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Abstract. A proof for a non-singular version of the inverse Vitali lemma is given. The
result is used to describe non-singular orbit equivalence within the framework of Rudolph’s
restricted orbit equivalence and in the construction of an alternative proof of the Hurewicz
ergodic theorem.

1. Introduction
In extending ergodic theory from a measure-preserving to a non-singular setting many of
the problems we encounter are technical rather than fundamental. Frequently, once these
technical barriers have been overcome, it is straightforward to establish a theorem for non-
singular actions by generalizing the corresponding measure-preserving result.

It is in this light that we examine the inverse Vitali lemma. As we show in this paper, a
non-singularized version of this result opens the door to a number of possibilities.

While the basic form of the non-singularized proof is taken from the measure-preserving
proof given in [5], the ideas which allow us to extend the result are due to Halmos [1].

The first use of our main result is demonstrated in §3, in which we establish the
foundations of a non-singular version of Rudolph’s restricted orbit equivalence. This part
of our work is still in its early stages and does not yet deal with any form of entropy.
However, we are able to define non-singular orderings and sizes, and we can show that
much of the basic machinery still works in a non-singular context. In particular, we present
a size for non-singular orbit equivalence, which we denote asm0. The inverse Vitali lemma
is used to show thatm0 is in fact a size and that all orbit equivalent dynamical systems give
rise to orderings which arem0 equivalent.

It will be assumed that the reader has some familiarity with [4], from which most of
our technical work in §3 is adapted. It should be noted that although the restricted orbit
equivalence as presented in its original form in [4] deals exclusively withZ actions, the
theory has since been extended to the actions of more general groups. (See [2] and [3].) At
this preliminary stage of development we have chosen to stay close to the original format
as we believe that in doing so we can better highlight the problems involved in extending
the theory to include non-singular actions.
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Our second application is an alternate non-Halmos type proof of the Hurewicz ergodic
theorem. Now that we have a non-singular inverse Vitali lemma at our disposal,
the Ornstein–Weiss style proof of the Birkhoff ergodic theorem given in [5] is easily
generalized.

2. The inverse Vitali lemma
Our proof of the non-singular version of the inverse Vitali lemma is based on that given for
the standard measure-preserving case in [5]. We first state the result.

LEMMA 2.1. (Inverse Vitali lemma)Let T be an ergodic, non-singular, non-periodic
invertible automorphism on(X,B, µ). Further suppose that for some measurableA ⊂ X

with µ(A) > 0 there are measurable integer valued functionsik(x), jk(x) such that
limk→∞ jk(x) − ik(x) = ∞ for all x ∈ A. Then there is some subsetB ⊂ A such
that for all x ∈ B there are functionsi(x) ≤ 0 ≤ j (x) wherei(x) = ik(x) , j (x) = jk(x)

for somek depending onx, so that the orbit intervalsI (x) = ∪j (x)i(x) T
i(x) are all pairwise

disjoint and
µ(A \ ∪x∈BI (x)) < ε.

There is only one real problem in trying to generalize the proof given in [5] to the
non-singular case. In covering a set with orbit intervals we obviously need to know how
much measure we are including with each step. For a measure-preserving transformation
T we know that if the length of an orbit interval is extended by a certain factor then its
associated mass will also be increased by the same proportion. In our non-singular proof
we need some similar control over the Radon derivatives. For this reason we first establish
an intuitively obvious fact.

LEMMA 2.2. Letωi(x) = (dT −iµ/dµ)(x), and suppose
∑∞
i=0ωi(x) = ∞ for µ almost

all x ∈ X. Then

lim
n→∞

ωn(x)∑n−1
i=0 ωi(x)

= 0

for µ almost allx ∈ X.

Proof. For a real valued functionq(x) andn ∈ Z+ let

qn(x) =
n−1∑
i=0

q(T i(x))ωi(x).

Then ifqc(x) = ω1(x)− (1 + c), we have

qnc (x) = ωn(x)− c

n−1∑
i=1

ωi(x)− (1 + c).

ForA ⊆ X aT invariant set andc ∈ R, let

E+
A(c) =

∞⋃
n=1

{x ∈ A : qnc (x) ≥ 0}
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and

E−
A(c) =

∞⋃
n=1

{x ∈ A : qnc (x) ≤ 0}.

Then ∫
E+
A (c)

qc(x) dµ ≥ 0 and
∫
E−
A (c)

−qc(x) dµ ≥ 0.

For proof see [1]. So∫
E+
A (c)

ω1(x) dµ ≥ (1 + c)µ(E+
A(c)) and (1 + c)µ(E−

A(c)) ≥
∫
E−
A (c)

ω1(x) dµ.

