Synthesis of the C₈-C₁₅ Segment of (+)-Discodermolide

Masahiro Miyazawa, Satoshi Oonuma, Kimiyuki Maruyama, and Masaaki Miyashita* Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060

(Received July 24, 1997; CL-970580)

Succeeding to the preceding paper, stereoselective synthesis of the C_8 - C_{15} segment of (+)-discodermolide (1), the marine natural product having the potent immunosuppressive activity, is described in which the contiguous asymmetric centers at C_{11} and C_{12} positions were stereospecifically constructed via the methylation of an epoxy alcohol with lithium dimethylcuprate.

In the preceding paper, ¹ we reported the stereoselective synthesis of the C_1 - C_7 segment of (+)-discodermolide (1) by the use of the stereospecific methylation of γ , δ -epoxy acrylate with trimethylaluminum and the intramolecular conjugate addition of an acetal alkoxide anion as key steps. We report here an elaboration of the C_8 - C_{15} segment 2 of 1 which involves a regiospecific methylation of an epoxy alcohol with lithium dimethylcuprate and the Z-selective Horner-Emmons reaction using methyl 2-[bis(2-methylphenyl)phosphono]propionate as key steps.

We designed the acetylenic compound 2 as the C_8 - C_{15} segment of (+)-discodermolide (1) and its retrosynthesis was outlined in Scheme 1. The terminal carbon-carbon triple bond and another terminus (Z)-allyl chloride moiety may be regioselectively introduced from diol 3. The anti alcohol 3 bearing the C_{10} , C_{11} , and C_{12} stereogenic centers, a key intermediate in the present synthesis, will be derivable from β -epoxy alcohol 4 by the regioselective methylation with lithium dimethylcuprate. The β -epoxy alcohol 4 should be prepared from the commercially available hydroxy ester 5.

The key intermediate 3 was straightforwardly synthesized starting from methyl (S)-3-hydroxy-2-methylpropionate (5) according to the reaction path shown in Scheme 2. Thus protection of the hydroxyl group in 5 with *p*-methoxybenzyl trichloroacetamide² followed by reduction of the resulting ester

MeO OH
$$\frac{i, ii}{90\%}$$
 HO OMPM $\frac{iii, iv}{77\%}$

EtO₂C OMPM $\frac{v}{92\%}$ HO OMPM

 $\frac{vi}{95\%}$ HO OMPM

 $\frac{vi}{95\%}$ A OMPM

 $\frac{vi}{92\%}$ 3

Scheme 2. Reagents and conditions: i. MPMOC(=NH)CCl $_3$, PPTS, CH $_2$ Cl $_2$; ii. LiAlH $_4$, THF; iii. (COCl) $_2$, Me $_2$ SO, CH $_2$ Cl $_2$, -70 °C, then Et $_3$ N; iv. (EtO) $_2$ P(O)CH $_2$ CO $_2$ Et, NaH, THF, 0 °C; v. DIBAL-H, CH $_2$ Cl $_2$, 0 °C; vi. (-)-DIPT, Ti(O i Pr) $_4$, TBHP, MS-4A, CH $_2$ Cl $_2$, 0 °C; vii. (CH $_3$) $_2$ CuLi, Et $_2$ O, -40°C.

with LiAlH₄ gave rise to the alcohol 6 in 90% overall yield. In order to evaluate the enantiomeric excess of the product, a part of 6 was transformed into the corresponding (S)- α -methoxyphenylacetic acid ester and the enantiomeric excess of 6 was found to be >95% by its ¹H NMR analysis. Swern oxidation of the alcohol 6 followed by the Horner-Emmons reaction with triethyl phosphonoacetate gave the (E)- α , β -unsaturated ester 7 in 77% yield after purification by silica gel chromatography. The unsaturated ester 7 was then reduced with DIBAL-H in CH2Cl2 to afford the alcohol 8 in 92% yield. The Katsuki-Sharpless asymmetric epoxidation³ of the resulting alcohol 8 with D-(-)diethyl tartrate furnished the desired β-epoxy alcohol 4 as a single product in 95% yield. The reaction of the epoxy alcohol 4 with lithium dimethylcuprate cleanly proceeded in Et₂O at -23 °C⁴ giving rise to the desired diol 3 as the sole product in 92% yield, though a large excess of the cuprate reagent (15 equiv.) was required for completion of the reaction.⁵

With the key intermediate 3 in hand, we focused on the elaboration of the fully functionalized C_8 - C_{15} segment 2. Initially, the diol 3 was converted to 11 by a three step reaction sequence: 1) regioselective protection of the primary hydroxyl group with pivaloyl chloride, 2) subsequent protection of the tert-butyldimethylsilyl hydroxyl group with trifluoromethanesulfonate (TBDMSOTf), 3) reduction of the resulting pivalate ester with DIBAL-H, in 74% overall yield (Scheme 3). Dess-Martin oxidation^{6,7} of the alcohol **11** obtained and the subsequent Wittig reaction with CBr4 and HMPT8 produced the methylene dibromide 12 in 95% yield. Treatment of the dibromide 12 with BuLi (2.2 equiv.) in THF at -78 °C followed by trapping the resulting lithium acetylide with triethylsilyl chloride furnished the silyl acetylene 13 in 95% yield. Removal of the MPM group of 13 with DDQ in CH₂Cl₂ afforded the alcohol 14 in nearly quantitative yield. The alcohol

