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Abstract A proof for a non-singular version of the inverse Vitali lemma is given. The
resultis used to describe non-singular orbit equivalence within the framework of Rudolph’s
restricted orbit equivalence and in the construction of an alternative proof of the Hurewicz
ergodic theorem.

1. Introduction

In extending ergodic theory from a measure-preserving to a non-singular setting many of
the problems we encounter are technical rather than fundamental. Frequently, once these
technical barriers have been overcome, it is straightforward to establish a theorem for non-
singular actions by generalizing the corresponding measure-preserving result.

It is in this light that we examine the inverse Vitali lemma. As we show in this paper, a
non-singularized version of this result opens the door to a number of possibilities.

While the basic form of the non-singularized proofis taken from the measure-preserving
proof given in p], the ideas which allow us to extend the result are due to Haljos [

The first use of our main result is demonstrated in 83, in which we establish the
foundations of a non-singular version of Rudolph'’s restricted orbit equivalence. This part
of our work is still in its early stages and does not yet deal with any form of entropy.
However, we are able to define non-singular orderings and sizes, and we can show that
much of the basic machinery still works in a non-singular context. In particular, we present
a size for non-singular orbit equivalence, which we denote@as he inverse Vitali lemma
is used to show thai is in fact a size and that all orbit equivalent dynamical systems give
rise to orderings which aneg equivalent.

It will be assumed that the reader has some familiarity wiflh from which most of
our technical work in 83 is adapted. It should be noted that although the restricted orbit
equivalence as presented in its original form4h deals exclusively wittZ actions, the
theory has since been extended to the actions of more general group<]@et[B].) At
this preliminary stage of development we have chosen to stay close to the original format
as we believe that in doing so we can better highlight the problems involved in extending
the theory to include non-singular actions.
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Our second application is an alternate non-Halmos type proof of the Hurewicz ergodic
theorem. Now that we have a non-singular inverse Vitali lemma at our disposal,
the Ornstein—Weiss style proof of the Birkhoff ergodic theorem givenSinid easily
generalized.

2. Theinverse Vitalilemma
Our proof of the non-singular version of the inverse Vitali lemma is based on that given for
the standard measure-preserving caséjine first state the result.

LEMMA 2.1. (Inverse Vitali lemma)Let T be an ergodic, non-singular, hon-periodic
invertible automorphism otX, B, u). Further suppose that for some measurable X
with w(A) > O there are measurable integer valued functiapéx), jx(x) such that
liMg_ oo jx(x) — ix(x) = oo for all x € A. Then there is some subsBt C A such
that for allx € B there are functions(x) < 0 < j(x) wherei(x) = ix(x) , j(x) = ji(x)
for somek depending onx, so that the orbit intervalg (x) = U{((;‘))T"(x) are all pairwise
disjoint and

U(A\ Urepl (x)) < e.

There is only one real problem in trying to generalize the proof giverbjrid the
non-singular case. In covering a set with orbit intervals we obviously need to know how
much measure we are including with each step. For a measure-preserving transformation
T we know that if the length of an orbit interval is extended by a certain factor then its
associated mass will also be increased by the same proportion. In our non-singular proof
we need some similar control over the Radon derivatives. For this reason we first establish
an intuitively obvious fact.

LEMMA 2.2. Letw;(x) = (dT " u/dw)(x), and sSupposd 2y w;(x) = oo for u almost
all x € X. Then

. X
im0 =
n—oo Zi:O w; (x)
for u almost allx € X.

Proof. For a real valued functiog(x) andn € Z* let

n—1

q"(x) =Y q(T"("))wi(x).
i=0

Then ifg.(x) = w1(x) — (1 + ¢), we have

n—1

gl (x) = wp(x) — ¢ Y_wi(x) = (L+0).

i=1

ForA € X aT invariant set and € R, let

Ef(e)=JxreA:q!x)=0)
n=1
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and -
Ey@=Jtrea:ql) <0
n=1
Then
/ ge(x)dp =0 and —gqc(x)du > 0.
Ef(c) Ey (0)

For proof seeq]. So

/ w1(x)dp > (L+c)u(Ef(c)) and (1+C)M(E/§(C))2/ w1(x)du.
E}(0) E, (o)