Now the sequence

an(x) = ωn(x)− 1∑n−1
i=0 ωi(x)

is boundedµ-almost everywhere. For if, for some setB ⊆ X, x ∈ B implies thatan(x) is
unbounded then

B =
⋂
c>0

E+
X(c)

⋃ ⋂
c>0

E−
X(−c)

and so by the above inequalities,µ(B) = 0.
Note that

an(T (x)) = ωn+1(x)− ω1(x)∑n−1
i=0 ωi+1(x)

and so lim supan(x) and lim infan(x) areµ-almost everywhereT invariant. Hence if we
let

Aα,β = {x : lim inf an(x) < α < β < lim supan(x)}
for α, β ∈ Q, thenAα,β is aT invariant set. So∫
E+
Aα,β

(c)

ω1(x) dµ ≥ (1 + c)µ(E+
Aα,β

(c)) and (1 + c)µ(E−
Aα,β

(c)) ≥
∫
E−
Aα,β

(c)

ω1(x) dµ

for c ∈ R.
Now E−

X(α) ∩ Aα,β = E−
Aα,β

(α), butAα,β ⊆ E−
X(α), soAα,β = E−

Aα,β
(α). Similarly,

Aα,β = E+
Aα,β

(β). So ∫
Aα,β

ω1(x) dµ ≥ (1 + β)µ(Aα,β)

and

(1 + α)µ(Aα,β) ≥
∫
Aα,β

ω1(x) dµ.

But asα < β this is not possible unlessµ(Aα,β) = 0. Hence limn→∞(ωn(x) − 1)/∑n−1
i=0 ωi(x) existsµ-almost everywhere so it is easy to show that

lim
n→∞

ωn(x)∑n−1
i=0 ωi(x)

= 0

on a set of full measure. 2
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Note that this proof could easily be extended to show that limn→∞
∑n+p
i=n ωi(x)/∑n

i=0ωi(x) = 0 for any finitep ∈ N, or that limn→∞ ω−n(x)/
∑−n
i=0ωi(x) = 0.

LEMMA 2.3. Suppose that forx ∈ A ⊆ X, µ(A) > 0 there are bounded integer valued
functionsi(x) ≤ 0 ≤ j (x) such thatN1 < j(x)− i(x)+1< N2 whereN1 is so large that

j+1∑
i−1

dT −rµ
dµ

(x) < (1 + 2ε)
j∑
i

dT −rµ
dµ

(x)

for all i, j ∈ N with j − i + 1 > N1 andε < µ(A)/16. Then there is subsetA′ ⊂ A so
that if I (x) = ⋃jk(x)

i=ik (x) T
i(x) thenI (x) is disjoint fromI (x ′) for x, x ′ ∈ A′ wherex 6= x ′

and

µ(A) ≤ 4µ

( ⋃
x∈A′

I (x)

)
.

Proof. Find a subsetX1 ⊂ X of measure at least 1− ε, andN3 ∈ N so that forx ∈ X1,

N3∑
r=N3−N2

dT −rµ
dµ

(x)

/ N3∑
r=0

dT −rµ
dµ

(x) < ε.

By using the induced transformation on the setX1 and building a Rokhlin tower of height
N3, construct a Kakutani skyscraper forT with baseB ⊆ X1 such that each column has
heighth(x) ≥ N3 for all x ∈ B.

For eachx ∈ A there is ay ∈ B such thatx = T p(x)(y) where 0≤ p(x) ≤ h(y) and
an interval[i(x), j (x)] to which we ascribe the ‘length’

l(x) =
j (x)∑
r=i(x)

dT −(p(x)+r)

dµ
(y).

We cover the points inA contained inP(y) = ∪h(y)−N2
r=0 T r(y), (y ∈ B) by the following

method: list allx ∈ A ∩ P(y) in descending order of lengthl(x) i.e. label the points
x1, x2, . . . , etc, wherel(xr) ≥ l(xr+1). Start withx1 and cover an interval of points

I (x1) = ∪j (x1)

i(x1)
T r (x1)

in P(y) with lengthl(x1). Next choosexs wherel(xs) is the largest length remaining with
I (xs) disjoint fromI (x1).

Continue with this method of disjoint covering until no further intervals can be chosen
without intersecting with those already selected. Fory ∈ B, defineR(y) ⊂ [0, h(y)−N2]
as the set of integers such thatk ∈ R(y) if and only if T k(y) ∈ A andI (T k(y)) is chosen
as a covering interval.

LetL(x) = 3l(x) and define

I ′(x) =
j ′(x)∑
i′(x)

T r (x)
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wherei ′(x) is the greatest integer such that

i(x)−1∑
r=i′(x)

dT −(p+r)µ
dµ

(y) ≥ l(x)

andj ′(x) is the least integer such that

j ′(x)∑
r=j (x)+1

dT −(p+r)µ
dµ

(y) ≥ l(x)

wherex = T p(y) for y ∈ B.
Now

A ∩ P(y) ⊆ ∪k∈R(y)I ′(T k(y)).