Scheme 3. Reagents and conditions: i. (CH₃)₃CCOCl, pyridine, CH₂Cl₂, 0 °C; ii. TBDMSOTf, pyridine, CH₂Cl₂, 0 °C; iii. DIBAL-H, CH₂Cl₂, -78 °C; iv. Dess-Martin periodinane, CH₂Cl₂; v. CBr₄, HMPT, THF, 0 °C; vi. BuLi (2.2 equiv.), THF, -78 °C, then TESCl; vii. DDQ, H₂O, CH₂Cl₂; viii. (o-C₇H₇O)₂P(O)CHMeCO₂Me, NaH, THF, -78 °C to 0 °C; ix. CH₃SO₂Cl, Et₃N, CH₂Cl₂, 0 °C then LiCl, rt.

14 thus obtained was further transformed into the Z-unsaturated ester 15 by Dess-Martin oxidation followed by the Horner-Emmons reaction with methyl 2-[bis(2-methylphenyl)phosphono]-propionate⁹ in THF, whereupon the desired Z-unsaturated ester 15 and the E-isomer were obtained in 51% and 5% yields, respectively, after purification by silica gel chromatography. Finally, the Z-unsaturated ester 15 was converted to the fully functionalized C_8 - C_{15} segment 2^{10} by the following reaction sequence: 1) reduction of the ester group with DIBAL-H, 2) treatment of the resulting allylic alcohol with methanesulfonyl chloride followed by LiCl, in 70% overall yield.

Thus a new and stereoselective synthetic route to the C_8 - C_{15} segment of discodermolide (1) was developed. The synthesis of the remaining C_{16} - C_{24} segment of discodermolide is progress in our laboratory.

We are grateful to the Uehara Foundation for their financial support. This work was also supported by Grant-in-Aids for Scientific Research on Priority Areas (No. 08245101) and for Encouragement of Young Scientists (No. 8780534) from the Ministry of Education, Science, Sports, and Culture of Japan.

References and Notes

- 1 M. Miyazawa, S. Oonuma, K. Maruyama, and M. Miyashita, preceding paper.
- 2 N. Nakajima, K. Horita, R Abe, and O. Yonemitsu, *Tetrahedron Lett.*, **29**, 4139 (1988).
- 3 T. Katsuki and K. B. Sharpless, J. Am. Chem. Soc., 102, 5974 (1980).
- 4 M. R. Johnson, T. Nakata, and Y. Kishi, *Tetrahedron Lett.*, **1979**, 4343.
- 5 As an alternative route for construction of the asymmetric centers at C_{11} and C_{12} positions, the methylation of 16 with trimethylaluminum (10 equiv.) in dichloroethane in the presence of water (6 equiv.) was examined and the desired product 17 was obtained as a single product.

$$EtO_{2}C \xrightarrow{O} OMPM \xrightarrow{(CH_{3})_{3}AI} EtO_{2}C \xrightarrow{OH} OMPM$$

$$16 \xrightarrow{CICH_{2}CH_{2}CI} EtO_{2}C \xrightarrow{OH} OMPM$$

- 6 Oxidation of 11 with Swern oxidation resulted in poor yield of the product.
- D. B. Dess and J. C. Martin, J. Org. Chem., 48, 4155 (1983).
- 8 A. B. Smith, III, S. M. Condon, J. A. McCauley, J. L. Leazer, Jr., J. W. Leahy, and R. E. Maleczka, Jr., J. Am. Chem. Soc., 117, 5407 (1995).
- K. Ando, Tetrahedron Lett., 36, 4105 (1995), K. Ando, J. Org. Chem., 62, 1934 (1997).
- 10 ¹H NMR (270 MHz, CDCl₃) δ 0.06 (s, 3H), 0.07 (s, 3H), 0.57 (q, J = 7.9 Hz, 6H), 0.92 (s, 9H), 0.99 (t, J = 7.9 Hz, 9H), 1.00 (d, J = 6.9 Hz, 3H), 1.17 (d, J = 7.3 Hz, 3H), 1.81 (d, J = 1.2 Hz, 3H), 2.64 (dq, J = 2.6, 7.3 Hz, 1H), 2.84 (ddq, J = 10.6, 6.9, 6.9 Hz, 1H), 3.31 (dd, J = 2.6, 7.2 Hz, 1H), 3.97 (d, J = 10.9 Hz, 1H), 4.35 (d, J = 10.9 Hz, 1H), 5.21 (dq, J = 10.6, 1.2 Hz, 1H).