Now the sequence

4y (x) = 7“’25’? -1
i=0 Wi (x)

is bounded.-almost everywhere. For if, for some ®tC X, x € B implies thata, (x) is

unbounded then

B=Ef©|J[)Ex(-o

c>0 c>0
and so by the above inequalities(B) = 0.
Note that
On1(X) — 01(x)
SIS wira(x)

and so lim sup, (x) and liminfa, (x) areu-almost everywher& invariant. Hence if we
let

an(T (x)) =

Agp = {x :liminfa,(x) <o < B < limsupa, (x)}
foro, B € Q, thenA, g is aT invariant set. So

[, omdnzarouEs, © and atout;, @z [ amd
E;W (© ' ’ Efpp©

forc e R.
Now Ey (x) N Ay p = E;aﬁ(a), butA, s € Ey (@), S0Ayp = E;aﬁ(a). Similarly,
Awp = Ejgw (B). So

/A 01()dp = (L+ B)i(Aap)
a,f

and

A+ a)u(Ag,p) E/A w1(x)dpu.
p

But ase < B this is not possible unless(Aq,g) = 0. Hence lim_, o (0, (x) — 1)/
Z}’;& w; (x) existsu-almost everywhere so it is easy to show that

jim ) _
n—o00 Zi:O w; (x)

on a set of full measure. O
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Note that this proof could easily be extended to show that_lim Z:’Jr,f’ w; (x)/

Y pwi(x) = 0forany finitep € N, or that lim,—, oo @, (x)/ >_; Sy wi (x) = 0.

LEMMA 2.3. Suppose that for € A € X, u(A) > 0there are bounded integer valued
functionsi(x) < 0 < j(x) suchthatVy < j(x) —i(x)+1 < N2> whereN1 is so large that

jt+1 —r J —r
dT " dT "
142
; G <+ E),Z @

forall i, j e Nwith j —i + 1> Niande < 11(A)/16. Then there is subset’ C A so
thatif 7 (x) = (U  Ti(x) thenI(x) is disjoint from (x") for x, x’ € A’ wherex # x’

i=i(x)
and
wA) < 4u< U 1(x>).

xeA’

Proof. Find a subsek;1 C X of measure at least2 ¢, andN3 € N so that forx € X3,

f dTr'u(x)/f 6“Pr'u’(x) < €.
r=0

r=N3—Na dlL dlL

By using the induced transformation on the Xetand building a Rokhlin tower of height
N3, construct a Kakutani skyscraper fBrwith baseB C X3 such that each column has
heighti(x) > N3 for all x € B.

For eachx € A there is ay € B such thatc = T7®)(y) where 0< p(x) < h(y) and
an interval[i (x), j(x)] to which we ascribe the ‘length’

&) gr=(pe+n)

)= Y ————©).
r=i(x) dp

We cover the points im contained inP(y) = U'%) 277 (y), (y € B) by the following
method: list allx € A N P(y) in descending order of lengthix) i.e. label the points
X1, X2, ..., etc, wherd (x,) > l(x,+1). Start withx1 and cover an interval of points

EEVICEY)
I(x1) = U,’(Xll) T"(x1)

in P(y) with lengthl(x1). Next choose;; wherel(xy) is the largest length remaining with
I (x;) disjoint from I (x1).
Continue with this method of disjoint covering until no further intervals can be chosen
without intersecting with those already selected. ¥ar B, defineR(y) C [0, h(y) — N2]
as the set of integers such thtat R(y) if and only if T¥(y) € A andI(T*(y)) is chosen
as a covering interval.
Let L(x) = 3I(x) and define

')
I'(x) = Z T" (x)
)
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wherei’(x) is the greatest integer such that

(-1 dT=(P+y
dn ) = 1(x)

r=i'(x)
and;’(x) is the least integer such that

J'&) dT=(P+y
7 ) = 1(x)
r=j@)+1 n
wherex = TP?(y) for y € B.
Now

AN P(Y) S Urerin ! (T* ().
For if we suppose otherwise then for sories P(y) we would havel (x’) disjoint from
all the selected orbit intervals 7% (y)) (k € R(y)). But this would mean that(x’) would

already have been included in our covering, which would be a contradiction.
Defining A’ as the set