For if we suppose otherwise then for somex ′ ∈ P(y) we would haveI (x ′) disjoint from
all the selected orbit intervalsI (T k(y)) (k ∈ R(y)). But this would mean thatI (x ′) would
already have been included in our covering, which would be a contradiction.

DefiningA′ as the set
∪y∈B ∪k∈R(y) T k(y),

we can see that as

h(y)−N2∑
r=0

dT −rµ
dµ

(y) ≥ (1 − ε)

h(y)∑
r=0

dT −rµ
dµ

(y)

for y ∈ B, then

µ(A)− ε ≤
∫
y∈B

∑
k∈R(y)

L(T k(y)) dµ(y)

≤ 3(1 + 2ε)µ(∪x∈A′I (x))

and asε < µ(A)/16,

µ(A) ≤ 4µ(∪x∈A′I (x)). 2

Now we come to the real heart of the inverse Vitali argument. The following lemma
tells us that we can cover all butε in measure of a set with disjoint orbit intervals providing
we start with a suitable finite set of integer valued function pairsik(x) ≤ 0 ≤ jk(x).
The covering is achieved by an inductive process, using Lemma 2.3 to cover a quarter
in measure of what remains uncovered at each stage. The final proof of the inverse
Vitali lemma is the construction of an appropriate set of functions from the infinite series
ik(x), jk(x).

LEMMA 2.4. Choose1/2 > ε > 0 and a largeM ∈ N such thatεM/16 > 1. Suppose
we have a setB ⊆ X, µ(B) > ε/2 such that forx ∈ B we have bounded integer valued
functionsik(x) ≤ 0 ≤ jk(x), (k = 1,2, . . . ,M). Let

ninf
k = inf

x∈B(jk(x)− ik(x)+ 1) and n
sup
k = sup

x∈B
(jk(x)− ik(x)+ 1)
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and letN1 < mink∈(1,2,...,M){ninf
k } be so large that

j+1∑
i−1

dT −rµ
dµ

(x) <
(
1 + ε

16

) j∑
i

dT −rµ
dµ

(x)

for all x ∈ B and all i, j with i ≤ 0 ≤ j andj − i + 1> N1. Further suppose that

jk(x)+nsup
k+1∑

ik(x)−nsup
k+1

dT −rµ
dµ

(x) <
(
1 + ε

2

) jk(x)∑
ik (x)

dT −rµ
dµ

(x)

for k = 1,2, . . . ,M − 1. Then there is a subsetB ′ ⊆ B,µ(B ′) > 0 and measurable
functionsi(x) ≤ 0 ≤ j (x) for x ∈ B ′ with (i(x), j (x)) = (ik(x), jk(x)) for somek,
(k = 1,2, . . . ,M) depending onx so that the sets

I (x) = ∪j (x)r=i(x)T
r (x)

are pairwise disjoint forx ∈ B ′ and

µ(B \ ∪x∈B ′I (x)) < ε.

Proof. First of all we define

i ′k(x) = ik(x)− sup
x∈B

(jk+1(x)− ik+1(x)+ 1)

j ′
k(x) = jk(x)+ sup

x∈B
(jk+1(x)− ik+1(x)+ 1)

for k = 1,2, . . . ,M − 1 andi ′M(x) = i(x), j ′
M(x) = jM(x). Using Lemma 2.3 we find a

subsetB ′
1 ⊂ B with

I ′
1(x) = ∪j ′

1(x)

i=i′1(x)T
i(x)

pairwise disjoint and

µ(∪x∈B ′
1
I ′(x)) ≥ µ(B)

4
.

Now take
B2 = B \ ∪x∈B ′

1
I ′
1(x).

If µ(B2) > ε/2 we can reapply Lemma 2.3 to constructB ′
2 ⊆ B2 so that

µ(∪x∈B ′
2
I ′
2(x)) ≥ µ(B2)

4
.

Continue the induction, setting

Bk = B \ ∪k−1
i=1 ∪x∈B ′

i
I ′
i (x).

As long asµ(Bk) > ε/2 we can findB ′
k ⊆ Bk so that

µ(∪x∈B ′
k
I ′
k(x)) ≥ µ(Bk)

4
.
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We do this up toM times usingM function pairsi ′k(x), j ′
k(x).

NowB ′ = ∪Mk=1B
′
k is a disjoint union hence it is not hard to show that

I (x) = ∪j (x)
i=i(x)T

i(x) and I (x ′) = ∪j (x ′)
i=i(x ′)T

i(x ′)

are disjoint forx 6= x ′. (Herei(x), j (x) are defined to beik(x), jk(x)wherek is the unique
integer 1≤ k ≤ M such thatx ∈ B ′

k .)
Let BM+1 be the remaining piece ofB which we have not yet covered with disjoint

orbit intervalsI ′(x), i.e.

