(‘XH2h rs., 1 h - 82 - 
16 7 

ccJ4 r.t., 3h 72 19 

19 22 7 
cc4 r.t., 18h 20 5 68 

a) All reactions were carried out under atmosphere of dry nitrogen in the presence 
of molecular sieves 4A. b) A: AgOTf-SnCl2, B: Sn(OTf)Z, C: n-Bu$nOTf. 

The reaction of 3 with 1,2,3,4-di-0-isopropylidene-a-D-galactopyranose 915) (1.6 equiv) was effected 

in the presence of silver triflate (2.0 equiv), tin(II)chlo 16) (2.0 equiv) and molecular sieves 4A to give 

the a-glycoside 1017) as an essentially single isomer. As shown in table 1, yields were highly dependent 

on the polarity of a solvent employed (entry l-4). In every case the only isolable by-product was the 2.3- 

dehydro derivative 7 which can be recycled for the preparation of 3. Tin(II)triflatet*) and tri-n-butyltin 

triflatet9) were also effective as the promoter, but the formation of B-glycoside 13 as a minor product was 

observed (entry 5,6). This was presumably derived from 3a-selenyl fluoride 4 or corresponding triflate, 

generated from 3 through the intermediacy of 7 by the addition of highly electrophilic phenylselenenyl 

triflate (PhSeOTf)zI). Phenylselenyl group of 10 was removed (n-BujSnH, AIBN, toluene; 82%) and 1122) 

thus obtained was converted to the known tetraacetate 125) (1. Ha. W/C, MeOH, 2. Ac20, DMAP, pyridine; 

92%). Also 8-glycoside was synthesized stereoselectively by choosing 4 as a glycosyl donor which has 3a- 

configuration (entry 7). Thus, the fluoride 4 derived from a-selenide Sa (DAST, THF, -2o’C. 70%) was 

reacted with 1.2 equiv of 9 (AgOTf, SnCI2, MS4A. CICH2CH2CI) to give an 82% yield of P-linked disaccharide 

13. The stereochemistry of 13 was confirmed by converting to the tetraacetate 1423). 
Similarly, glucopyranoside 1524) (2.0 equiv) was reacted with 3 (1.6 equiv AgOTf, 1.6 equiv SnC12, 

MS4A. CC14, r.t. 3h) and the a-product 1625) was obtained in a 72% yield together with 7 (19%) (entry 8). 

16 was then transformed into the heptaacetate 17 in three steps (1. n-Bu3SnH. AIBN, toluene. 2. HZ, Pd/C, 

MeOH, 3. Ac20, DMAP pyridine), t H-NMR of which revealed the anomeric configuration unambiguously26). 

The present method could be applied to the reaction with secondary hydroxy group (entry 9). Thus the 

lactose derivative 1827)2*) (2.1 equiv) was reacted with 3 to give a-glycosides 19 (20%) and 22 (5%) 

together with 7 (68%). Regiochemistry of 19 and 22 was determined by IH-NMR of corresponding 
acetates 2029) and 2330). 19 was converted (1. Ph3SnH. AIBN, toluene, 95%, 2. LiOH, aq. dioxane, 99%, 3. 

HZ, Pd/C, MeOH, 98%) to 21 which was reported previously27). 

In summary, stereoselective glycosylation of NeuAc was achieved by using rationally designed 

glycosyl donor 3. 
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