UyeB Uker(y) T*(y),
we can see that as

h(y)—N2 dT—rM h(y) dT—"

m=a-0> =L
r=0

r=0 dp dp

fory € B, then

) —e< [ 3 Latondun)
y

€B keR(y)
<31+ 2e)pu(Uyearl (x))

and asx < u(A)/16,
w(A) < 4u(Uyearl (x)). |

Now we come to the real heart of the inverse Vitali argument. The following lemma
tells us that we can cover all bain measure of a set with disjoint orbit intervals providing
we start with a suitable finite set of integer valued function paits) < 0 < jr(x).
The covering is achieved by an inductive process, using Lemma 2.3 to cover a quarter
in measure of what remains uncovered at each stage. The final proof of the inverse
Vitali lemma is the construction of an appropriate set of functions from the infinite series

ik (x), jr(x).
LEMMA 2.4. Choosel/2 > ¢ > Oand a largeM < N such thattM/16 > 1. Suppose

we have a seB C X, u(B) > ¢/2 such that forx € B we have bounded integer valued
functionsiy(x) <0< jr(x), k=1,2,...,M). Let

nf = inf (i) =ik +1) and "= Supi() — k(0 + )

xeB
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and letN1 < minge12... ) (7"} be so large that

j+ldT_’;L € J dT "
; i (X)<<1+1_6)12' ey

forall x € Bandalli, j withi <0< jandj —i + 1> Ni. Further suppose that

sup

jk(x)+nk+1 dTﬁr,U, € Jie(x) dTﬁr/L
W=<(1+5)Y (x)

, sup d/'L 2/ d“

() =ni iy i (x)

fork = 1,2,...,M — 1. Then there is a subsé&’ € B, u(B’) > 0 and measurable
functionsi(x) < 0 < j(x) for x € B’ with (i(x), j(x)) = (ix(x), jx(x)) for somek,
(k=1,2,..., M) depending onx so that the sets

I1(x) =Y 77 (x)

r=i(x)

are pairwise disjoint forc € B’ and

(B \ Urep I (x)) < €.

Proof. First of all we define

f(x) = ik (x) = SUGjes1(x) = ik2 (@) + 1)

k) = Je ) + SUPGik4a(¥) — fier1 () + 1)
fork=1,2,...,M —1landi),(x) =i(x), ji,(x) = ju(x). Using Lemma 2.3 we find a
subsetB; C B with

VACY! i
1) = UL T
pairwise disjoint and
w(B)
#(Usepyl'(0) = ==

Now take
B, =B \UxeB’lli(x)~

If 1(B2) > €/2 we can reapply Lemma 2.3 to constr#stC B> so that

/ (B2)
WUy 130) = =22

Continue the induction, setting
By = B\U{_{ Usepy 1} ().
As long asi.(By) > €/2 we can findB; C By so that

, (B
HUrep [{(0)) = T2
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We do this up taV times usingM function pairs (x), j; (x).
Now B’ = UM | B is a disjoint union hence it is not hard to show that
1) =U/% T’ and 1() =U/5), T @)
are disjoint forx # x'. (Herei(x), j(x) are defined to ba (x), ji(x) wherek is the unique
integer 1< k < M such thatx € B;.)
Let Bys4+1 be the remaining piece @@ which we have not yet covered with disjoint
orbit intervals!’(x), i.e.

By+1=B\UZL, Uregy 1'(x).

We wish to prove that(By+1) < €/2. Supposeu(By) > e¢/2forallk =1,2,..., M+1.
Now

u(UsepyI' ) < L+ €/Dp(Uyepy 1 ()
< W (Usep 1)) + €/21(Ugepy I'(x)).