BM+1 = B \ ∪Mk=1 ∪x∈B ′
k
I ′(x).

We wish to prove thatµ(BM+1) < ε/2. Supposeµ(Bk) ≥ ε/2 for all k = 1,2, . . . ,M+1.
Now

µ(∪x∈B ′
k
I ′(x)) < (1 + ε/2)µ(∪x∈B ′

k
I (x))

< µ(∪x∈B ′
k
I (x))+ ε/2µ(∪x∈B ′

k
I ′(x)).

So

µ(∪x∈B ′
k
I (x)) ≥ (1 − ε/2)µ(∪x∈B ′

k
I ′(x))

≥ (1 − ε/2)
µ(Bk)

4

for all k = 1,2, . . . ,M and because of the disjointness of theB ′
k and the fact that

µ(BM+1) ≤ µ(Br) we can say

µ(∪x∈B ′I (x)) ≥ M(1 − ε/2)
ε

8
>
Mε

16
> 1

which is a contradiction.
Hence

µ(B \ ∪x∈B ′I (x)) ≤ µ(BM+1)+ µ(∪x∈B ′I ′(x) \ I (x))
< ε/2 + ε/2µ(∪x∈B ′I (x))

< ε

as required. 2

Proof of the inverse Vitali lemma.Chooseε/2 > 0 andM ∈ N such thatεM/32 > 1.
We need to constructM function pairs on a setAM ⊂ A which satisfy the hypotheses of
Lemma 2.4.

First find anN ∈ N and a setA0 ⊂ A with µ(A0) > µ(A) − ε/22, such that for any
j − i + 1> N, i ≤ 0 ≤ j and allx ∈ A0,

j+1∑
i−1

dT −rµ
dµ

(x) <
(
1 + ε

32

) j∑
i

dT −rµ
dµ

(x).

Now on a subsetA1 ⊂ A0 with µ(A1) > µ(A0) − ε/23, define bounded functions
ı̂1(x) = ik(x)(x) and ̂1(x) = jk(x)(x) where thek(x) are chosen measurably so that
jk(x)(x)− ik(x)(x)+ 1> N .
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Next construct̂ı2(x) = ik(x), ̂2(x) = jk(x)(x) bounded onA2 ⊂ A1 with µ(A2) >

µ(A1) − ε/24 and thek(x) are chosen to ensurê2(x) − ı̂2(x) + 1 > N and that for all
x ∈ A2,

̂2(x)+nsup
1∑

ı̂2(x)−nsup
1

dT −kµ
dµ

(x) <
(
1 + ε

4

) ̂2(x)∑
ı̂2(x)

dT −kµ
dµ

(x)

wherensup
1 = supx∈A1

̂1(x)− ı̂1(x)+ 1.
Continuing in this fashion we obtainM bounded function pairŝık(x), ̂k(x) on AM .

Now for x ∈ AM the ı̂k(x), ̂k(x) listed in reverse order satisfy the required conditions for
Lemma 2.4. Hence we can cover all butε/2 in measure ofAM with disjoint orbit intervals

I (x) = ⋃̂ (x)

ı̂(x)
T k(x) for x ∈ A′ ⊂ AM . But

µ(AM) > µ(A)− ε

M+2∑
k=2

1

2k

> µ(A)− ε/2

and so clearly we are done. 2

3. Non-singular orderings and sizes
To begin our modification of restricted orbit equivalence we start with the definition of an
ordering.

Definition 3.1.For a non-singular ergodic transformation system(X,B, µ, T ) anordering
will be a map

α : X ×X → Z

wherex ′ = T α(x,x
′)(x).

We will only be comparing orderings within orbit equivalence classes; that is, if we
writem(α1, α2) for some sizem or any other expression involving the two orderings then
we are assuming that there is some invertible orbit mapφ : X1 → X2 with µ1 ◦ φ ∼ µ2

and
φ(T i1(x)) = T

j(i,x)

2 (φ(x)).

Also, any orbit map between two orderings is assumed to induce an orbit equivalence.

Definition 3.2.We say thatα1 andα2 differ by a co-boundaryif there is an orbit map
φ : X1 → X2 where

φ(T i1(x)) = T
j(i,x)

2 (φ(x))

and a measurable functionf : X1 → Z such that

α1(x, x
′)− α2(φ(x), φ(x

′)) = f (x)− f (x ′).

LEMMA 3.3. The orderingsα1, α2 differ by a co-boundary if and only ifT1 andT2 are
conjugate.

The proof of this is an easy extension of the calculation of [4, pp. 4–6].
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Notation. Let φ : X1 → X2 be an orbit map for orderingsα1, α2 onX1, X2 respectively,
andx ∈ X1. Definef α1,α2

x,φ : Z → Z by

f
α2,α2
x,φ (i) = j

wheneverα2(φ(x), φ(T
i
1(x))) = j . Denote

5
α1,α2
x,φ,(i,j)

as the permutation of(i, j) which re-orders the interval in the same order asf
α1,α2
x,φ . We

will now discuss non-singular sizes. For a sizem, the value

m(5
α1,α2
x,φ,(i,j))

will no longer depend just on the permutation. It may also depend on the interval(i, j),
on x, and on the action ofT1 on (X1,B1, µ1). So the notation is in fact something of a
shorthand. Note that if5α1,α2

x,φ,(i,j) = 5
α1,α3
x,ψ,(i,j) thenm(5α1,α2

x,φ,(i,j)) = m(5
α1,α3
x,ψ,(i,j)).

For a sizem (axioms described below) let

m(f
α1,α2
x,φ ) = lim inf

i→−∞,j→∞m(5
α1,α2
x,φ,(i,j)).

By axiom ii(a) below this is constant for almost allx by ergodicity; we shall denote it as
m(f

α1,α2
φ ). When we writem(α1, α2) we meanm(f α1,α2

φ ) whereφ is the identity map.
We now present our definition of a size in a non-singular context, generalizing axioms

i–vi given in [4, pp. 7–8]. Note that all our axioms are stated in terms ofm(f
α1,α2
φ )

or m(5α1,α2
x,φ,(i,j)) rather than in terms ofm(α1, α2). Of course, these axioms may be in

need of refinement for future developments, however they are sufficient for our immediate
purposes.

Definition 3.4.We callm a sizeif it satisfies the following axioms:
i(a) m(id) = 0.
ii(a) m(5

α1,α2
T1(x),φ,(i,j)

) = m(5
α1,α2
x,φ,(i+1,j+1)).

iii(a) If for orderingsα1, α2 for all ε > 0 there exists an orbit mapφ : X1 → X2 such that
m(f

α1,α2
φ ) < ε then for eachε > 0 there exists an orbit mapψ : X2 → X1 such that

m(f
α2,α1
ψ ) < ε.

iv(a) For all ε > 0 there is aδ so that ifm(5α1,α2
x,φ,(i,j)) < δ then for all but a subset

I ⊂ (i, j) with ∑
I

dT −k
1 µ1

dµ1
(x) < ε

j∑
i

dT −k
1 µ1

dµ1
(x)

we have
5
α1,α2
x,φ (k + 1) = 5

α1,α2
x,φ (k)+ 1.

vi(a) For allε > 0 there is aδ1 so that for eachα2 with m(f α1,α2
φ ) < δ1 there is aδ2 such

that for allα3 with m(f α2,α3
ψ ) < δ2 we havem(f α1,α3

ψφ ) < ε.

We have included in this list of axioms only those which are either technically necessary
(i(a), ii(a), iii(a) and vi(a)) for our work here or intuitively desirable (iv(a)). In [4], axiom v
is needed mainly for the construction ofm-entropy and its use in them-equivalence
theorem. As we have not yet developed a non-singular version ofm entropy we have
not given an analogue of axiom v.
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Definition 3.5.We say orderingsα1 andα2 arem-equivalent(written α1m̃α2) if for each
ε > 0 there is anαε2 differing fromα2 by a co-boundary such thatm(α1, α

ε
2) < ε.

By generalizing the proof of Theorem 2.1 in [4] we have the following.

LEMMA 3.6. Non-singularm-equivalence is an equivalence relation.

We now present our size for non-singular orbit equivalence.

Definition 3.7.(Size for non-singular orbit equivalence) Let

m0(5
α1,α2
x,φ,(i,j)) =

∑
k∈I

dT −k
1 µ1

dµ1
(x)

/ j−1∑
k=i

dT −k
1 µ1

dµ1
(x)

whereI ⊂ (i, j − 1) is such thatk ∈ I implies that

5
α1,α2
x,φ (k + 1) 6= 5

α1,α2
x,φ (k)+ 1.

Our newm0 is still consistent with the measure-preserving size for orbit equivalence
given in [4]. Clearlym0 satisfies axioms i(a) and iv(a). For axiom ii(a) simply note that

dT −nµ
dµ

(T x) = dT −(n+1)µ

dµ
(x)

/
dT −1µ

dµ
(x).

The following three results are modified versions of Lemmas 2.6, 2.7 and 2.8 from [4].

LEMMA 3.8. For orderingsα1, α2, m0(f
α1,α2
φ ) < a if and only if there is a setA ⊂ X1

withµ1(A) > 1 − a such thatx ∈ A implies that

f
α1,α2
x,φ (1) = 1.

Proof. Letm0(f
α1,α2
φ ) < ā < a < 1.