So
n(Uyep 1(x)) = (1 - G/Z)I’L(UxeB,iI/(x))
B
> (1_6/2)M( %)
4
forall k = 1,2,..., M and because of the disjointness of thg and the fact that
w(By+1) < u(B,) we can say
M
H(Urepl () = ML= €/2) > 72 > 1
which is a contradiction.
Hence
(B \ Urep I (x)) < u(By+1) + i(Uxep I'(x) \ 1(x))
<€/2+4€/2u(Uyep I(x))
< €
as required. m|

Proof of the inverse Vitali lemmaChoosec/2 > 0 andM e N such thatM/32 > 1.
We need to construd¥ function pairs on a set,; C A which satisfy the hypotheses of
Lemma 2.4.

First find anN € N and a sefdg C A with u(Ag) > u(A) — €/22, such that for any
j—i+1>N,i <0< jandallx € A,

—r

j+ldT_’u €\ <~ dT "
; i (x)<(1+3—2)2i: T

Now on a subsel; C Ag with (A1) > w(Ag) — €/23, define bounded functions
11(x) = ixp(x) and ji(x) = ji)(x) where thek(x) are chosen measurably so that
JrkX) =gy (x) + 1> N.
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Next construciz(x) = ix(x), j2(x) = Jjk)(x) bounded ordy C Ajp with n(A2) >
w(A1) — €/2* and thek(x) are chosen to ensufie(x) — i2(x) + 1 > N and that for all
x € Ao,

fz()f)+niup —k J2(x) —k
dT € dT
Py < (145 )
du 4
fz(x)fniUp i2(x)
wheren] " = sup.ey, f1(x) —1(x) + 1.

Continuing in this fashion we obtaii bounded function pairg (x), jx(x) on Ayy.
Now forx € Ay theix(x), ji(x) listed in reverse order satisfy the required conditions for
Lemma 2.4. Hence we can cover all by in measure ofi 3, with disjoint orbit intervals

1(x) = UL T () forx € A’ € Ay. But
M+2 1
w(Am) > p(d) —e Y
k=2
> W(A) —€/2

and so clearly we are done. |

3. Non-singular orderings and sizes
To begin our modification of restricted orbit equivalence we start with the definition of an
ordering.

Definition 3.1.For a non-singular ergodic transformation systémZB3, ., T) anordering
will be a map
a: XxX—>7Z

wherex’ = T (x).

We will only be comparing orderings within orbit equivalence classes; that is, if we
write m (a1, a2) for some sizen or any other expression involving the two orderings then
we are assuming that there is some invertible orbit ghap¥; — Xo with 1 o0¢ ~ w2
and

$ (T () = T3 "V (@ (x)).
Also, any orbit map between two orderings is assumed to induce an orbit equivalence.

Definition 3.2.We say thatr; anday differ by a co-boundaryf there is an orbit map
¢ : X1 — X2 where N
$(Ti(x) = 13" (¢ (x))

and a measurable functigh: X1 — Z such that
a1(x, x') — a2(p(x), p(x") = f(x) — f(x).

LEMMA 3.3. The orderingsy1, ap differ by a co-boundary if and only if; and 7> are
conjugate.

The proof of this is an easy extension of the calculatioMppp. 4—6].
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Notation. Let¢ : X1 — X» be an orbit map for orderings;, a2 on X1, X2 respectively,
andx € X1. Define f;",** : Z — Z by

[520=
whenever; (¢ (x), ¢(T{ (x))) = j. Denote

1,02
M .60

as the permutation af, j) which re-orders the interval in the same orderfﬁ%“z. We
will now discuss non-singular sizes. For a sizethe value

o1,002
m(I% G )

will no longer depend just on the permutation. It may also depend on the interyal
on x, and on the action dfy on (X1, B1, u1). So the notation is in fact something of a
shorthand. Note that ffI%%2. . = [T**3. . thenm(IT°1%2 ) = m(IT%%5. )

x,¢,(0,7) = " Tx,,0 ) x,¢,0,j) x, 9,3, )7
For a sizen (axioms described below) let

1,000 [ 1,02
m(fig )= ,JTO'?LOO m(IL g G j))-

By axiom ii(a) below this is constant for almost allby ergodicity; we shall denote it as
m(f(z‘l’o‘z). When we writem (a1, o) we meann(fdf‘l’“z) whereg is the identity map.