So for almost allx ∈ X1 we have a sequence of intervalsik(x) → −∞, jk(x) → ∞
such that

m0(5
α1,α2
x,φ,(ik(x),jk(x))

) < ā.

Hence for eachk ∈ N, and almost allx ∈ X1, there is a subsetSk,x ⊂ (ik(x), jk(x)) with

∑
i∈Sk,x

dT −i
1 µ1

dµ1
(x) > (1 − ā)

jk(x)∑
i=ik (x)

dT −i
1 µ1

dµ1
(x)

such that ifl ∈ Sk,x then

5
α1,α2
x,φ,(ik(x),jk(x))

(l + 1) = 5
α1,α2
x,φ,(ik(x),jk(x))

(l)+ 1.

Set ε andN . Find a setA′ ⊂ X1 with µ1(A
′) > 1 − ε and anN1(�N) so that if

j − i + 1 ≥ N1 andI ⊂ (i, j) has #I ≤ N then forx ∈ A′

j−N∑
i+N

dT −l
1 µ1

dµ1
(x) > (1 − ε)

j∑
i

dT −l
1 µ1

dµ1
(x).
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Restricting ourselves to function pairsik(x), jk(x) with jk(x)− ik(x)+ 1> N1, we apply
the inverse Vitali lemma to cover all butε in measure ofA′ with disjointT1 orbit intervals;
i.e.

CN,ε = ∪x∈BN,ε ∪j (x)i(x) T
i
1(x), BN,ε ⊂ A′

is a disjoint union andµ1(A
′ \ CN,ε) < ε. Now let

AN,ε = ∪x∈BN,ε ∪Sk,x∩(i(x)+N,j (x)−N) T i1(x).
AsBN,ε ⊂ A′ we have

µ1(∪Sk,x∩(i(x)+N,j (x)−N)T i1(x)) > (1 − ā − ε)µ1(∪j (x)i(x) T
i
1(x)).

So

µ1(AN,ε) > (1 − ā − ε)µ1(CN,ε )

> 1 − ā − 3ε.

Putε = 2−N . If A = lim supN AN,2−N thenµ1(A) ≥ 1 − ā > 1 − a.
Now x ∈ A if and only if x ∈ ANr,2−Nr for an infinite sequence{Nr }∞r=1. If x = T l1(x̄)

for x̄ ∈ BNr ,2−Nr , l ∈ Sk,x̄∩(i(x̄)+Nr, j (x̄)−Nr), then puttingur = i(x̄)−l, vr = j (x̄)−l
we have

f
α1,α2
x,φ,(ur ,vr )

(i) = f
α1,α2
x̄,φ,(i(x̄),j (x̄))

(l + i)− f
α1,α2
x,φ,(i(x̄),j (x̄))

(l).

Hence asf α1,α2
x,φ,(ur ,vr )

(0) = 0 andl ∈ Sk,x̄ we have

5
α1,α2
x,φ,(ur ,vr )

(1) = 1,

and asr → ∞
5
α1,α2
x,φ,(ur,vr )

(1) → f
α1,α2
x,φ (1) = 1

for x ∈ A with µ1(A) > 1 − a.
If such anA exists then ifT k1 (x) ∈ A then

f
α1,α2

T k1 (x),φ
(1) = f

α1,α2
x,φ (k + 1)− f

α1,α2
x,φ (k)

= 1.

So

5
α1,α2
x,φ (k + 1) = 5

α1,α2
x,φ (k)+ 1.

But by the Hurewicz ergodic theorem [1],

lim
n→∞

n−1∑
k=0

χA(T
k
1 (x))

dT −k
1 µ1

dµ1
(x)

/ n−1∑
k=0

dT −k
1 µ1

dµ1
(x) = µ1(A) > 1 − a.

Hencem0(f
α1,α2
φ ) < a. 2

LEMMA 3.9. The non-singular sizem0 satisfies axiom vi(a).
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Proof. Chooseε > 0. Supposem0(f
α1,α2
φ ) < ε/2, andm0(f

α2,α3
ψ ) < δ whereδ is chosen

so thatµ1(φ
−1(E)) < ε/2 forµ2(E) < δ, for all measurableE ⊂ X2.

By the previous lemma we have setsS1 ⊂ X1 andS2 ⊂ X2 with µ1(S1) > 1− ε/2 and
µ2(S2) > 1 − δ such that

f
α1,α3
x,ψ◦φ(1) = f

α2,α3
φ(x),ψ(f

α1,α2
x,φ (1)) = 1

for x ∈ S1 ∩ φ−1(S2) ⊂ X1. Hencem0(f
α1,α3
ψ◦φ ) < ε. 2

LEMMA 3.10. For all α1, α2 and for all ε > 0 we can find an orbit map̄φ such that
m0(f

α2,α1
φ̄−1 ) < ε. Hencem0 satisfies axiom iii(a) and further

α1m̃0α2.