We now present our definition of a size in a non-singular context, generalizing axioms
i~vi given in [4, pp. 7-8]. Note that all our axioms are stated in termsngf,;*“?)
or m(l‘[jf;‘fi’j)) rather than in terms afi(x1, a2). Of course, these axioms may be in
need of refinement for future developments, however they are sufficient for our immediate

purposes.

Definition 3.4.We callm asizeif it satisfies the following axioms:

i(a) miid) = 0.
li@) m(M7ES s o) =mTIEEE 1 1)

iii(a) If for orderingsas, ap for all e > 0 there exists an orbit map: X1 — X such that
m(f(;j‘l “2) < e then for eacle > 0 there exists an orbit maf : X, — X; such that
m(flzz’al) < €.

iv(a) For alle > O there is & so that ifm(IT*=*2 ..) < & then for all but a subset

. x,¢.30.j)
I C (i, j) with
dT,; dT;
Z af; M1 Ml GZ af; M1 Ml
7 dus
we have

e “Z(k +1) = “1’0‘2(k) +1.

vi(a) Foralle > 0 thereis &1 so that for eacly, with m(f¢1 “2) < 81 there is a2 such
that for a||0l3 with In(fw2 ag) < 52 we havan(fwl 013) <e.

We have included in this list of axioms only those which are either technically necessary
(i(d), ii(a), iii(a) and vi(a)) for our work here or intuitively desirable (iv(a)). #j,[axiom v
is needed mainly for the construction ef-entropy and its use in the:-equivalence
theorem. As we have not yet developed a non-singular versiom ehtropy we have
not given an analogue of axiom v.
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Definition 3.5.We say orderinge; anday arem-equivalentiwritten a1may) if for each
e > 0 there is any;, differing fromaz by a co-boundary such thai(ay, o) < e.
By generalizing the proof of Theorem 2.1 ] ve have the following.
LEmMMA 3.6. Non-singulann-equivalence is an equivalence relation.
We now present our size for non-singular orbit equivalence.
Definition 3.7.(Size for non-singular orbit equivalence) Let

dT; *uq YT F e
mo(MEt ) =) —1— ()/ —— )

kel

wherel C (i, j — 1) is such thak € I implies that

M2 (k 4+ 1) # 3572 (k) + 1.

Our newmy is still consistent with the measure-preserving size for orbit equivalence
given in [4]. Clearlymg satisfies axioms i(a) and iv(a). For axiom ii(a) simply note that
dT " dT—+D dr—1u
= ()

Tx) =
du (Tx) du du

(x).

The following three results are modified versions of Lemmas 2.6, 2.7 and 2.84jom [

LEMMA 3.8. For orderingsoz, oz, mo(fgl’az) < a if and only if there is a sefA C X1
with ©1(A) > 1 — a such thatx € A implies that

[P =1

Proof. Letmo(f;l’az) <a<a<l.
So for almost allk € X3 we have a sequence of intervgléx) — —oo, ji(x) — oo
such that

1,002 =
mo(IL 5 Gy i) < @

Hence for eacl € N, and almost alk € X1, there is a subsei; , C (ix(x), jk(x)) with

Je(x)

Z dTl Hl(x)>(l—a) Z 1 ,U«l

i€Sk x i=ir(x)

such that ifl € S . then

1,002 _ 1,002
o oD = TG G e @ + 1

Sete and N. Find a setd’ C X1 with u1(A’) > 1 — € and anN1(>>N) so that if
j—i+1>Niandl C (i, j) has# < N thenforx € A’

N

ZdTl Ml(x)>(l—€)2 1 ,U«l

i+N
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Restricting ourselves to function paiggx), ji (x) with jr(x) —ix(x) + 1 > N1, we apply
the inverse Vitali lemma to cover all batin measure ofA” with disjoint 71 orbit intervals;
i.e.
Cye=U U/ Ti), Byec A
N,e X€BNe Vix) 11 s

is a disjoint union ang@i1 (A" \ Cy.¢) < €. Now let

AN,e = UxeBy . YUsi.ni(x)+N,j(x)—N) Tli (x).

As By C A" we have

(s, 4N, -3 T1 (1)) > (L —a — ) pa (Ul T ().

So

m1(Ane) > (1—a —e)ur(Cn.e)
>1—a— 3e.

Pute =2V If A =limsupy Ay ,-~ thenui(A) >1—a > 1—a.

Nowx € Aifandonly ifx € Ay 5~ for an infinite sequencgV,}72 ;. If x = Tll(i)
forx € By, o-n, 1 € Sk zN(E(X)+ Ny, j(X)—N;), thenputtinge, = i(x)—1, v, = j(x)—I
we have

o1, . o1, . o1,
e Gerin @ = J24 G50+ = 16 G, jan D

Hence ag”"‘fp";i (0 =0and € S; z we have

1,02 _
ijld’!(urvvr)(l) - 1’

andas — oo
Hii’;j(zurvvr)(l) - ff]‘;az(l) = 1
for x € A with u1(A) > 1 —a.
If such anA exists then if7f (x) € A then

1,02 _ fo1,02 1,02
frkee O = U0+ 1) — £ k)
=1

So
M2k + 1) = I () + 1.

But by the Hurewicz ergodic theorer][

lim ZXA(Tl e TN )/ 1 ‘“oc) wi(A) > 1—a.

Hencemo(f(;‘l’“z) <a. O

LEMMA 3.9. The non-singular sizeg satisfies axiom vi(a).
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Proof. Choose: > 0. Supposmo(fq‘;‘l’“z) <€/2, andmo(f;‘z’“?’) < 8 wheres is chosen
so thatu1(¢p1(E)) < €/2 for uo(E) < 8, for all measurabl& C X».
By the previous lemma we have sétsc X1 andS2> C X2 with ©1(S1) > 1—¢/2 and
u2(S2) > 1 — § such that
L@ = 15255 (@) =1
forx € S1N¢~1(S2) C X1. Hencemo(fg})’qf‘?’) <e. O

LEMMA 3.10. For all a1, ap and for alle > 0 we can find an orbit mag such that
mo(f(gf’l“l) < €. Hencemg satisfies axiom iii(a) and further

o102,

Proof. Fix ¢ > 0. Choose & > 0 such that for any measurable set ¢ X if
ui(E) > 1— 58 thenua(¢p(E)) > 1—¢€/3.
ChooseNg so large that for a sef(A) with u2(¢p(A)) > 1 —¢/3if x € ¢(A) then

lar (1 (x), 9~ H(T2(x)))| < No.

Now chooseN (>3>Np) so that on a seB C X with ©1(B) > 1—§/4, forallx € B,
N1 > N and for any index set C [0, N1 — 1] with #1 < N we have

dTl—’pl 5 Nt
2 W <5 Z

I

Take the induced transformatid@iz where
Tp(x) = 7" (x) forx e B,
Build a Rokhlin Tower of heighivy covering all buts/4 of B; i.e.
UMt C)c B, CCB

is a disjoint union and
pa(UN T (C))
ui(B)
We now use thig's tower as the basis for a seriesmftowers of differing heights.
PartitionC into setsC, where

>1-4§/4.

Cp=fxeC: TV ) =10}
The towerSsz_olTl"(Cp) are disjoint unions by the disjointness@ff’:lngB(C). Further
WP A THC) NV TH(C) =0 ae.

if p#gq.
Now we construct a new orbit mapbetweeri; and7> as follows.
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() If x ¢ Upsn, U'Z5 T (Cp) then let

P(x) = p(x).
(i) Letxe Uf’;OlTli(Cp) for somep > Nj.
For each orbit segmenﬁ’:—olTl" (2),z € C,, take

P Ti (@) = Uy T " (¢ ()

and rearrange the right-hand side of this expression so that(the) are in ascending
order. Then letp(T} (z)) be theith element in this rearranged sequence.
We define our new ordering:

o] 1 Xox Xo—> 7
by
@i (y,y) = 1@, ¢
Clearlya; ande differ by a coboundary. Let

S=¢(A)NPpUp>n, Uf;ﬁ]/\;()il Tli(Cp)) NPUpsn, U,P;OZ Tli(Cp))'

Now

az,ai

Fyia D =1y, T2(»))
= a1(¢" (), ¢ HT2()).