Proof. Fix ε > 0. Choose aδ > 0 such that for any measurable setE ⊂ X1 if
µ1(E) > 1 − δ thenµ2(φ(E)) > 1 − ε/3.

ChooseN0 so large that for a setφ(A) with µ2(φ(A)) > 1 − ε/3 if x ∈ φ(A) then

|α1(φ
−1(x), φ−1(T2(x)))| < N0.

Now chooseN(�N0) so that on a setB ⊂ X1 with µ1(B) > 1 − δ/4, for all x ∈ B,
N1 > N and for any index setI ⊂ [0, N1 − 1] with #I ≤ N0 we have

∑
I

dT −i
1 µ1

dµ1
(x) <

δ

8

N1−1∑
i=0

dT −i
1 µ1

dµ1
(x).

Take the induced transformationTB where

TB(x) = T
rB(x)
1 (x) for x ∈ B.

Build a Rokhlin Tower of heightN1 covering all butδ/4 ofB; i.e.

∪N1−1
i=0 T iB(C) ⊂ B, C ⊂ B

is a disjoint union and

µ1(∪N1−1
i=0 T iB(C))

µ1(B)
> 1 − δ/4.

We now use thisTB tower as the basis for a series ofT1 towers of differing heights.
PartitionC into setsCp where

Cp = {x ∈ C : T N1−1
B (x) = T

p−1
1 (x)}.

The towers∪p−1
i=0 T

i
1(Cp) are disjoint unions by the disjointness of∪N1−1

i=0 TB(C). Further

∪p−1
i=0 T

i
1(Cp) ∩ ∪q−1

i=0 T
i
1(Cq) = ∅ a.e.

if p 6= q.
Now we construct a new orbit map̄φ betweenT1 andT2 as follows.
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(i) If x /∈ ∪p≥N1 ∪p−1
i=0 T

i
1(Cp) then let

φ̄(x) = φ(x).

(ii) Let x ∈ ∪p−1
i=0 T

i
1(Cp) for somep ≥ N1.

For each orbit segment∪p−1
i=0 T

i
1(z), z ∈ Cp, take

φ(∪p−1
i=0 T

i
1(z)) = ∪p−1

i=0 T
j(i,z)

2 (φ(x))

and rearrange the right-hand side of this expression so that thej (i, z) are in ascending
order. Then let̄φ(T i1(z)) be theith element in this rearranged sequence.

We define our new ordering:

αε1 : X2 ×X2 → Z

by
αε1(y, y

′) = α1(φ̄
−1(y), φ̄−1(y ′)).

Clearlyα1 andαε1 differ by a coboundary. Let

S = φ(A) ∩ φ(∪p≥N1 ∪p−N0−1
i=N0

T i1(Cp)) ∩ φ̄(∪p≥N1 ∪p−2
i=0 T

i
1(Cp)).

Now

f
α2,α

ε
1

y,id (1) = αε1(y, T2(y))

= α1(φ̄
−1(y), φ̄−1(T2(y))).

We shall prove that this expression is equal to 1 fory ∈ S.
If y ∈ S theny ∈ φ(A) so

|α1(φ
−1(y), φ−1(T2(y)))| < N0.

Thus
φ−1(T2(y)) = T k1 (φ

−1(y))

where|k| < N0 so asφ−1(y) = T
j

1 (z) for somej , N0 ≤ j ≤ p − N0, z ∈ Cp , some
p ≥ N1. It follows that

T2(y) ∈ φ(∪p−1
i=0 T

i
1(z)).

Let x = φ̄−1(y). Thenx = T i1(z) for somei, 0 ≤ i ≤ p − 2.

HenceT1(x) ∈ ∪p−1
i=0 T

i
1(z), from which we deduce

α1(φ̄
−1(y), φ̄−1(T2(y))) = 1,

for all y ∈ S.
All that remains to prove is that the setS is sufficiently large.
We know that

µ1(∪p−N0−1
i=N0

T i1(Cp)) > (1 − δ/4)µ1(∪p−1
i=0 T

i
1(Cp))

asCp ⊂ B, and so

µ1(∪p≥N1 ∪p−N0−1
i=N0

T i1(Cp)) > 1 − δ.
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Hence

µ2(φ(∪p≥N1 ∪p−N0−1
i=N0

T i1(Cp))) > 1 − ε/3.

Also for z ∈ Cp,

φ̄(∪p−2
i=0 T

i
1(z)) = φ(∪p−1

i=0 T
i
1(z) \ T k(z)1 (z))

for somek(z) ∈ [0,1, . . . , p − 1]. Hence, as

µ1(∪z∈Cp ∪p−1
i=0 T

i
1(z) \ T k(z)1 (z)) > (1 − δ/4)µ1(∪p−1

i=0 T
i
1(Cp)),

we have

µ1(∪p≥N1 ∪z∈Cp ∪p−1
i=0 T

i
1(z) \ T k(z)1 (z)) > (1 − δ/4)(1 − δ/4)µ1(B) > 1 − δ.

So

µ2(φ̄(∪p≥N1 ∪p−2
i=0 T

i
1(Cp))) = µ2(φ(∪p≥N1 ∪z∈Cp ∪p−1

i=0 T
i
1(z) \ T k(z)1 (z)))

> 1 − ε/3.

Lastly, of course, we have chosenφ(A) so thatµ2(φ(A)) > 1 − ε/3. Henceµ2(S) >

1 − ε. 2

4. The Hurewicz ergodic theorem

THEOREM 4.1. SupposeT is non-singular on the Lebesgue probability space(X,B, µ)

and letf ∈ L1(µ). Then if

An(f, x) =
n−1∑
i=0

f (T i(x))ωi(x)

/ n−1∑
i=0

ωi(x)

thenAn(f, x) converges to a finite limit for almost allx ∈ X. Further ifAn(f, x) → f ?(x)

then
∫
E f

? dµ = ∫
E f dµ for all T -invariant setsE.

Proof. First we deal with periodic points. IfXn is the set of points inX with periodn then
it is easy to show that

f ?(x) = lim
k→∞Ak(f, x) =

n−1∑
i=0

f (T i(x))ωi(x)

/ n−1∑
i=0

ωi(x)

for all x ∈ Xn.
As eachXn is an invariant set we can deal with the points inX∞ by assuming that

T is aperiodic. Letf̂ (x) be defined as limn→∞ supAn(f, x). As f̂ (T (x)) = f̂ (x) we
will assume thatf̂ ≥ 0. Let E be aT -invariant set. We will examinef̂ on the sets
EM = {x ∈ E : f̂ (x) ≤ M} andE∞ = {x ∈ E : f̂ (x) = ∞}. For anyM > 0 andε > 0
we can define functionsik(x) = 0 andjk(x) so that
(1) Ajk(x)+1(f, x) > 1/ε, for x ∈ E∞ and
(2) |Ajk(x)+1(f, x)− f̂ (x)| < ε for x ∈ EM .
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By the inverse Vitali lemma there are functionsi(x) = ik(x)(x), j (x) = jk(x)(x) and a set

F ⊂ X with µ(F) > 0 such that the intervalsI (x) = ∪j (x)i(x) T
i(x) are disjoint forx ∈ F

andµ(B) = µ(∪x∈F I (x)) > 1 − ε. Now

µ(E∞ ∩ B) =
∫
E∞∩F

j (x)+1∑
i=0

ωi(x) dµ

≤ ε

∫
E∞∩F

Aj(x)+1(f, x)

j (x)+1∑
i=0

ωi(x) dµ

= ε

∫
E∞∩B

f dµ.

So lettingε → 0 we see thatµ(E∞) = 0. For eachEM andε > 0 we have

∣∣∣∣
∫
EM∩B

f̂ − f dµ

∣∣∣∣ ≤
∣∣∣∣∣
∫
EM∩F

(f̂ (x)− Aj(x)+1(f, x))

j (x)∑
i=0

ωi(x) dµ

∣∣∣∣∣
≤

∫
EM∩F

|f̂ (x)− Aj(x)+1(f, x)|
j (x)∑
i=0

ωi(x) dµ

< ε

∫
EM∩F

j (x)∑
i=0

ωi(x) dµ

≤ εµ(EM ∩ B) ≤ ε.

Again, letε → 0 andM → ∞ we get
∫
E
f̂ dµ = ∫

E
f dµ for all T -invariant setsE.

Repeating the same procedure for lim infAn(f, x) we see that limn→∞ An(f, x) = f ?

exists as a finite limit and further that
∫
E
f ? dµ = ∫

E
f dµ for all T -invariant setsE. 2

Acknowledgements.Much of this work forms part of the author’s PhD thesis. The author
wishes to thank Tony Dooley and Dan Rudolph for their comments and suggestions and
the Australian Research Council for their financial support.

REFERENCES

[1] P. R. Halmos. An ergodic theorem.Proc. Natl. Acad. Sci. USA32 (1946), 156–161.
[2] J. W. Kammeyer and D. J. Rudolph. Restricted orbit equivalence for ergodicZ

d actions I.Ergod. Th. &
Dynam. Sys.17 (1997), 1083–1129.

[3] J. W. Kammeyer and D. J. Rudolph. Restricted orbit equivalence for actions of discrete amenable groups.
Preprint.

[4] D. J. Rudolph. Restricted orbit equivalence.Mem. Amer. Math. Soc.323(1985).
[5] D. J. Rudolph.Fundamentals of Measurable Dynamics. Oxford University Press, New York, 1990.