We shall prove that this expression is equal to Lyfer S.
If y € Stheny € ¢(A) so

lar (@), 6~ H(T2(»)))] < No.
Thus
o~ HT2(») = Tf (@71

where|k| < Ng so as¢‘1(y) = le(z) for somej, No < j < p — No, z € Cp,, some
p > Ni. It follows that
1,
Ta(y) € ¢(UY 5 T1(2)).
Letx = ¢~1(y). Thenx = T} (z) forsomei, 0 <i < p — 2.

HenceT1(x) € Uf’;olT{ (z), from which we deduce
1@ (), ¢ H(T2(y)) = 1,

forally € S.
All that remains to prove is that the s&is sufficiently large.
We know that
pa(UP GO T (Cy)) > (L= 8/Dua (Ul TH(Cy))

asC, C B, and so
~No—1 i
n1(Up=n, Uf:Noo Ti(Cp)) > 1-6.
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Hence
—No—=1 i
2@ (Upzny Uy THC,)) > 1— €/3.

Alsoforz € Cp,

U LT (2) = ¢ (U T )\ TH 9 (2)

for somek(z) € [0,1,..., p — 1]. Hence, as

k

p1(Uzec, Uy T\ TH 9 (2) > (1= 8/Hpa(UP 5 TL(Cp)),

we have

u1(Upzny Uzec, Vo TE@ N\ T 9(2)) > (1 - 8/4)(1— 8/4)ua(B) > 1— 5.

So

12(@(Up=ny UPE THCH)) = m2(@(Up=ny Uzec, Ug T \ Ty 9 (2))

>1—¢€/3.

Lastly, of course, we have choseiiA) so thatua(¢(A)) > 1 — €/3. Henceuz(S) >
1-—e. O

4. The Hurewicz ergodic theorem
THEOREM4.1. Supposd’ is non-singular on the Lebesgue probability sp&&e 5, ()
andletf e L(n). Then if

n—1 n—1
An(fyx) =) f(T () (x) / > wi(x)
i=0 i=0

thenA, (f, x) converges to a finite limit for almost alle X. FurtherifA,(f, x) — f*(x)
then /. f*du = [ f du forall T-invariant setsE.

Proof. First we deal with periodic points. K, is the set of points itX with periodn then
it is easy to show that

n—=1 n—=1
1) = lim Ax(f.x) = Zf(Ti(X))wi(X)/Zwi(x)
i=0 i=0

forallx € X,,.

As eachX, is an invariant set we can deal with the pointsXp, by assuming that
T is aperiodic. Letf(x) be defined as lifgL, o0 SUPA,(f, x). As f(T(x)) = f(x) we
will assume thatf > 0. Let E be aT-invariant set. We will examing’ on the sets
Ey={xeE: f(x)<M}andEs = {x € E : f(x) = oo}. ForanyM > 0 ande > 0
we can define functiong (x) = 0 andj; (x) so that
(1) A.jk(x)+1(f,x) > 1/e, forx € Eo and
@) Ajiw+a(f,x) = f(0)] < eforx € Ey.
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By the inverse Vitali lemma there are functioi(s) = i) (x), j(x) = jk)(x) and a set
F C X with #(F) > 0 such that the intervals(x) = U{(()'C’())T"(x) are disjoint forx € F
andu(B) = u(UyerI(x)) > 1 — €. Now

Jjx)+1

#(Eoc N B) =f > wit)du

ExNF i—p
Jx)+1

e[ L Awathn Y e dn

i=0
26/ fdu.
EocNB

So lettinge — 0 we see thatt(E«) = 0. For eachEy; ande > 0 we have
~ J(x)
/ f—=rdu
EynB

/E W(f(x) — Ajny+1(f. X)) ;O wi (x) dp

=<

J )
< /EMW [f(x)— Aj(x)+1(f,x)|;wi(x)du

J(x)
<€ wi(x)du
[ >

MNF =0
<eu(EyNB) <e

Again, lete — 0 andM — oo we get/, fdu = [, f du for all T-invariant setst.
Repeating the same procedure for liminpf( f, x) we see that lin, o An(f,x) = f*
exists as a finite limit and further thdf, f*du = [, f du forall T-invariant sets£. O
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